Exotic mesons from lattice QCD

Mike Peardon
School of Mathematics, Trinity College Dublin, Ireland

Helmholtz School on Lattice QCD, Hadron Structure and Hadronic Matter

Dubna, $12^{\text {th }}$ September 2011

Overview

(1) Introduction - what is an exotic meson?
(2) Experimental searches
(3) Lattice spectroscopy

- The challenges
- Precision spectroscopy (including excited states)
- Strong mixing
- Scattering and resonances
- Techniques
- Variational calculations
- Spin on the lattice
- Distillation
- Stochastic estimation
(4) Results from the lattice
- Isovector mesons and hybrids
- Glueballs and isoscalar mesons
(5) Conclusions and outlook

Non-exotic

VS

Exotic

A simple quark model of mesons

- Combine quark and anti-quark and find $J^{P C}$ values
- Total spin, $J=L+\left(S_{1}+S_{2}\right)$

- Two spin-1/2 quarks in two possible combinations:

$$
\frac{1}{2} \otimes \frac{1}{2}=0 \oplus 1
$$

$\begin{array}{lll}\text { Singlet } & S=0 & P C=-+ \\ \text { Triplet } & S=1 & P C=--\end{array}$

- Combine with angular momentum around centre. L
- Odd L wavefunctions have $P C=--$

$$
\begin{array}{cccc}
L=0 & L=1 & L=2 & L=3 \\
0^{-+} & 1^{+-} & 2^{-+} & 3^{+-} \\
1^{--} & \{0,1,2\}^{++} & \{1,2,3\}^{--} & \{2,3,4\}^{++} \\
\text {S-wave } & \text { P-wave } & \text { D-wave } & \text { F-wave }
\end{array}
$$

Singlet:
Triplet:

Exotic quantum numbers

- On inspection, some $J^{P C}$ values are missing from this simple quark model:

Exotic quantum numbers

$\mathrm{J}^{P C}=0^{--}, 0^{+-}, 1^{-+}, 2^{+-}, 3^{-+}, \ldots$, even $^{+-}$, odd $^{-+}$

- Finding a meson with these quantum numbers would be a "smoking gun" for something beoynd the quark model
- Are these the only signatures of exotic states?
- Extra states in the spectrum?
- States with decays that seem unusual in the model?

Gluonic excitations of the QCD potential

- Heavy quarks: Solve Schrödinger in adiabatic potential

KJ. Juge, J. Kuti and C. Morningstar hep-lat/0312019, nucl-th/0307116

A constituent picture of hadrons from QCD

- QCD has quarks and gluons
- The confinement conjecture: fields of the QCD lagrangian combine into colourless combinations: the mesons and baryons

A constituent model

constituents			quark model label
$3 \otimes \overline{3}$	$=$	$1 \oplus 8$	meson
$3 \otimes 3 \otimes 3$	$=$	$1 \oplus 8 \oplus 8 \oplus 10$	baryon
$8 \otimes 8$	$=$	$1 \oplus 8 \oplus 8 \oplus 10 \oplus 10 \oplus 27$	glueball
$\overline{3} \otimes 8 \otimes 3$	$=$	$\mathbf{1} \oplus 8 \oplus 8 \oplus 8 \oplus 10 \oplus 10 \oplus 27$	hybrid
$\overline{3} \otimes \overline{3} \otimes 3 \otimes 3$	$=$	$1 \oplus 1 \oplus 8 \oplus 8 \oplus 8 \oplus 8 \oplus 10 \oplus 10 \oplus 27$	tetraquark/
			molecule
\vdots		\vdots	\vdots

- QCD does not always respect this constituent labelling! There can be strong mixing.

The GlueX experiment at JLab

- Aim: photoproduce mesons, in particular the hybrid mesons (with intrinsic gluonic excitations)
- Expected to start taking data 2014

Panda@FAIR, GSI

- Extensive new construction at GSI Darmstadt
- Expected to start operation 2014

PANDA: Anti-Proton ANnihilation at DArmstadt

- Anti-proton beam from FAIR on fixed-target.
- Physics goals include searches for hybrids and glueballs (as well as charm
 and baryon spectroscopy).

A renaissance in spectroscopy

- Early in the noughties, new narrow structures were seen by Belle and BaBar above the open-charm threshold.
- This led to substantial renewed interest in spectroscopy. Were these more quark-anti-quark states, or something more?
- X(3872): very close to $D \bar{D}$ threshold - a molecule?
- $Y(4260)$: a 1^{--}hybrid?
- $Z^{ \pm}(4430)$: charged, can't be $\bar{c} c$.
- Very little is known and no clear picture seems to be emerging...

The PDG view

What are these states? $\bar{q} q$ mesons?

Lattice Hadron Spectroscopy

- Significant experimental effort hoping to understand light hadron and charm spectroscopy
- Are there resonances that don't fit in the quark model?
- Are there gluonic excitations in this spectrum?
- What structure does confinement lead to?
- How do exotic resonances decay?
- To use LQCD to address these questions means:
- finding continuum properties of states accurately
- computing scattering and resonance widths
- To acheive this we need
- Techniques that give statistical precision
- Spin identification
- A framework for decay physics
- Control over extrapolations ($m_{q} \rightarrow 0, V \rightarrow \infty, a \rightarrow 0$).

Variational techniques

Variational techniques (1)

[C. Michael and I. Teasdale. NPB215 (1983) 433]
[M. Lüscher and U. Wolff. NPB339 (1990) 222]

- Crucial for precision spectroscopy, and for studying excitations.
- Needed to fully understand states above threshold.

A variational basis

Consider a set of creation operators $\left\{\phi_{i}\right\}, i=1 \ldots N$ with the same quantum numbers. Suppose we can measure

$$
C_{i j}(t)=\langle 0| \phi_{i}(t) \phi_{j}(0)|0\rangle
$$

for a range of values of t

- Define a new operator $\Phi=\sum_{i} \alpha_{i} \phi_{i}$ as linear combination of basis operators, what combination $\left\{\alpha_{i}\right\}$ would be "best" to make ground-state?
- Details : [Blossier et.al. JHEP 0904:094,2009]

Variational techniques (2)

The correlation function

$$
\begin{aligned}
C_{i j}(t) & =\langle 0| \phi_{i}(t) \phi_{j}(0)|0\rangle \\
& =\langle 0| \phi_{i} e^{-H t} \phi_{j}|0\rangle \\
& =\sum_{k, k^{\prime}}\langle 0| \phi_{i}|k\rangle\langle k| e^{-H t}\left|k^{\prime}\right\rangle\left\langle k^{\prime}\right| \phi_{j}|0\rangle \\
& =\sum_{k}\langle 0| \phi_{i}|k\rangle\langle k| \phi_{j}|0\rangle e^{-E_{k} t}
\end{aligned}
$$

- Correlation function gets contributions from all states
- Light states have longest-range correlations
- Idea: minimise the fall-off of the correlation function of Φ over some range $\left[t_{0}, t\right]$

Variational techniques (3)

An optimal choice for ϕ

- Choose Φ to maximise

$$
\lambda\left(t, t_{0}\right)=\frac{\langle 0| \Phi(t) \Phi^{\dagger}(0)|0\rangle}{\langle 0| \Phi\left(t_{0}\right) \Phi^{\dagger}(0)|0\rangle}
$$

with $t>t_{0}$

- Since $\Phi^{\dagger}=\sum_{i} \alpha_{i} \phi_{i}^{\dagger}$ we get

$$
\lambda\left(t, t_{0}\right)=\frac{\alpha_{i}^{*} C_{i j}(t) \alpha_{j}}{\alpha_{k}^{*} C_{k l}\left(t_{0}\right) \alpha_{l}}
$$

- and differentiation w.r.t α^{*} yields the generalised eigenvalue problem:

A generalised eigenvalue problem

$$
C(t) \alpha=\lambda C\left(t_{0}\right) \alpha
$$

Fermionic correlation functions

Fermions in the path integral

- In path integral, fermions are represented using Grassmann algebra.

$$
\int d \eta=0, \quad \int d \eta \eta=1, \quad \eta^{2}=0
$$

- Higher dimensions - anticommutation rule:

$$
\eta_{i} \eta_{j}=-\eta_{j} \eta_{i}
$$

- Expensive to manipulate directly by computer ...

Exercise 1

Find 34×4 matrices, $\alpha_{1}, \alpha_{2}, \mu$ such that for any f,

$$
\int d \eta_{1} d \eta_{2} f\left(\eta_{1}, \eta_{2}\right)=\operatorname{Tr}\left\{\mu f\left(\alpha_{1}, \alpha_{2}\right)\right\}
$$

Fermions in the path integral

- In QCD the action is (usually) bilinear.
- Consider computing a correlation function for the ρ-meson in 2-flavour QCD:
$C_{\rho}\left(t_{1}, t_{0}\right)=\frac{\int \mathcal{D} \cup \mathcal{D} \bar{\psi} \mathcal{D} \psi \bar{\psi}_{u} \gamma_{i} \psi_{d}\left(t_{1}\right) \bar{\psi}_{d} \gamma_{i} \psi_{u}\left(t_{0}\right) e^{-S_{G}[U]+\bar{\psi}_{f} M_{f}[U] \psi_{f}}}{\int \mathcal{D} U \mathcal{D} \bar{\psi} \mathcal{D} \psi e^{-S_{G}[U]+\bar{\psi}_{f} M_{f}[U] \psi_{f}}}$
- Integrate the grassmann fields analytically, giving:

$$
C_{\rho}\left(t_{1}, t_{0}\right)=\frac{\int \mathcal{D} U \operatorname{Tr} \gamma_{i} M_{d}^{-1}\left(t_{1}, t_{0}\right) \gamma_{i} M_{u}^{-1}\left(t_{0}, t_{1}\right) \operatorname{det} M^{2}[U] e^{-S_{G}[U]}}{\int \mathcal{D} U \operatorname{det} M^{2}[U] e^{-S_{G}[U]}}
$$

- Fermions in lagrangian \rightarrow fermion determinant
- Fermions in measurement \rightarrow propagators

Fermions in the path integral

- With more insertions, need Wick's theorem
- Example - four field insertions:

$$
\left\langle\psi_{i} \bar{\psi}_{j} \psi_{k} \bar{\psi}_{l}\right\rangle
$$

- and the pairwise contraction can be done in two ways:

$$
\psi_{i} \bar{\psi}_{j} \psi_{k} \bar{\psi}_{l} \quad \text { and } \quad \psi_{i} \bar{\psi}_{j} \psi_{k} \bar{\psi}_{l}
$$

- ...giving the propagator combination

$$
M_{i j}^{-1} M_{k l}^{-1}-M_{j k}^{-1} M_{i l}^{-1}
$$

- the minus-sign comes from the anti-commutation needed in the second term.
- More fields means more combinations
- This is important in (eg.) isoscalar meson spectroscopy.

Exercise 2

For a system with six degrees of freedom, $\left\{\bar{\eta}_{i}, \eta_{i}\right\}, i=$ 1, 2, 3, evaluate the grassmann integral

$$
I_{4}=\int \prod_{i=1}^{3} d \bar{\eta}_{i} d \eta_{i} \eta_{1} \bar{\eta}_{2} \eta_{2} \bar{\eta}_{1} e^{-\bar{\eta} M \eta}
$$

and compare this answer to the prediction of Wick's theorem.

The lattice propagator

Handling lattice propagators

- On a finite lattice, the propagator is the inverse of a very large matrix.
- It is impractical to compute all elements of the propagator directly using a standard elimination method.
- The action $M a=b$ for vectors a, b in the space of quark fields is practical. Can store lattice quark fields but not matrices.
- Given χ, can solve the linear system

$$
M \psi=\chi
$$

Handling lattice propagators

- Krylov space solver: the Krylov space $\mathcal{K}_{n}(M, \chi)$ is defined by

$$
\mathcal{K}_{n}(M, \chi)=\operatorname{Span}\left\{\chi, M \chi, M^{2} \chi, \ldots M^{n} \chi\right\}
$$

- Examples include CG, MinRes, BiCG, ...
- As the physical quark mass is approached, so the convergence of these algorithm slows rapidly.
- Newer algorithms use deflation: simultaneously build an approximation to the low-modes of M
- Algebraic multi-grid is re-emerging too

Handling lattice propagators

- Most lattice fermions obey γ_{5}-hermiticity:

$$
M^{\dagger}(x, y)=\gamma_{5} M(y, x) \gamma_{5}
$$

- QCD vacuum is translationally invariant. Solving $M \psi=\eta$ gives access to one row of M^{-1}

The point-to-all propagator

- Choose an origin y
- For all spin, colour combinations $\{\alpha, a\}$
- construct a source, $\eta_{x, \beta, b}=\delta_{x, y} \delta_{\beta, \alpha} \delta_{b, a}$
- solve $M \psi^{(y, \alpha, a)}=\eta$ with this rhs
- Now have a block-row (at y) of M^{-1}
- Simple isovector meson and baryon creation operators can be constructed from this data

Hadronic physics

Isovector meson correlation functions

- To create a meson, we need to build functions that couple to quarks.
- Meson can be created by a quark bilinear. Appropriate gauge invariant creation operator (for isospin $I=1$) would be

$$
\Phi_{\text {meson }}(t)=\sum_{x} \bar{u}(\underline{x}, t) \Gamma U_{\mathcal{C}}(\underline{x}, \underline{y} ; t) d(\underline{y}, t)
$$

where Γ is some appropriate Dirac structure, and $U_{\mathcal{C}}$ a product of (smeared) link variables.

- Operators that transform irreducibly under the lattice rotation group O_{h} are needed.

Isoscalar meson correlation functions

- If we are interested in measuring isoscalar meson masses, extra diagrams must be evaluated, since four-quark diagrams become relevant. The Wick contraction yields extra terms, since

$$
\left\langle\psi_{i} \bar{\psi}_{j} \psi_{k} \bar{\psi}_{l}\right\rangle=M_{i j}^{-1} M_{k l}^{-1}-M_{i l}^{-1} M_{j k}^{-1}
$$

- Now

$$
\langle 0| \Phi_{I=0}(t) \Phi_{l=0}^{\dagger}(0)|0\rangle=
$$

$$
\langle 0| \Phi_{l=1}(t) \Phi_{l=1}^{\dagger}(0)|0\rangle-\langle 0| \operatorname{Tr} M^{-1} \Gamma U_{\mathcal{C}}(t) \operatorname{Tr} M^{-1} \Gamma U_{\mathcal{C}}(0)|0\rangle
$$

Isovector meson correlation functions (2)

A tale of two symmetries

- Continuum: states classified by J^{P} irreducible representations of O (3).

- Lattice regulator breaks $O(3) \rightarrow O_{h}$
- Lattice: states classified by R^{P} "quantum letter" labelling irrep of O_{h}

Irreps of O_{h}

- O has 5 conjugacy classes (so O_{h} has 10)
- Number of conjugacy classes $=$ number of irreps
- Schur: $24=1^{2}+1^{2}+2^{2}+3^{2}+3^{2}$
- These irreps are labelled $A_{1}, A_{2}, E, T_{1}, T_{2}$

	E	$8 C_{3}$	$6 C_{2}$	$6 C_{4}$	$3 C_{2}$
A_{1}	1	1	1	1	1
A_{2}	1	1	-1	-1	1
E	2	-1	0	0	2
T_{1}	3	0	-1	1	-1
T_{2}	3	0	1	-1	-1

Spin on the lattice

- O_{h} has 10 irreps: $\left\{A_{1}^{g, u}, A_{2}^{g, u}, E^{g, u}, T_{1}^{g, u}, T_{2}^{g, u},\right\}$, where $\{g, u\}$ label even/odd parity.
- Link to continuum: subduce representations of O (3) into O_{h}

	A_{1}	A_{2}	E	T_{1}	T_{2}
$J=0$	1				
$J=1$				1	
$J=2$			1		1
$J=3$		1		1	1
$J=4$	1		1	1	1
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots

- Enough to search for degeneracy patterns in the spectrum? $4 \equiv 0 \oplus 1 \oplus 2$!

Example: $J^{P C}=2^{++}$meson creation operator

- Need more information to discriminate spins. Consider continuum operator that creates a 2^{++} meson:

$$
\Phi_{i j}=\bar{\psi}\left(\gamma_{i} D_{j}+\gamma_{j} D_{i}-\frac{2}{3} \delta_{i j} \gamma \cdot D\right) \psi
$$

- Lattice: Substitute gauge-covariant lattice finite-difference $D_{\text {latt }}$ for D
- A reducible representation:

$$
\begin{gathered}
\Phi^{T_{2}}=\left\{\Phi_{12}, \Phi_{23}, \Phi_{31}\right\} \\
\Phi^{E}=\left\{\frac{1}{\sqrt{2}}\left(\Phi_{11}-\Phi_{22}\right), \frac{1}{\sqrt{6}}\left(\Phi_{11}+\Phi_{22}-2 \Phi_{33}\right)\right\}
\end{gathered}
$$

- Look for signature of continuum symmetry:

$$
\langle 0| \Phi^{\left(T_{2}\right)}\left|2^{++\left(T_{2}\right)}\right\rangle=\langle 0| \Phi^{(E)}\left|2^{++(E)}\right\rangle
$$

Spin-3 identification: J. Dudek et.al., Hadron Spectrum Collab.

Quark-field smearing

Smearing - an essential ingredient for precision

- To build an operator that projects effectively onto a low-lying hadronic state need to use smearing
- Instead of the creation operator being a direct function applied to the fields in the lagrangian first smooth out the UV modes which contribute little to the IR dynamics directly.
- A popular gauge-covariant smearing algorithm; Jacobi/Wuppertal smearing: Apply the linear operator

$$
\square ر=\exp \left(\sigma \Delta^{2}\right)
$$

- Δ^{2} is a lattice representation of the 3-dimensional gauge-covariant laplace operator on the source time-slice

$$
\Delta_{x, y}^{2}=6 \delta_{x, y}-\sum_{i=1}^{3} U_{i}(x) \delta_{x+\hat{\imath}, y}+U_{i}^{\dagger}(x-\hat{\imath}) \delta_{x-\hat{\imath}, y}
$$

- Correlation functions look like $\operatorname{Tr} \square ر M^{-1} \square ر M^{-1} \square ر \ldots$

Gaussian smearing

- Gaussian smearing:

$$
\lim _{n \rightarrow \infty}\left(1+\frac{\sigma \nabla^{2}}{n}\right)^{n}=\exp \left(\sigma \nabla^{2}\right)
$$

- This acts in the space of coloured scalar fields on a time-slice: $N_{s} \times N_{C}$

- Data from $a_{s} \approx 0.12 \mathrm{fm} 16^{3}$ lattice: $16^{3} \times 3=12288$.

Can redefining smearing help?

- Computing quark propagation in configuration generation and observable measurement is expensive.
- Objective: extract as much information from correlation functions as possible.

Two problems:

(1) Most correlators: signal-to-noise falls exponentially
(2) Making measurements can be costly:

- Variational bases
- Exotic states using more sophisticated creation operators
- Isoscalar mesons
- Multi-hadron states
- Good operators are smeared; helps with problem 1, can it help with problem 2?

Smearing

- Smeared field: $\tilde{\psi}$ from ψ, the "raw" quark field in the path-integral:

$$
\tilde{\psi}(t)=\square[U(t)] \psi(t)
$$

- Extract the essential degrees-of-freedom.
- Smearing should preserve symmetries of quarks.
- Now form creation operator (e.g. a meson):

$$
O_{M}(t)=\overline{\tilde{\psi}}(t) \Gamma \tilde{\psi}(t)
$$

- $Г$: operator in $\{\underline{s}, \sigma, c\} \equiv\{$ position,spin,colour $\}$
- Smearing: overlap $\langle n| O_{M}|0\rangle$ is large for low-lying eigenstate $|n\rangle$

Distillation

"distill: to extract the quintessence of" [OED]

- Distillation: define smearing to be explicitly a very low-rank operator. Rank is $N_{\mathcal{D}}\left(\ll N_{s} \times N_{c}\right)$.

Distillation operator

$$
\square(t)=V(t) V^{\dagger}(t)
$$

with $V_{\underline{x}, c}^{a}(t)$ a $N_{\mathcal{D}} \times\left(N_{s} \times N_{c}\right)$ matrix

- Example (used to date): \square_{∇} the projection operator into \mathcal{D}_{∇}, the space spanned by the lowest eigenmodes of the 3-D laplacian
- Projection operator, so idempotent: $\square_{\nabla}^{2}=\square_{\nabla}$
- $\lim _{N_{\mathcal{D}} \rightarrow\left(N_{s} \times N_{c}\right)} \square_{\nabla}=I$
- Eigenvectors of ∇^{2} not the only choice...

Distillation: preserve symmetries

- Using eigenmodes of the gauge-covariant laplacian preserves lattice symmetries

$$
U_{i}(\underline{x}) \xrightarrow{g} U_{i}^{g}(\underline{x})=g(\underline{x}) U_{i}(\underline{x}) g^{\dagger}(\underline{x}+\underline{\hat{\imath}})
$$

$$
\square_{\nabla}(\underline{x}, \underline{y}) \xrightarrow{g} \square_{\nabla}^{g}(\underline{x}, \underline{y})=g(\underline{x}) \square_{\nabla}(\underline{x}, \underline{y}) g^{\dagger}(\underline{y})
$$

- Translation, parity, charge-conjugation symmetric
- Oh symmetric
- Close to SO(3) symmetric
- "local" operator

Eigenmodes of the Iaplacian

- Lowest mode on a $32^{3} \equiv(3.8 \mathrm{fm})^{3}$ lattice.
- Consider an isovector meson two-point function:

$$
C_{M}\left(t_{1}-t_{0}\right)=\left\langle\left\langle\bar{u}\left(t_{1}\right) \square_{t_{1}} \Gamma_{t_{1}} \square_{t_{1}} d\left(t_{1}\right) \quad \bar{d}\left(t_{0}\right) \square_{t_{0}} \Gamma_{t_{0}} \square_{t_{0}} u\left(t_{0}\right)\right\rangle\right\rangle
$$

- Integrating over quark fields yields

$$
\begin{gathered}
C_{M}\left(t_{1}-t_{0}\right)= \\
\left\langle\operatorname{Tr}_{\{\underline{s}, \sigma, c\}}\left(\square_{t_{1}} \Gamma_{t_{1}} \square_{t_{1}} M^{-1}\left(t_{1}, t_{0}\right) \square_{t_{0}} \Gamma_{t_{0}} \square_{t_{0}} M^{-1}\left(t_{0}, t_{1}\right)\right)\right\rangle
\end{gathered}
$$

- Substituting the low-rank distillation operator \square reduces this to a much smaller trace:

$$
C_{M}\left(t_{1}-t_{0}\right)=\left\langle\operatorname{Tr}_{\{\sigma, \mathcal{D}\}}\left[\Phi\left(t_{1}\right) \tau\left(t_{1}, t_{0}\right) \Phi\left(t_{0}\right) \tau\left(t_{0}, t_{1}\right)\right]\right\rangle
$$

- $\Phi_{\beta, b}^{\alpha, a}$ and $\tau_{\beta, b}^{\alpha, a}$ are $\left(N_{\sigma} \times N_{\mathcal{D}}\right) \times\left(N_{\sigma} \times N_{\mathcal{D}}\right)$ matrices.

$$
\Phi(t)=V^{\dagger}(t) \Gamma_{t} V(t) \mid \quad \tau\left(t, t^{\prime}\right)=V^{\dagger}(t) M^{-1}\left(t, t^{\prime}\right) V\left(t^{\prime}\right)
$$

The "perambulator"

Isovector meson correlation functions

- To create a meson, we need to build functions that couple to quarks.
- Meson can be created by a quark bilinear. Appropriate gauge invariant creation operator (for isospin $I=1$) would be

$$
\Phi_{\text {meson }}(t)=\sum_{x} \bar{u}(\underline{x}, t) \Gamma U_{\mathcal{C}}(\underline{x}, \underline{y} ; t) d(\underline{y}, t)
$$

where Γ is some appropriate Dirac structure, and $U_{\mathcal{C}}$ a product of (smeared) link variables.

- Operators that transform irreducibly under the lattice rotation group O_{h} are needed.

More diagrams

$\bar{B}_{a b c} \tau_{a a^{\prime}} \tau_{b b^{\prime}} \tau_{c c^{\prime}} B_{a^{\prime} b^{\prime} c^{\prime}}$

$\operatorname{Tr}[\Phi \tau \Phi \tau \Phi \tau]$

$\bar{B}_{a b c} \tau_{a a^{\prime}} \tau_{b b^{\prime}} \tau_{c c^{\prime}} B_{a^{\prime} b^{\prime} c^{\prime}}$

$\operatorname{Tr}[\Phi \tau] \operatorname{Tr}[\Phi \tau]$

Isoscalar meson $\left(\eta^{\prime}\right)$ correlation function

- Correlation functions for $\bar{\psi} \gamma_{5} \psi$ operator, with different flavour content (s, l).
- 16^{3} lattice (about 2 fm).

Bad news - the price tag

- So far - good results on modest lattice sizes $N_{s}=16^{3} \equiv(1.9 \mathrm{fm})^{3}$.
- Used $N_{\mathcal{D}}=64$ for mesons, $N_{\mathcal{D}}=32$ for baryons

The problem:

- To maintain constant resolution, need $N_{\mathcal{D}} \propto N_{s}$
- Budget:

Fermion solutions	construct τ	$\mathcal{O}\left(N_{s}^{2}\right)$
Operator constructions	construct Φ	$\mathcal{O}\left(N_{s}^{2}\right)$
Meson contractions	$\operatorname{Tr}[\Phi \tau \Phi \tau]$	$\mathcal{O}\left(N_{s}^{3}\right)$
Baryon contractions	$\bar{B} \tau \tau \tau B$	$\mathcal{O}\left(N_{s}^{4}\right)$

- 32^{3} lattice: $64 \times\left(\frac{32}{16}\right)^{3}=512$ - too expensive.
- Some benefits in reduction in variance with N_{s}
- Can stochastic estimation technology help?

Stochastic estimation in the distillation space

- Construct a stochastic identity matrix in \mathcal{D} : introduce a vector η with $N_{\mathcal{D}}$ elements and with

$$
E\left[\eta_{i}\right]=0 \text { and } E\left[\eta_{i} \eta_{j}^{*}\right]=\delta_{i j}
$$

- Now the distillation operator is written

$$
\square=E\left[V \eta \eta^{\dagger} V^{\dagger}\right]=E\left[W W^{\dagger}\right]
$$

- Introduces noise into computations
- Dilution: "thin out" the stochastic noise with N_{η} orthogonal projectors to make a variance-reduced estimator of $I_{\mathcal{D}}=E\left[W W^{\dagger}\right]=\sum_{k=1}^{N_{\eta}} E\left[V \mathcal{P}_{k} \eta \eta^{\dagger} \mathcal{P}_{k} V^{\dagger}\right]$, with $W_{k}=V \mathcal{P}_{k} \eta$, a $N_{\eta} \times\left(N_{s} \times N_{c}\right)$ matrix

Stochastic estimation: $I=1,0$ mesons

- propagation from $t-t$ is estimated differently from $t-t^{\prime}$

Summary

- QCD allows for Exotic mesons, absent in a simple quark model.
- There is new experimental interest in these objects.
- Studying exotic states on the lattice is a challenge:
- Statistical precision needs good Monte Carlo technology
- Quark fields are expensive to manipulate numerically
- Spin identification on the lattice needs care
- Exotics are resonances
- Progress recently on some of these challenges
- Timeline: new data from experiments in ≈ 2015

