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Overview

@ Introduction - what is an exotic meson?
@® Experimental searches
© Lattice spectroscopy

e The challenges

e Precision spectroscopy (including excited states)
e Strong mixing
e Scattering and resonances
e Techniques
e Variational calculations
e Spin on the lattice
e Distillation
e Stochastic estimation

O Results from the lattice
e |sovector mesons and hybrids
e Glueballs and isoscalar mesons

© Conclusions and outlook
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A simple quark model of mesons

o Combine quark and anti-quark and find JP€ values
e Total spin, /=L + (51 +52)
e Two spin-1/2 quarks in two
S T 2 possible combinations:
L

1 1
—-®-—=001
2 2

Singlet S=0 PC=-+
Triplet S=1 PC=-—-

e Combine with angular momentum around centre. L
e Odd L wavefunctions have PC = ——

L=0 L=1 L=2 L=3
Singlet: 0+ 1t- 2-t 3t-
Triplet: 1 {0,1,2}*+t {1,2,3}~ {2,3,4}*+ ...

S-wave P-wave D-wave F-wave




Exotic qguantum numbers

« On inspection, some J°C values are missing from
this simple quark model:

Exotic quantum numbers

JP€=0-",0t-,1-+,2+t-,37F,...,event—,0dd™"

e Finding a meson with these quantum numbers
would be a “smoking gun” for something beoynd
the quark model

o Are these the only signatures of exotic states?

e Extra states in the spectrum?
e States with decays that seem unusual in the model?



Gluonic excitations of the QCD potential
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A constituent picture of hadrons from QCD

¢ QCD has quarks and gluons

¢ The confinement conjecture: fields of the QCD
lagrangian combine into colourless combinations:
the mesons and baryons

A constituent model

quark model
constituents label
3®3 = 198 meson
383®3 = loe8e8610 baryon
83®8 = lo8080 1001027 glueball
38®3 = lo808®8010® 10627 hybrid
303®3®3 = loleo8eo8e8e08al0®10®27 tetraquark/
molecule

e QCD does not always respect this constituent
labelling! There can be strong mixing.



The GlueX experiment at JLab

lefierson Llab -~
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barrel  time-of /
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e 12 GeV upgrade to
CEBAF ring

¢ New experimental
hall: Hall D

e« New experiment:
GlueX

-
"i‘ | supercon:
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e Aim: photoproduce mesons, in particular the hybrid
mesons (with intrinsic gluonic excitations)

o Expected to start taking data 2014



Panda@FAIR, GSI

e Extensive new
construction at GSI
Darmstadt

o Expected to start
operation 2014

PANDA: Anti-Proton
ANnihilation at DArmstadt

e Anti-proton beam from
FAIR on fixed-target.

e Physics goals include
searches for hybrids and
glueballs (as well as charm
and baryon spectroscopy).




A renaissance in spectroscopy

e Early in the noughties, new narrow structures were
seen by Belle and BaBar above the open-charm
threshold.

e This led to substantial renewed interest in

spectroscopy. Were these more quark-anti-quark
states, or something more?

e X(3872): very close to DD threshold - a molecule?
e Y(4260): a 17~ hybrid?
e Z*(4430): charged, can't be cc.
e Very little is known and no clear picture seems to
be emerging...



The PDG view
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What are these states? gg mesons?



Lattice Hadron Spectroscopy

» Significant experimental effort hoping to
understand light hadron and charm spectroscopy
e Are there resonances that don’t fit in the quark
model?
e Are there gluonic excitations in this spectrum?
e What structure does confinement lead to?
e How do exotic resonances decay?

e To use LQCD to address these questions means:
e finding continuum properties of states accurately
e computing scattering and resonance widths

e To acheive this we need

e Techniques that give statistical precision

e Spin identification

o A framework for decay physics

e Control over extrapolations (mg — 0,V — o0, a — 0).



Variational techniques



Variational techniques (1)

[C. Michael and I. Teasdale. NPB215 (1983) 433]
[M. Lischer and U. Wolff. NPB339 (1990) 222]
e Crucial for precision spectroscopy, and for studying
excitations.
e Needed to fully understand states above threshold.

A variational basis

Consider a set of creation operators {¢;},i=1...N with
the same quantum numbers. Suppose we can measure

Cij(t) = (Ol ¢i(t)¢;(0) |0)

for a range of values of t

» Define a new operator ® = > a;¢; as linear
combination of basis operators, what combination
{a;} would be “best” to make ground-state?

e Details : [Blossier et.al. JHEP 0904:094,2009]



Variational techniques (2)

Ciji(t) = (0] ¢i(t)9;(0) |0)
= (0] i e~ ¢;]0)
= Z (0] ¢i |k) (k| M |K") (K| ¢; |0)

k,k’

= > (0l ¢i k) (k| ¢;10) e~Ext

k

e Correlation function gets contributions from all
states

e Light states have longest-range correlations

e Idea: minimise the fall-off of the correlation
function of ® over some range [to, t]



Variational techniques (3)

An optimal choice for
e Choose ¢ to maximise

(0]o(t)®T(0)|0)

A ) = 10166087 (0)10)

with t > tp

« Since o' = ¥ a;¢ we get
GI.* Cij(t)a;

At to) = —4————
oy Ci(to)a

o and differentiation w.r.t a* yields the generalised
eigenvalue problem:

A generalised eigenvalue problem

C(t)a = AC(to)ar




Fermionic
correlation functions



Fermions in the path integral

e In path integral, fermions are represented using
Grassmann algebra.

fdr):o, fdnnzl, n>=0
e Higher dimensions - anticommutation rule:
ninj = —n;ni

o Expensive to manipulate directly by computer ...

Find 3 4 x 4 matrices, a1, az, 1 such that for any f,

dehdflz f(n1, n2) =Tr{u (o1, a2)}




Fermions in the path integral

¢ In QCD the action is (usually) bilinear.

o Consider computing a correlation function for the
p-meson in 2-flavour QCD:

F e g [DUDYDY §uyida(tr) Payitbu(to) e SelUl+¥rMilUlur
p(t1, to) = fDUDl,[_/Dlﬂ e—SclUl+¥rMr[U]¢r

e Integrate the grassmann fields analytically, giving:
JDU T viMZ* (t1, to)yiM;  (to, t1) detM?[U] e=SclY]
[DU detm2[U] e=S6lU]

Co(t1, to) =

e Fermions in lagrangian — fermion determinant
e Fermions in measurement — propagators



Fermions in the path integral

With more insertions, need Wick’s theorem
Example — four field insertions:

(Wig e )

and the pairwise contraction can be done in two
ways: o o

iy and gy
...giving the propagator combination

~1p-1 -1p-1
Mij My, _Mjk M;

the minus-sign comes from the anti-commutation
needed in the second term.

More fields means more combinations

This is important in (eg.) isoscalar meson
spectroscopy.



Exercise 2

For a system with six degrees of freedom, {n;, ni},i =
1, 2, 3, evaluate the grassmann integral

3
la = J]‘[ dijidn; n1fiznz2fiy e~ ™"
i=1

and compare this answer to the prediction of Wick’s the-
orem.




The lattice propagator



Handling lattice propagators

On a finite lattice, the propagator is the inverse of a
very large matrix.

It is impractical to compute all elements of the
propagator directly using a standard elimination
method.

The action Ma = b for vectors a, b in the space of
quark fields is practical. Can store lattice quark
fields but not matrices.

Given x, can solve the linear system

My =X



Handling lattice propagators

Krylov space solver: the Krylov space K,(M, x) is
defined by

Kn(M, x) = Span {x, Mx, M?x, ... M"x}

Examples include CG, MinRes, BIiCG, ...

As the physical quark mass is approached, so the
convergence of these algorithm slows rapidly.

Newer algorithms use deflation: simultaneously
build an approximation to the low-modes of M

Algebraic multi-grid is re-emerging too



Handling lattice propagators

e Most lattice fermions obey ys-hermiticity:
M'(x, ) = YsM(y, X)Ys

e QCD vacuum is translationally invariant. Solving
My = n gives access to one row of M1

e Choose an origin y

e For all spin, colour combinations {a, a}
e construct a source, nNy,g,b = 6x,y08,a0b,a
e solve MyW-2a) — n with this rhs

« Now have a block-row (at y) of M~1

e Simple isovector meson and baryon creation
operators can be constructed from this data



Hadronic physics



Isovector meson correlation functions

e To create a meson, we need to build functions that
couple to quarks.

e Meson can be created by a quark bilinear.
Appropriate gauge invariant creation operator (for
isospin I = 1) would be

Pmeson(t) = Y, T(x, )Ue(X, y;t)d(y, t)

X

where I is some appropriate Dirac structure, and Ue
a product of (smeared) link variables.

e Operators that transform irreducibly under the
lattice rotation group Op are needed.



Isoscalar meson correlation functions

e If we are interested in measuring isoscalar meson
masses, extra diagrams must be evaluated, since
four-quark diagrams become relevant. The Wick
contraction yields extra terms, since

(Widhjgd) = MM = MM

e Now
{0l®1—o(t)®]_(0)I0) =

(O]®—1(t)®]_(0)]0) — (O[Tr M~ TUc(t)Tr M~1TUc(0)]|0)

A A



Isovector meson correlation functions (2)

The most general opera-
tor.

A restricted correlation
function accessible to one
point-to-all computation.



A tale of two symmetries

« Continuum: states classified by J* irreducible
representations of O(3).

0(3) On

o Lattice regulator breaks O(3) — Op

o Lattice: states classified by RP “quantum letter”
labelling irrep of Op



Irreps of O

O has 5 conjugacy classes (so O, has 10)
Number of conjugacy classes = number of irreps
Schur: 24 =12 + 12 +22 432 432

These irreps are labelled A1, Az, E, T1, T2

E 8C3 6C; 6Cs 3C;
Ar |1l 1 1 1 1
Ayl 1 -1 -1 1
E |2 -1 0 0 2
T./3 O -1 1 -1
7,13 O 1 -1 -1




Spin on the lattice

o Op has 10 irreps: {AT", AYY, E9u, T7Y, 794, 3,
where {g, u} label even/odd parity.

e Link to continuum: subduce representations of O(3)
into Oy,

AL Ao ET1 T
J=0] 1

J=1 1
J=2 1 1
/=3 1 1 1
J=4|1 1 1 1

e Enough to search for degeneracy patterns in the
spectrum? 4=00 1o 2!



Example: JP¢ = 2*+ meson creation operator

Need more information to discriminate spins.
Consider continuum operator that creates a 2"
meson:

_ 2
®j=¢ ('YiDj +7,Di = 307 - D) U

Lattice: Substitute gauge-covariant lattice
finite-difference D,,¢+ for D
A reducible representation:

72 = {d15, D23, D31}

1 1
oF = {E(d)ll — ®22), ﬁ(%l + ®22 — 2¢33)}
Look for signature of continuum symmetry:
(0]o(T|27+72)) = (0]0®)[27+))
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Quark-field smearing



Smearing - an essential ingredient for precision

e To build an operator that projects effectively onto a
low-lying hadronic state need to use smearing

¢ Instead of the creation operator being a direct
function applied to the fields in the lagrangian first
smooth out the UV modes which contribute little to
the IR dynamics directly.

e A popular gauge-covariant smearing algorithm;
Jacobi/Wuppertal smearing: Apply the linear
operator

0 = exp(0A?)

e A? is a lattice representation of the 3-dimensional
gauge-covariant laplace operator on the source
time-slice

A =66,y ZU X)Bxsty + UT(X = Dox—iy

o Correlation functions look like TrgM-gM-1o...



Gaussian smearing

e Gaussian smearing:
ov2\"
: _ 2
,JLrQo (1+ - ) =exp(oV?)

e This acts in the space of coloured scalar fields on a
time-slice: Ns x N
1

L 1 E
Ul _o01f
< E
_ 06 0.01F
=S [ F \ \ \
0.4 0.001
I 0 50 100 150 200
0.2 i
0 \ \ \ \ \ \
0 2000 4000 6000 8000 10000 12000

Eigenvector index, i

o Data from as ~ 0.12fm 163 lattice: 163 x 3 =12288.



Can redefining smearing help?

e Computing quark propagation in configuration
generation and observable measurement is
expensive.

e Objective: extract as much information from
correlation functions as possible.

Two problems:

@ Most correlators: signal-to-noise falls exponentially
® Making measurements can be costly:
e Variational bases
e Exotic states using more sophisticated creation
operators
e |soscalar mesons
e Multi-hadron states

e Good operators are smeared; helps with problem
1, can it help with problem 27



Smearing

Smeared field: ¢ from ¢, the “raw” quark field in
the path-integral:

g(t) =alu(t)] ¢(t) J

Extract the essential degrees-of-freedom.
Smearing should preserve symmetries of quarks.
Now form creation operator (e.g. a meson):

Om(t) = ()T () J

I': operator in {s, 0, c} = {position,spin,colour}
Smearing: overlap (n|Oum|0) is large for low-lying
eigenstate |n)



Distillation

“distill: to extract the quintessence of” [OED]

Distillation: define smearing to be explicitly a very
low-rank operator. Rank is Np(< Ns x N¢).

Distillation operator

o(t) = V(t)Vi(t)

with Vgc(t) a Np x (Ns x N¢) matrix

Example (used to date): O, the projection
operator into Dy, the space spanned by the
lowest eigenmodes of the 3-D laplacian

Projection operator, so idempotent: I:l% =0
IimND_,(NSxNC) DV =]
Eigenvectors of V2 not the only choice...

Y



Distillation: preserve symmetries

Using eigenmodes of the gauge-covariant laplacian
preserves lattice symmetries

Ui(x) -2 U9(x) = g Ui(x)gT (x + D)

O0,(% ¥) = 09(x, ¥) = 9(x)0,(x, Y)g' (¥) J

Translation, parity, charge-conjugation symmetric

10 ===-g_ =
d \“'\"*L\ T T T T T T T

: 0.9 s " oe. ® N=64 |
0y symmetrie 1 v

Close to SO(3) ol ey ]
symmetric " Ce ]

E ~ o O 4
“local” operator 7 . J

0.4~ .

02— LY -
0.1 we 4




Eigenmodes of the laplacian

« Lowest mode on a 323 = (3.8 fm)? lattice.



[0}

Consider an isovector meson two-point function:

Cm(ti—to) = (U(t1)0e, Te, O, d(t1)  d(to)Oeel e, 0o U(t0)))

Integrating over quark fields yields

Cu(ty —to) =
(Tr¢s,o,c3 (Dtl e, 06, M~ (t1, to)De, e, Oe,M ™1 (o, tl)))

Substituting the low-rank distillation operator O
reduces this to a much smaller trace:

Cm(ty —to) = (Tr{o,py [®(t1) T(t1, to)P(to) T(to, tl)])J

"’Z,’Z and T;O;{,'g are (Ng x Np) x (Ng x Np) matrices.

(t) = V()T V(t) J T(t, t') = VI(O)M~L(t, t)V(t) J

The “perambulator”



Isovector meson correlation functions

e To create a meson, we need to build functions that
couple to quarks.

e Meson can be created by a quark bilinear.
Appropriate gauge invariant creation operator (for
isospin I = 1) would be

Pmeson(t) = Y, T(x, )Ue(X, y;t)d(y, t)

X

where I is some appropriate Dirac structure, and Ue
a product of (smeared) link variables.

e Operators that transform irreducibly under the
lattice rotation group Op are needed.



BabcTaa’ Tob' Tec’Barbr e

O q)

Tr[OTOTDT]

More diagrams

BabcTaa’ Tob? Tec'Barbre!

@DT TQq,

Tr[oT] Tr[oT]



Isoscalar meson (n’) correlation function

100

o
og
oo 00
Soooooooocoooonoooooooooos —C

20

C(t)-emrt

ss
=D
0 O 0000000303
OOV OOOOOVOOOOOOOOT HQIZZIEEDKS

cToo
COO0O0OCO0OOTTOOOCCTCTTTTTT T T

1}

-20

nnnnI111§§§§§§§§§§§§§§§§§§Eg DY
w0l

0 5 10 15 20 25 30 35 t/at
« Correlation functions for ¢ysy¢ operator, with
different flavour content (s, /).
e 163 lattice (about 2 fm).

[arXiv:1102.4299]



Bad news - the price tag

e So far - good results on modest lattice sizes
Ns =163 = (1.9fm)3.
e Used Np = 64 for mesons, Np = 32 for baryons

e To maintain constant resolution, need Np o< Ng
e Budget:
Fermion solutions construct T | O(N2)
Operator constructions | construct ® | O(N2)
Meson contractions TrjoTdT] | ONS)
Baryon contractions BttTB O(NS)

323 lattice: 64 x (%)3 =512 — too expensive.
Some benefits in reduction in variance with Ng
Can stochastic estimation technology help?



Stochastic estimation in the distillation space

Construct a stochastic identity matrix in D:
introduce a vector n with Np elements and with

E[ni] =0 and E[ninj] = éj; J

e Now the distillation operator is written

O = E[Vnn'v1] = Ejww?) ’

e Introduces noise into computations

e Dilution: “thin out” the stochastic noise with N,
orthogonal projectors to make a variance-reduced
estimator of Ip = E[WWT] = Zgll E[VPnnt PV,
with Wi = VPin, a Ny x (Ns x N¢) matrix



Stochastic estimation: / =1, 0 mesons
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Summary

QCD allows for Exotic mesons, absent in a simple
quark model.

There is new experimental interest in these objects.
Studying exotic states on the lattice is a challenge:
e Statistical precision needs good Monte Carlo
technology
e Quark fields are expensive to manipulate
numerically
e Spin identification on the lattice needs care
e Exotics are resonances

Progress recently on some of these challenges
Timeline: new data from experiments in ~ 2015



