Exotic mesons from lattice QCD

Mike Peardon
School of Mathematics, Trinity College Dublin, Ireland

Helmholtz School on Lattice QCD, Hadron Structure and Hadronic Matter

Dubna, $13^{\text {th }}$ September 2011

Review

- Exotic mesons are states that do not fit naturally into the simplest quark model
- Considerable experimental interest in these states
- Statistical precision has been difficult to obtain on the lattice
- Using better and new techniques might help...

Glueball spectroscopy

- Creation operator for glueball should excite gluon fields alone.
- Smooth, gauge-invariant operator on gluon field $=$ smeared Wilson loops
- Variational method easy to implement, since operators involve only gluons (no linear solvers!)
- Correlation function is

$$
C(t)=\left\langle\operatorname{Tr} U_{\mathcal{A}}(t) \quad \operatorname{Tr} U_{\mathcal{B}}(0)\right\rangle
$$

- Problem: variance in measurements very large and states are intrinsically heavy

The SU(3) Yang-Mills glueball spectrum

Glueballs on dynamical lattices

- Studies to date focus on the lightest (scalar) mode [C. Michael and C. McNeile, PRD63 114503 (2001)]

- Newer study with staggered quarks finds YM result for $0^{++}, 0^{-+}$and 2^{++}[UKQCD, PRD82 034501 (2010)]

Isovector and isoscalar mesons

Creating mesons in QFT

- Add powers of D_{i} to increase L
- $N=2$ - reduce $D_{i} D_{j}$ to get $L=0,1,2$.
- $L=1$ from $\epsilon_{i j k} D_{j} D_{k}=B_{i}$
- Chromomagnetic operator - intrinsic gluon excitation

	Singlet	Triplet
$N=0$	$\bar{\psi} \gamma_{5} \psi$	$\bar{\psi} \gamma_{i} \psi$
	0^{-+}	1^{--}
$N=1$	$\psi \gamma_{5} D_{i} \psi$	$\psi \gamma_{i} D_{j} \psi$
	1^{+-}	$\{0,1,2\}^{++}$
$N=2$	$\bar{\psi} \gamma_{5}\left\{D_{i}, D_{j}\right\} \psi$	$\bar{\psi} \gamma_{i}\left\{D_{j}, D_{k}\right\} \psi$
	2^{-+}	$\{1,2,3\}^{--}$
	$\bar{\psi} \gamma_{5}\left[D_{i}, D_{j}\right] \psi$	$\bar{\psi} \gamma_{i}\left[D_{j}, D_{k}\right] \psi$
	1^{--}	$\{0,1,2\}^{-+}$

- Replace continuum derivatives with finite differences and then reduce the resulting representations of O_{h}
[J. Dudek et.al. PRD77:034501 (2008)]

Distillation: Varying the size of the space

- 16^{3} spatial volume, $I=1 T_{1}^{--}$- excited states unstable below $N \approx 40$

The variational basis

- Can check sensitivity of spectrum to operator basis:
(a) dim-26 op basis, up to D^{3}
(b) Full basis, two noisest removed
(c) Full basis, four noisest removed
(d) No D^{3} except continuum $J=4$
(e) No $[D, D]$ ops
(f) No continuum $J=3$
(g) No continuum $J=3,4$
(h) No continuum $J=4$

Isovector meson spectrum $\left(m_{\pi}=? M e V\right.$

- Below 2 GeV , quark model explains all data
- First identification of the hybrid singlet/triplet?
- Still at unphysical m_{π} (and not in continuum limit)

Isovector hybrid mesons - the "supermultiplet?"

[J.Dudek arXiv:1106.5515]

- Substantial mass dependence not seen.
- Possible to test model predictions (bag, string, constituent gluons ...)?
- PDG lists two 1^{-+}states $\pi_{1}(1400)$ and $\pi_{1}(1600)$

Isoscalar meson spectrum

- $V=16^{3}$ using GPUs to compute all-t propagators
- Percent-level statistical precision possible
- light-strange mixing computed
- BUT - 0^{++}not shown here!
[J. Dudek et.al. PRD83:111502 (2011)]

Charmonium spectroscopy

- Significant experimental interest in charmed hybrids - do they explain the narrow states above $D-\bar{D}$ threshold?

PRELIMINARY [G.Moir, L.Liu, P.Vilaseca, MP, S.Ryan]

- Distilled charm quarks - good statistical precision again
- Statistical error on 1^{-+}hybrid $\approx 17 \mathrm{MeV}$

Scattering on the Euclidean lattice

$\mathrm{I}=0 \pi-\pi$ scattering - measuring $\langle\pi \pi \mid \pi \pi\rangle$

- Stochastic insertion into distillation space works well

[C. Morningstar et.al.: PRD83:114505 (2011)]

Particle(s) in a box

- Spatial lattice of extent L with periodic boundary conditions
- Allowed momenta are quantized: $p=\frac{2 \pi}{L}\left(n_{x}, n_{y}, n_{z}\right)$ with $n_{i} \in\{0,1,2, \ldots L-1\}$
- Energy spectrum is a set of discrete levels, classified by p : Allowed energies of a particle of mass m

$$
E=\sqrt{m^{2}+\left(\frac{2 \pi}{L}\right)^{2} N^{2}} \quad \text { with } N^{2}=n_{x}^{2}+n_{y}^{2}+n_{z}^{2}
$$

- Can make states with zero total momentum from pairs of hadrons with momenta $p,-p$.
- "Density of states" increases with energy since there are more ways to make a particular value of N^{2} e.g. $\{3,0,0\}$ and $\{2,2,1\} \rightarrow N^{2}=9$

Avoided level crossings

- Consider a toy model with two states (a resonance and a two-particle decay mode) in a box of side-length L
- Write a mixing hamiltonian:

$$
H=\left(\begin{array}{cc}
m & g \\
g & \frac{4 \pi}{L}
\end{array}\right)
$$

- Now the energy eigenvalues of this hamiltonian are given by

$$
E_{ \pm}=\frac{\left(m+\frac{4 \pi}{L}\right) \pm \sqrt{\left(m-\frac{4 \pi}{L}\right)^{2}+4 g^{2}}}{2}
$$

Avoided level crossings

Avoided level crossings

- Ground-state smoothly changes from resonance to two-particle state
- Need a large box. This example, levels cross at $m L=4 \pi \approx 12.6$
- Example: $m=1 \mathrm{GeV}$ state, decaying to two massless pions - avoided level crossing is at $L=2.5 \mathrm{fm}$.
- If the decay product pions have $m_{\pi}=300 \mathrm{MeV}$, this increases to $L=3.1 \mathrm{fm}$

Lüscher's method

- Relates the spectrum in a finite box to the scattering phase shift (and so resonance properties)

Lüscher's formula

$$
\begin{gathered}
\delta(p)=-\phi(\kappa)+\pi n \\
\tan \phi(\kappa)=\frac{\pi^{3 / 2} \kappa}{Z_{00}\left(1 ; \kappa^{2}\right)} \\
\kappa=\frac{p L}{2 \pi}
\end{gathered}
$$

- p_{n} is defined for level n with energy E_{n} from the dispersion relation:

$$
E_{n}=2 \sqrt{m^{2}+p_{n}^{2}}
$$

Lüscher's method

- Z_{00} is a generalised Zeta function:

$$
Z_{j s}\left(1, q^{2}\right)=\sum_{n \in Z^{3}} \frac{r^{j} Y_{j s}(\theta, \phi)}{\left(n^{2}-q^{2}\right)^{s}}
$$

[M.Lüscher, Commun.Math.Phys.105:153-188,1986.]

- With the phase shift, and for a well-defined resonance, can fit a Breit-Wigner to extract the resonance width and mass.

$$
\delta(p) \approx \tan ^{-1}\left(\frac{4 p^{2}+4 m_{\pi}^{2}-m_{\sigma}^{2}}{m_{\sigma}\lceil\sigma}\right)
$$

$I=1$ scattering using distillation

- A number of groups have investigated Γ_{ρ} on the lattice.
- Need non-zero relative momentum of pions in final state (P-wave decay)
- New calculation using distillation: [C.Lang et.al. arXiv:1105.5636]

interpolator set:
$\begin{array}{cc}q q & \pi \pi \\ 1: O_{1,2,3,4,5}, & O_{6}\end{array}$
2: $O_{1,2,3,4}, O_{6}$
3: $O_{1,2,3}, \quad O_{6}$
$\begin{array}{ll}\text { 4: } O_{2,3,4,5}, & O_{6} \\ \text { 5: } O_{1}, & O_{6}\end{array}$
6: $O_{1,2,3,4,5}$
7: $O_{1,2,3,4}$
8: $O_{1,2,3}$

$I=1 \pi \pi$ phase shift

Test: O(4) Sigma model

[D. McManus. P. Giudice and MP]

Spectrum of $O(4)$ sigma model in broken phase

Phase shift inferred from Lüscher's method

$\mathrm{I}=2 \pi \pi$ scattering

Resolve shifts in masses away from non-interacting values

$\mathrm{I}=2 \pi \pi$ scattering

- Non-resonant scattering in S-wave - compares well with experimental data

Group theory of two particles in a box

- Consider two identical particles, with momentum p and $-p$ (so zero total momentum).
- $\Omega(p)$, set of all momentum directions related by rotations in O_{h}
- Can make a set of operators, $\{\phi(p)\}$ from Ω and these form a (reducible) representation of O_{h}.
- Example: $\Phi=\{\phi(1,0,0), \phi(0,1,0), \phi(0,0,1)\}$ contains the A_{1} and E irreps
- Different particles: $+p$ and $-p$ are not equivalent

p	irreducible content
$(0,0,0)$	A_{1}^{g}
$(1,0,0)$	$A_{1}^{g} \oplus E^{g}$
$(1,1,0)$	$A_{1}^{g} \oplus E^{g} \oplus T_{2}^{g}$
$(1,1,1)$	$A_{1}^{g} \oplus T_{2}^{g}$

- More complicated if mesons have internal spin

Multi-meson states in QCD

- Multi-hadron states not seen in this calculation

Summary

- Exotic mesons are states that do not naturally fit into the simplest quark model
- Considerable experimental interest in understanding these statest (so far, picture is confusing)
- New techniques in lattice spectroscopy are helping, but still could benefit from improvements - new ideas please!
- Scattering calculations on the lattice are developing quickly. Much more to learn about this big topic (in particular, about states above inelastic threshold)
- No results yet on widths of exotic resonances - are they coming soon?

