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Review

� Exotic mesons are states that do not fit naturally
into the simplest quark model

� Considerable experimental interest in these states
� Statistical precision has been difficult to obtain on

the lattice
� Using better and new techniques might help...



Glueball spectroscopy

� Creation operator for
glueball should excite
gluon fields alone.

� Smooth, gauge-invariant
operator on gluon field =
smeared Wilson loops

� Variational method easy to
implement, since
operators involve only
gluons (no linear solvers!)

� Correlation function is
C(t) = 〈 Tr UA(t) Tr UB(0) 〉

� Problem: variance in measurements very large
and states are intrinsically heavy



The SU(3) Yang-Mills glueball spectrum
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� No quarks - Yang-Mills
theory only

� Ensembles of more
than 10,000
configurations

� Anisotropic
discretisation: as > at

� No light spin-exotic
glueballs

C. Morningstar and MP
PRD60:034509 (1999)



Glueballs on dynamical lattices

� Studies to date focus on the lightest (scalar) mode

[C. Michael and C. McNeile, PRD63 114503 (2001)]

� Newer study with staggered quarks finds YM result
for 0++,0−+ and 2++ [UKQCD, PRD82 034501 (2010)]



Isovector and isoscalar
mesons



Creating mesons in QFT

� Add powers of Di to
increase L

� N = 2 - reduce DiDj to
get L = 0,1,2.

� L = 1 from εijkDjDk = Bi
� Chromomagnetic

operator - intrinsic
gluon excitation

Singlet Triplet
N = 0 ψ̄γ5ψ ψ̄γiψ

0−+ 1−−

N = 1 ψ̄γ5Diψ ψ̄γiDjψ
1+− {0,1,2}++

N = 2 ψ̄γ5{Di,Dj}ψ ψ̄γi{Dj,Dk}ψ
2−+ {1,2,3}−−

ψ̄γ5[Di,Dj]ψ ψ̄γi[Dj,Dk]ψ
1−− {0,1,2}−+

� Replace continuum derivatives with finite
differences and then reduce the resulting
representations of Oh

[J. Dudek et.al. PRD77:034501 (2008)]



Distillation: Varying the size of the space
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� 163 spatial volume, I = 1 T−−1 - excited states
unstable below N ≈ 40



The variational basis
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� Can check sensitivity of
spectrum to operator basis:

(a) dim-26 op basis, up to D3

(b) Full basis, two noisest removed
(c) Full basis, four noisest removed
(d) No D3 except continuum J = 4
(e) No [D,D] ops
(f) No continuum J = 3
(g) No continuum J = 3,4
(h) No continuum J = 4



Isovector meson spectrum (mπ =?MeV

� Below 2GeV, quark model explains all data
� First identification of the hybrid singlet/triplet?
� Still at unphysical mπ (and not in continuum limit)
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Isovector hybrid mesons - the “supermultiplet?”

[J.Dudek arXiv:1106.5515]
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� Substantial mass dependence not seen.
� Possible to test model predictions (bag, string,

constituent gluons ...)?
� PDG lists two 1−+ states π1(1400) and π1(1600)



Isoscalar meson spectrum
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negative parity positive parity

� V = 163 using GPUs to compute all-t propagators
� Percent-level statistical precision possible
� light-strange mixing computed
� BUT - 0++ not shown here!

[J. Dudek et.al. PRD83:111502 (2011)]



Charmonium spectroscopy

� Significant experimental interest in charmed
hybrids - do they explain the narrow states above
D− D̄ threshold?
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PRELIMINARY [G.Moir, L.Liu, P.Vilaseca, MP, S.Ryan]

� Distilled charm quarks - good statistical precision
again

� Statistical error on 1−+ hybrid ≈ 17MeV



Scattering on
the Euclidean lattice



I=0 π − π scattering - measuring 〈ππ|ππ〉

� Stochastic insertion into distillation space works
well
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[C. Morningstar et.al.: PRD83:114505 (2011)]



Particle(s) in a box

� Spatial lattice of extent L with periodic boundary
conditions

� Allowed momenta are quantized: p = 2π
L (nx, ny, nz)

with ni ∈ {0,1,2, . . . L− 1}
� Energy spectrum is a set of discrete levels,

classified by p: Allowed energies of a particle of
mass m

E =

s

m2 +

�

2π

L

�2

N2 with N2 = n2
x

+ n2
y

+ n2
z

� Can make states with zero total momentum from
pairs of hadrons with momenta p,−p.

� “Density of states” increases with energy since
there are more ways to make a particular value of
N2 e.g. {3,0,0} and {2,2,1}→ N2 = 9



Avoided level crossings

� Consider a toy model with two states (a resonance
and a two-particle decay mode) in a box of
side-length L

� Write a mixing hamiltonian:

H =

�

m g

g 4π
L

�

� Now the energy eigenvalues of this hamiltonian are
given by

E± =
(m+ 4π

L )±
Æ

(m− 4π
L )2 + 4g2

2



Avoided level crossings
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Avoided level crossings

� Ground-state smoothly changes from resonance
to two-particle state

� Need a large box. This example, levels cross at
mL = 4π ≈ 12.6

� Example: m = 1 GeV state, decaying to two
massless pions - avoided level crossing is at
L = 2.5fm.

� If the decay product pions have mπ = 300 MeV, this
increases to L = 3.1fm



Lüscher’s method

� Relates the spectrum in a finite box to the
scattering phase shift (and so resonance properties)

Lüscher’s formula

δ(p) = −ϕ(κ) + πn

tanϕ(κ) =
π3/2κ

Z00(1;κ2)

κ =
pL

2π

� pn is defined for level n with energy En from the
dispersion relation:

En = 2
Æ

m2 + p2
n



Lüscher’s method

� Z00 is a generalised Zeta function:

Zjs(1, q2) =
∑

n∈Z3

rjYjs(θ,ϕ)

(n2 − q2)s

[M.Lüscher, Commun.Math.Phys.105:153-188,1986.]

� With the phase shift, and for a well-defined
resonance, can fit a Breit-Wigner to extract the
resonance width and mass.

δ(p) ≈ tan−1

 

4p2 + 4m2
π
−m2

σ

mσΓσ

!



I = 1 scattering using distillation

� A number of groups have investigated Γρ on the
lattice.

� Need non-zero relative momentum of pions in final
state (P-wave decay)

� New calculation using distillation: [C.Lang et.al.
arXiv:1105.5636]

2 4 6 8 10 12 14 16 18
t

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

C
(t
)

<ππ|ππ> (Fig. 1a+1c)
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I = 1ππ phase shift
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Test: O(4) Sigma model

[D. McManus, P. Giudice and MP]
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I=2 ππ scattering
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I=2 ππ scattering
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� Non-resonant scattering in S-wave - compares well
with experimental data



Group theory of two particles in a box

� Consider two identical particles, with momentum p
and −p (so zero total momentum).

� Ω(p), set of all momentum directions related by
rotations in Oh

� Can make a set of operators, {ϕ(p)} from Ω and
these form a (reducible) representation of Oh.

� Example: Φ = {ϕ(1,0,0), ϕ(0,1,0), ϕ(0,0,1)}
contains the A1 and E irreps

� Different particles: +p and −p are not equivalent

p irreducible content
(0,0,0) A

g
1

(1,0,0) A
g
1 ⊕ Eg

(1,1,0) A
g
1 ⊕ Eg ⊕ T

g
2

(1,1,1) A
g
1 ⊕ T

g
2

� More complicated if mesons have internal spin



Multi-meson states in QCD
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� Multi-hadron states not seen in this calculation



Summary

� Exotic mesons are states that do not naturally fit
into the simplest quark model

� Considerable experimental interest in
understanding these statest (so far, picture is
confusing)

� New techniques in lattice spectroscopy are helping,
but still could benefit from improvements - new
ideas please!

� Scattering calculations on the lattice are
developing quickly. Much more to learn about
this big topic (in particular, about states above
inelastic threshold)

� No results yet on widths of exotic resonances - are
they coming soon?


