### Form Factors

A. Radyushkir

Hadronic forn factors

Hard-wal model

Soft-Wall model

Summary

## Meson Form Factors in AdS/QCD Lecture 1: ρ meson form factors

A. Radyushkin

Based on papers written in collaboration with H.R. Grigoryan

DIAS Workshop, September 16, 2011

## Hadronic form factors

### Form Factors

#### A. Radyushkin

## Hadronic form factors

- Hard-wal model
- Soft-Wall model

Summary

- Hadronic form factors:  $(1/Q^2)^{n_q-1}$  counting rules for a hadron made of  $n_q$  quarks
- Exclusive-inclusive connection: Parton distributions behave like  $(1 - x)^{2n_q - 3}$
- Expectation: some fundamental/easily visible reason

# Soft mechanism

Form Factors

A. Radyushkir

Hadronic form factors

Hard-wal model

Soft-Wall model

Summary

• Early idea: Feynman mechanism/Drell-Yan formula [PRL 70]

$$F(Q^2) = \int_0^1 dx \int d^2 \mathbf{k}_\perp \Psi^*(x, \mathbf{k}_\perp + \bar{x} \mathbf{q}_\perp) \Psi(x, \mathbf{k}_\perp)$$



Take region where both  $\Psi_M(x,{\bf k}_\perp)$  and  $\Psi^*_M(x,{\bf k}_\perp+\bar{x}{\bf q}_\perp)$  are maximal

## Soft mechanism (cont'd)

Form Factors

A. Radyushkin

Hadronic form factors

Hard-wal model

Soft-Wall model

Summary

Drell-Yan formula

$$F(Q^2) = \int_0^1 dx \int d^2 \mathbf{k}_\perp \, \Psi^*(x, \mathbf{k}_\perp + \bar{x} \mathbf{q}_\perp) \Psi(x, \mathbf{k}_\perp)$$

Take region where both  $\Psi_M(x, \mathbf{k}_{\perp})$  and  $\Psi_M^*(x, \mathbf{k}_{\perp} + \bar{x}\mathbf{q}_{\perp})$  are maximal:

•  $|\mathbf{k}_{\perp}| \sim \Lambda$  is small and •  $\bar{x} \equiv 1 - x$  is close to 0, so that  $|\bar{x}\mathbf{q}_{\perp}| \sim \Lambda$ If  $|\Psi(x,\Lambda)|^2 \sim (1-x)^{2n-3}$  then

$$F(Q^2) \sim \int_0^{\Lambda/Q} \bar{x}^{2n-3} \, d\bar{x} \sim (1/Q^2)^{n-1}$$

 $\Rightarrow$  Causal relation: Form of f(x) determines  $F(Q^2)$ 

# Hard mechanism

### Form Factors

A. Radyushkin

## Hadronic form factors

Hard-wal model

Soft-Wall model

Summary

### Another region in DY formula

$$F(Q^2) = \int_0^1 dx \int d^2 \mathbf{k}_\perp \, \Psi^*(x, \mathbf{k}_\perp + \bar{x} \mathbf{q}_\perp) \Psi(x, \mathbf{k}_\perp)$$

• finite x and small  $|{\bf k}_{\perp}|,$  e.g., region  $|{\bf k}_{\perp}| \ll \bar{x} |{\bf q}_{\perp}|$ , where  $\Psi(x,{\bf k}_{\perp})$  is maximal. Then

$$F_M(Q^2) \sim 2 \int_0^1 dx \left| \Psi^*(x, \bar{x} \mathbf{q}_\perp) \varphi(x) \right|$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

 $\Rightarrow$  form factor repeats large- $\mathbf{k}_{\perp}$  behavior of WF

 Mechanism was proposed by G.B. West [PRL 70] (in covariant BS-type formalism)

## West's model

### Form Factors

A. Radyushkir

## Hadronic form factors

- Hard-wal model
- Soft-Wall model
- Summary



$$F(Q^2) \sim \int d^4 p f(p) f(p+q)$$

f(p) is a function of t ≡ p<sup>2</sup> and spectator mass M<sup>2</sup>
If f(t, M<sup>2</sup>) ~ t<sup>-n</sup>g(M<sup>2</sup>), then F(Q<sup>2</sup>) ~ (1/Q<sup>2</sup>)<sup>n</sup>

$$\nu W_2(x) \sim \int_{t_{\min}}^{t_{\max} \sim -2\nu} dt f^2(t, M^2) \sim (t_{\min})^{2n-1}$$

where 
$$t_{\min} = \left(\frac{-x}{1-x}\right) \left[M^2 - (1-x)M_N^2\right]$$
  

$$\Rightarrow \nu W_2(x) \sim (1-x)^{2n-1}$$

# DY vs West model

### Form Factors

### A. Radyushkin

## Hadronic form factors

- Hard-wal model
- Soft-Wall model
- Summary

- DY: Active parton is "on-shell"  $p^2 \sim \Lambda^2$
- $F(Q^2)$  reflects the size of phase space in which  $1 x \sim \Lambda/Q$
- West model: Active parton is highly virtual
- $F(Q^2)$  reflects shape of WF for large virtualities  $\Rightarrow$  Two mechanisms are completely different Surpise:  $(1/Q^2)^n \Leftrightarrow (1-x)^{2n-1}$  holds in both models!
- NB: In DY model, n is not necessarily integer
- NB: In West's model,  $(1/Q^2)^n$  and  $(1-x)^{2n-1}$  have the same cause, but not "causing" each other

A D F A 同 F A E F A E F A Q A

# Hard mechanism & pQCD

### Form Factors

A. Radyushkin

#### Hadronic form factors

- Hard-wal model
- Soft-Wall model
- Summary



- Integer n naturally appear in hard model: reflect number of hard propagators
- Hard exchange in a theory with dimensionless coupling constant gives n = n<sub>q</sub> - 1 [BF 73]
- Consequence of scale invariance [MMT 73]
- QCD:  $(\alpha_s/Q^2)^{n_q-1}$
- Suppression:  $F_{\pi}(Q^2) \rightarrow (2\alpha_s/\pi)s_0/Q^2$  $\left[s_0 = 4\pi^2 f_{\pi}^2 \approx 0.7 \,\text{GeV}^2\right]$
- Known:  $\alpha_s/\pi \sim 0.1$  is penalty for an extra loop
- AdS/QCD model:  $F_{\pi}(Q^2) \rightarrow s_0/Q^2$  [Grigoryan, AR]

# AdS/QCD

#### Form Factors

A. Radyushkir

## Hadronic form factors

Hard-wal model

Soft-Wall model

Summary

AdS/QCD claims nonperturbative explanation of quark counting rules Reason: conformal invariance & short-distance behavior of normalizable modes  $\Phi(\zeta)$ Form factor in AdS/CFT [Polchinsky,Strassler]

$$F(Q^2) = \int_0^{1/\Lambda} \frac{d\zeta}{\zeta^3} \Phi_{P'}(\zeta) J(Q,\zeta) \Phi_P(\zeta)$$

Nonnormalizable mode:  $J(Q, \zeta) = \zeta Q K_1(\zeta Q) \equiv \mathcal{K}_1(\zeta Q)$ Normalizable modes for mesons:  $\Phi(\zeta) = C\zeta^2 J_{L+1}(\beta_{L,k}\zeta \Lambda)$ For large Q:  $\mathcal{K}_1(\zeta Q) \sim e^{-\zeta Q} \Rightarrow$  only small  $\zeta \lesssim 1/Q$  work  $\Rightarrow F_{L=0}(Q^2) \rightarrow 1/Q^4$ Wrong power?

# Hard-Wall AdS/QCD

### Form Factors

A. Radyushkin

Hadronic form factors

Hard-wall model

Soft-Wall model

Summary

- 5-dimensional space:  $\{x^{\mu}, z\} \equiv X^M$
- AdS<sub>5</sub> metric with hard wall

$$ds^{2} = \frac{1}{z^{2}} \left( \eta_{\mu\nu} dx^{\mu} dx^{\nu} - dz^{2} \right), \qquad 0 \le z \le z_{0} = 1/\Lambda ,$$

- 5-dimensional vector gauge field  $A_M(X)$  with  $M = \mu, z$
- AdS/QCD correspondence with 4D field  $A_{\mu}(x)$

$$A_{\mu}(x, z=0) = A_{\mu}(x)$$

5D gauge action for vector field

$$S_{\text{AdS}} = -\frac{1}{4g_5^2} \int d^4x \ dz \ \sqrt{g} \ \text{Tr}\left(F_{MN}F^{MN}\right)$$

- Field-strength tensor  $F_{MN} = \partial_M A_N \partial_N A_M i[A_M, A_N]$
- Coupling constant  $g_5^2 = 6\pi^2/N_c$  is small in large- $N_c$  limit

# Bulk-to-boundary Propagator

### Form Factors

A. Radyushkin

Hadronic form factors

Hard-wall model

Soft-Wall model

Summary

• Free-field satisfies  $\Box_5 A(X) = 0$  or

$$\Box_4 A(x,z) + z \partial_z \left(\frac{1}{z} \partial_z A(x,z)\right) = 0$$

• In momentum 4D representation

$$z\partial_z \left(\frac{1}{z}\,\partial_z \tilde{A}(p,z)\right) + p^2 \tilde{A}(p,z) = 0 \qquad (*)$$

AdS/QCD correspondence

$$\tilde{A}_{\mu}(p,z) = \tilde{A}_{\mu}(p) \frac{V(p,z)}{V(p,0)}$$

- Bulk-to-boundary propagator V(p, z) satisfies (\*)
- Gauge invariant boundary condition F<sub>µz</sub>(x, z<sub>0</sub>) = 0 on IR wall
   ⇒ Neumann b.c. ∂<sub>z</sub>V(p, z<sub>0</sub>) = 0

(ロ) (同) (三) (三) (三) (○) (○)

## Bound state expansion

### Form Factors

A. Radyushkir

Hadronic form factors

Hard-wall model

Soft-Wall model

Summary

- Solution for V(p, z) with Neumann b.c.  $(P = \sqrt{p^2})$  $V(p, z) = Pz [Y_0(Pz_0)J_1(Pz) - J_0(Pz_0)Y_1(Pz)]$
- Bound state expansion (uses Kneser-Sommerfeld formula)

$$\frac{V(p,z)}{V(p,0)} \equiv \mathcal{V}(p,z) = -\sum_{n=1}^{\infty} \frac{g_5 f_n}{p^2 - M_n^2} \psi_n(z)$$

- Masses:  $M_n = \gamma_{0,n}/z_0$  (Bessel zeros:  $J_0(\gamma_{0,n}) = 0$ ))
- "Decay constants"

$$f_n = \frac{\sqrt{2}M_n}{g_5 z_0 J_1(\gamma_{0,n})}$$

"ψ" wave functions

$$\psi_n(z) = \frac{\sqrt{2}}{z_0 J_1(\gamma_{0,n})} z J_1(M_n z)$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

# Wave functions of $\psi$ type

### Form Factors

A. Radyushkin

Hadronic form factors

## Hard-wall model

Soft-Wall model

Summary

- Obey equation of motion with  $p^2 = M_n^2$
- Satisfy  $\psi_n(0) = 0$  at UV and  $\partial_z \psi_n(z_0) = 0$  at IR boundary
- Normalized according to

$$\int_{0}^{z_{0}} \frac{dz}{z} |\psi_{n}(z)|^{2} = 1$$



Do not look like bound state w.f. in quantum mechanics

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

# Wave functions of $\phi$ type

### Form Factors

- A. Radyushkin
- Hadronic form factors

## Hard-wall model

- Soft-Wall model
- Summary

• Introducing  $\phi$  wave functions

$$\phi_n(z) \equiv \frac{1}{M_n z} \,\partial_z \psi_n(z) = \frac{\sqrt{2}}{z_0 J_1(\gamma_{0,n})} \,J_0(M_n z)$$

- Reciprocity:  $\psi_n(z) = -\frac{z}{M} \; \partial_z \phi_n(z) \label{eq:phi}$
- Give couplings  $g_5 f_n/M_n$  as their values at the origin
- Satisfy Dirichlet b. c.  $\phi_n(z_0) = 0$  at confinement radius
- Are normalized by

$$\int_0^{z_0} dz \, z \, |\phi_n(z)|^2 = 1$$

# Wave functions of $\phi$ type



A. Radyushkir

Hadronic form factors

Hard-wall model

Soft-Wall model

Summary



- Are analogous to bound state wave functions in quantum mechanics
- $\psi$  w.f. correspond to vector-potential
- $\phi$  w.f. correspond to field-strength

## **Three-Point Function**

### Form Factors

A. Radyushkir

Hadronic form factors

Hard-wall model

Soft-Wall model

Summary

### Mercedes-Benz" form

$$W(p_1, p_2, q) = \int_0^{z_0} \frac{dz}{z} \mathcal{V}(p_1, z) \mathcal{V}(p_2, z) \mathcal{V}(q, z)$$

P,

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

• For spacelike q (with  $q^2 = -Q^2$ )

$$\mathcal{V}(iQ,z) \equiv \mathcal{J}(Q,z) = Qz \left[ K_1(Qz) + I_1(Qz) \frac{K_0(Qz_0)}{I_0(Qz_0)} \right]$$

## Form Factors

### Form Factors

A. Radyushkir

Hadronic form factors

Hard-wall model

Soft-Wall model

Summary



Bound-state expansion

$$\mathcal{J}(Q,z) = \sum_{m=1}^{\infty} \frac{g_5 f_m}{Q^2 + M_m^2} \,\psi_m(z)$$

Infinite tower of vector mesons [Son,Stephanov,Strassler]

Transition form factors

$$F_{nk}(Q^2) = \int_0^{z_0} \frac{dz}{z} \mathcal{J}(Q, z) \psi_n(z) \psi_k(z)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

## **Diagonal form factors**

### Form Factors

- A. Radyushkin
- Hadronic form factors

## Hard-wall model

- Soft-Wall model
- Summary

## • In terms of $\psi$ functions

$$F_{nn}(Q^2) = \int_0^{z_0} \frac{dz}{z} \mathcal{J}(Q, z) \, |\psi_n(z)|^2$$

### • In terms of $\phi$ functions

$$F_{nn}(Q^2) = \frac{1}{1 + Q^2/2M_n^2} \int_0^{z_0} dz \, z \, \mathcal{J}(Q, z) \, |\phi_n(z)|^2$$

Define

$$\mathcal{F}_{nn}(Q^2) = \int_0^{z_0} dz \, z \, \mathcal{J}(Q, z) \, |\phi_n(z)|^2$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

 Direct analogue of diagonal bound state form factors in quantum mechanics

# Form Factors

### Form Factors

A. Radyushkir

Hadronic form factors

Hard-wall model

Soft-Wall model

Summary

## • Three form factors for vector mesons

$$\begin{aligned} \langle \rho^{+}(p_{2},\epsilon') | J_{\rm EM}^{\mu}(0) | \rho^{+}(p_{1},\epsilon) \rangle \\ &= -\epsilon'_{\beta} \epsilon_{\alpha} \Big[ \eta^{\alpha\beta}(p_{1}^{\mu} + p_{2}^{\mu}) G_{1}(Q^{2}) \\ &+ (\eta^{\mu\alpha}q^{\beta} - \eta^{\mu\beta}q^{\alpha}) (G_{1}(Q^{2}) + G_{2}(Q^{2})) \\ &- \frac{1}{M^{2}} q^{\alpha}q^{\beta}(p_{1}^{\mu} + p_{2}^{\mu}) G_{3}(Q^{2}) \Big] \end{aligned}$$

Hard-wall model gives

$$-\epsilon_{\beta}'\epsilon_{\alpha} \left[\eta_{\alpha\beta}(p_1+p_2)_{\mu}+2(\eta_{\alpha\mu}q_{\beta}-\eta_{\beta\mu}q_{\alpha})\right]F_{nn}(Q^2)$$

(ロ) (同) (三) (三) (三) (○) (○)

- Prediction:  $G_1(Q^2) = G_2(Q^2) = F_{nn}(Q^2); G_3(Q^2) = 0$  [SS]
- Moments: magnetic μ = 2, quadrupole D = -1/M<sup>2</sup>, same result as for pointlike meson (Brodsky & Hiller)

## +++ Form Factor

### Form Factors

A. Radyushkin

Hadronic form factors

Hard-wall model

Soft-Wall model

Summary

• +++ component of 3-point correlator gives combination

$$\mathcal{F}(Q^2) = G_1(Q^2) + \frac{Q^2}{2M^2} G_2(Q^2) - \left(\frac{Q^2}{2M^2}\right)^2 G_3(Q^2)$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

• For  $\rho$ -meson,  $\mathcal{F}(Q^2)$  coincides with IMF LL transition that has leading  $\sim 1/Q^2$  behavior in pQCD

# Large- $Q^2$ behavior of $\mathcal{F}(Q^2)$

### Form Factors

- A. Radyushkir
- Hadronic form factors

## Hard-wall model

- Soft-Wall model
- Summary

Hard-wall model prediction

$$\mathcal{F}(Q^2) = \int_0^{z_0} dz \, z \, \mathcal{J}(Q, z) \, |\phi(z)|^2$$

• For large Q:

$$\mathcal{J}(Q,z) \to zQK_1(Qz) \sim e^{-Qz}$$

- Only  $z \sim 1/Q$  contribute  $\Rightarrow \phi(z)$  may be substituted by  $\phi(0)$
- Asymptotic normalization of  $\mathcal{F}(Q^2)$  is given by

$$\frac{|\phi(0)|^2}{Q^2} \int_0^\infty d\chi \, \chi^2 \, K_1(\chi) = 2 \, \frac{|\phi(0)|^2}{Q^2}$$

(日) (日) (日) (日) (日) (日) (日)

• Same power of  $1/Q^2$  as in pQCD, but no  $\alpha_s/\pi$  factor

## Soft-Wall model

### Form Factors

- A. Radyushkir
- Hadronic form factors
- Hard-wal model
- Soft-Wall model

Summary

- Take model with  $z^2$  barrier (Karch et al.)
- Equation for bulk-to-boundary propagator V(p, z)

$$z\partial_z \left[\frac{1}{z} e^{-\kappa^2 z^2} \partial_z V\right] + p^2 e^{-\kappa^2 z^2} V = 0$$

• Solution normalized to 1 for z = 0 ( $a = -p^2/4\kappa^2$ )

$$\mathcal{V}(p,z) = a \int_0^1 dx \, x^{a-1} \, \exp\left[-\frac{x}{1-x} \, \kappa^2 z^2\right] \, ,$$

 $\bullet~$  Propagator has poles at locations  $p^2=4(n+1)\kappa^2\equiv M_n^2$ 

$$\mathcal{V}(p,z) = \kappa^2 z^2 \sum_{n=0}^{\infty} \frac{L_n^1(\kappa^2 z^2)}{a+n+1} = \sum_{n=0}^{\infty} \frac{g_5 f_n}{M_n^2 - p^2} \,\psi_n(z)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

# Wave Functions

### Form Factors

A. Radyushkin

#### Hadronic form factors

Hard-wal model

## Soft-Wall model

Summary

### • $\psi$ wave functions

$$\psi_n(z) = z^2 \sqrt{\frac{2}{n+1}} L_n^1(\kappa^2 z^2)$$

### Coupling constants

$$g_5 f_n = \left. \frac{1}{z} e^{-\kappa^2 z^2} \partial_z \psi_n(z) \right|_{z=\epsilon \to 0} = \sqrt{8(n+1)} \kappa^2$$

### • $\phi$ wave functions

$$\phi_n(z) = \frac{1}{M_n z} e^{-\kappa^2 z^2} \partial_z \psi_n(z) = \frac{2}{M_n} e^{-\kappa^2 z^2} L_n^0(\kappa^2 z^2)$$
  
$$\phi_0(z) = \sqrt{2} e^{-\kappa^2 z^2} \quad , \quad \phi_1(z) = \sqrt{2} e^{-\kappa^2 z^2} (1 - \kappa^2 z^2)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

## Form Factors & *p*-Meson Dominance

### Form Factors

A. Radyushkir

Hadronic form factors

Hard-wal model

Soft-Wall model

Summary

Form factor of the lowest state

$$\mathcal{F}_{00}(Q^2) = 2 \int_0^\infty dz \, z \, e^{-\kappa^2 z^2} \, \mathcal{J}(Q, z)$$

• Using representation for 
$$\mathcal{J}(Q,z)$$
 gives

$$\mathcal{F}_{00}(Q^2) = \frac{1}{1 + Q^2 / M_0^2}$$

Exact vector dominance is due to overlap integral

$$\mathcal{F}_{m,00} \equiv 2 \int_0^\infty dz \, z^3 \, e^{-z^2} \, L_m^1(z^2) = \delta_{m0}$$

▲□▶▲圖▶▲≣▶▲≣▶ ■ のQ@

# Large- $Q^2$ behavior

### Form Factors

A. Radyushkir

Hadronic form factors

Hard-wal model

Soft-Wall model

Summary

• Large- $Q^2$  behavior of  $\mathcal{F}$  form factor

$$\mathcal{F}_{nn}(Q^2) \to \frac{\Phi_n^2(0)}{Q^2} \int_0^\infty d\chi \, \chi^2 \, K_1(\chi) = \frac{2 \, \Phi_n^2(0)}{Q^2}$$

In hard-wall model:

$$\Phi_0^{\rm H}(0) = \frac{\sqrt{2}m_{\rho}}{\gamma_{0,1}J_1(\gamma_{0,1})} \Rightarrow \mathcal{F}_{\rho}^{\rm H}(Q^2) \to \frac{2.56m_{\rho}^2}{Q^2}$$

In soft-wall model:

$$\Phi_0^{\rm S}(0) = \frac{m_{\rho}}{\sqrt{2}} \Rightarrow \mathcal{F}_{\rho}^{\rm S}(Q^2) \to \frac{m_{\rho}^2}{Q^2}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

# Summary

### Form Factors

- A. Radyushkin
- Hadronic form factors
- Hard-wal model
- Soft-Wall model
- Summary

- Form Factors in AdS/QCD are given by QM-like formulas
- Only one mechanism  $z \sim 1/Q$  for large Q
- IMF (LL) form factor of vector meson indeed behaves like  $1/Q^2$  for large  $Q^2$

(日) (日) (日) (日) (日) (日) (日)

- Exact  $\rho$ -dominance for  $\mathcal{F}(Q^2)$  in soft-wall model
- Large- $Q^2$  asymptotics is  $\mathcal{O}(1/Q^2)$  vs. pQCD  $\mathcal{O}(\alpha_s/\pi) \, \mathcal{O}(1/Q^2)$

# Conclusion

### Form Factors

- A. Radyushkir
- Hadronic form factors
- Hard-wal model
- Soft-Wall model
- Summary

 AdS/QCD provides instructive model for what may happen with form factors in QCD

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで