Introduction to Lattice Gauge Theories I

M. Müller-Preussker

Humboldt-University Berlin, Department of Physics

Dubna International Advanced School of Theoretical Physics -Helmholtz International School "Lattice QCD, Hadron Structure and Hadronic Matter" September 5 to 17, 2011

Outline:

- 1. Introductory remarks: Why lattice field theory?
- 2. Path integrals in quantum (field) theory
 - (a) Path integral and Euclidean correlation functions
 - (b) Path integral quantization of scalar fields
- 3. Discretizing gauge fields
 - (a) QCD: a short introduction
 - (b) Gauge fields on a lattice
 - (c) Wilson and Polyakov loops
 - (d) Fixing the QCD scale
 - (e) Renormalization group and continuum limit
- 4. Simulating gauge fields
 - (a) How does Monte Carlo work?
 - (b) Metropolis method
- 5. Fermions on the lattice
 - (a) Naive discretization and fermion doubling
 - (b) Wilson fermions and improvements
 - (c) Staggered fermions
 - (d) How to compute typical QCD observables

Literature, text books:

Path integrals:

- R.P. Feynman, A.R. Hibbs, Quantum mechanics and path integrals, Mc Graw Hill, 1965
- L.D. Faddeev, in Methods in field theory, Les Houches School, 1975
- V. Popov, Kontinualniye integraly v kvantovoi teorii polya i statisticheskoi fizikye, Moskva Atomizdat, 1976
- H. Kleinert, Path integrals in quantum mechanics, statistics, polymer physics, World Scientific
- G. Roepstorf, Path integral approach to quantum physics, Springer
- J. Zinn-Justin, *Path integrals in quantum mechanics*, Oxford University Press (2005), translated into russian

Lattice field theory:

- K. G. Wilson, Confinement of Quarks, Phys. Rev. D10 (1974) 2445
- J. Kogut, L. Susskind, Hamiltonian Formulation of Wilson's Lattice Gauge Theories., Phys. Rev. D11 (1975) 395
- M. Creutz, Quarks, gluons and lattices, Cambrigde Univ. Press (1983), translated into russian
- H. Rothe, Lattice gauge theories An introduction, World Scientific
- I. Montvay, G. Münster, Quantum fields on a lattice, Cambrigde Univ. Press
- J. Smit, Introduction to quantum fields on a lattice: A robust mate, Cambridge Lect. Notes Phys. 15 (2002) 1-271
- C. Davies, Lattice QCD, Lecture notes, hep-ph/0205181 (2002)
- A. Kronfeld, Progress in lattice QCD, Lecture notes, hep-ph/0209231 (2002)
- T. DeGrand, C. E. DeTar, Lattice methods for quantum chromodynamics, World Scientific (2006)
- C. Gattringer, C.B. Lang, Quantum Chromodynamics on the Lattice An introductory presentation, Springer (2010)

More general on non-perturbative methods:

• Yu. Makeenko, Methods of contemporary gauge theory, Cambrigde Univ. Press (2002)

1. Introductory remarks: Why lattice field theory?

Allows to understand non-perturbative phenomena and to carry out *ab initio* computations in strong interactions (and beyond):

• Spontaneous breaking of chiral symmetry:

QCD Lagrangian for 3 zero-mass flavours - among other symmetries symmetric with respect to $SU(3)_A$:

$$\psi' = e^{i\xi_a \gamma_5 \lambda_a} \psi, \qquad \psi = (u, d, s)$$

but $< 0|\bar{\psi}\psi(x)|0 > \neq 0$ quark condensate

 \implies octet mesons (π 's, K's, η) massless (Goldstone bosons).

• Quark confinement:

Gluon field flux tube between static quarks:

in pure gauge theory $\implies F_{q\bar{q}}(r) = \frac{4}{3} \frac{\alpha_{q\bar{q}}(r)}{r^2} \xrightarrow{r \to \infty} \sigma$ string tension

Scenarios for confinement made 'visible' in lattice QCD:

- flux tube structure visualized

From Abelian projection of SU(2) LGT [Bali, Schilling, Schlichter, '97]

condensation of U(1) monopoles: dual superconductor
 't Hooft; Mandelstam; Schierholz,...; Bali, Bornyakov, M.-P., Schilling;

Di Giacomo,...; ...

- center vortices

't Hooft; Mack; Greensite, Faber, Olejnik; Reinhardt,...; Polikarpov,...; ...

- semiclassical approach via instantons, calorons, dyons \cdots solving e.g. the problem of large η' -mass (" $U_A(1)$ -problem") better understood on the lattice, but responsibility for confinement ???

but cf. lecture by V. Zakharov

• Hadron masses, hadronic matrix elements, ...: (cf. lectures by R. Sommer, M. Peardon, M. Göckeler, M. Polyakov)

Not calculable within perturbation theory of continuum QCD, need non-perturbative (model) assumptions \triangleright condensates $\langle \bar{\psi}\psi \rangle$, $\langle \operatorname{tr} G_{\mu\nu}G_{\mu\nu} \rangle$, \cdots

 \implies QCD sum rules

Novikov, Shifman, Vainshtein, Zakharov; ...

 \triangleright vacuum state scenarios: \implies most popular instanton liquid model

Callan, Dashen, Gross; Shuryak; Ilgenfritz, M.-P.; Dyakonov, Petrov; ...

▷ Dyson-Schwinger and functional renormalization group equations

or alternatively effective field theories or quark models ...

• Phase transitions:

QCD: lattice predicts deconfinement or chiral transition:

hadrons \iff quark-gluon plasma under extreme conditions T, μ, \vec{B} cf. lectures by P. Petreczky, F. Karsch, C. Schmidt, M. Polikarpov, O. Teryaev • Standard model and beyond:

Non-perturbative lattice approach very useful also for

- strongly coupled QED Kogut,...; Schierholz,...; Mitrjushkin, M.-P.,...; ...
- Higgs-Yukawa model \implies e.g. bounds for Higgs mass, 4th generation ? K. Jansen, ...; J. Kuti, ...; ...,
- (broken) SUSY
 cf. lectures by D. Kazakov, S. Catteral
- lattice studies (large N_c , N_f) motivated by string theory and AdS/CFT correspondence M. Teper,...; J. Kuti,...; V. Zakharov,...; ...

- ...

2. Path integrals in quantum (field) theory

2.1. Path integral and Euclidean correlation functions

Quantum physics mostly starts from hermitean, time-independent Hamiltonian

$$\hat{H}|n\rangle = E_n|n\rangle, \quad n = 0, 1, 2, \dots \text{ with } \langle m|n\rangle = \delta_{m,n}, \quad \sum_n |n\rangle\langle n| = \mathbf{\hat{1}}.$$

Schrödinger Equation for time evolution:

$$i\hbar \frac{d}{dt} |\psi(t)\rangle = \hat{H} |\psi(t)\rangle, \qquad |\psi(t)\rangle = e^{-\frac{i}{\hbar}\hat{H}(t-t_0)} |\psi(t_0)\rangle.$$

or

$$\psi(x,t) \equiv \langle x|\psi(t)\rangle = \int dx_0 \, \langle x|e^{-\frac{i}{\hbar}\hat{H}(t-t_0)}|x_0\rangle \, \langle x_0|\psi(t_0)\rangle \,.$$

Standard task: find $\{E_n\}$, in particular ground state energy E_0 .

Useful quantity for this: quantum statistical partition function:

$$Z = \operatorname{tr}\left(e^{-\beta \hat{H}} \right) = \int dx \, \langle x | e^{-\beta \hat{H}} | x \rangle \implies \text{free energy} \quad F(V,T) = -kT \log Z, \quad \beta \equiv \frac{1}{k_B T}$$

Note formal replacement: real time $\frac{i}{\hbar} t \leftrightarrow \text{imaginary time } \beta \equiv \frac{1}{k_B T}$.

Extracting the ground state E_0 (Feynman-Kac formula):

$$Z = \sum_{n} e^{-\beta E_{n}} \propto e^{-\beta E_{0}} \left(1 + O(e^{-\beta (E_{1} - E_{0})}) \right) \text{ for } \beta \to \infty.$$

Extracting the energy (or mass) gap $E_1 - E_0$:

two-point correlation function in (Euclidean) Heisenberg picture $(\hbar = 1)$: operators: $\hat{X}(\tau) = e^{\hat{H}\tau} x e^{-\hat{H}\tau}$, states: $|\Psi\rangle = e^{\hat{H}\tau} |\psi(\tau)\rangle$, quantum statistical mean values:

$$\langle \ldots \rangle \equiv Z^{-1} \operatorname{tr} \left(\ldots \ e^{-\beta \hat{H}} \right).$$

$$\begin{aligned} \langle \hat{X}(\tau) \rangle &= Z^{-1} \int dx \langle x | e^{-\hat{H}(\beta - \tau)} \hat{x} e^{-\hat{H}(\tau - 0)} | x \rangle \\ &= Z^{-1} \sum_{n} \langle n | \hat{x} | n \rangle e^{-E_n \beta} \propto Z^{-1} \langle 0 | \hat{x} | 0 \rangle e^{-E_0 \beta} + \dots \\ &\propto \langle 0 | \hat{x} | 0 \rangle + \dots \quad \text{for} \quad \beta \to \infty. \end{aligned}$$

For two-point function assume $\beta \gg (\tau_2 - \tau_1) \gg 1$:

$$\langle T\left(\hat{X}(\tau_2)\hat{X}(\tau_1)\right) \rangle = Z^{-1} \int dx \langle x|e^{-\hat{H}(\beta-\tau_2)}\hat{x}e^{-\hat{H}(\tau_2-\tau_1)}\hat{x}e^{-\hat{H}(\tau_1-0)}|x\rangle$$

$$\propto Z^{-1} \left\{ \sum_n |\langle 0|\hat{x}|n\rangle|^2 e^{-(E_n-E_0)(\tau_2-\tau_1)} \right\} e^{-E_0\beta} + \dots$$

$$\propto Z^{-1} \left\{ |\langle 0|\hat{x}|0\rangle|^2 + |\langle 0|\hat{x}|1\rangle|^2 e^{-(E_1-E_0)(\tau_2-\tau_1)} \right\} e^{-E_0\beta} + \dots$$

Then connected two-point correlator:

$$\langle\!\langle X(\tau_2)X(\tau_1) \rangle\!\rangle \equiv \langle T\left(\hat{X}(\tau_2)\hat{X}(\tau_1)\right)\rangle - (\langle \hat{X}(\tau)\rangle)^2 \propto e^{-(\tau_2-\tau_1)(E_1-E_0)}(1+\ldots)$$

Higher order correlations can be defined.

Z~ and $~\langle\!\langle \ldots \rangle\!\rangle~$ allow path integral representations á la Feynman.

Path integral representation

Subdivide $\beta = N\epsilon = \text{fix}$ with $N \to \infty$, $\epsilon \to 0$. Use (N-1) times completeness relation $\int dx |x\rangle \langle x| = 1$.

$$Z = \int \prod_{i=1}^{N} dx_i \, \langle x_N | e^{-\hat{H}\epsilon} | x_{N-1} \rangle \cdot \langle x_{N-1} | e^{-\hat{H}\epsilon} | x_{N-2} \rangle \cdots \langle x_1 | e^{-\hat{H}\epsilon} | x_0 \rangle$$

with $x_0 \equiv x_N$, i.e. "periodic boundary condition".

For one degree of freedom: $\hat{H} = \hat{T} + \hat{V} = \hat{p}^2/2m + V(\hat{x})$, $[\hat{x}, \hat{p}] = i$

Transfer matrix: $\langle x'|e^{-\hat{H}\epsilon}|x\rangle = \sqrt{\frac{\epsilon}{2\pi}}e^{-\frac{1}{2\epsilon}(x'-x)^2 - \frac{\epsilon}{2}[V(x) + V(x')]} + O(\epsilon^3),$

$$\implies \qquad Z \sim \int Dx(\tau) \ e^{-S_E[x(\tau)]}$$

Proof applies Trotter product formula:

$$\exp(-\beta \hat{H}) \equiv \exp(-(\hat{T} + \hat{V})\epsilon)^{N} = \lim_{N \to \infty} \left(\exp(-\epsilon \hat{T}) \cdot \exp(-\epsilon \hat{V})\right)^{N}$$
$$Dx(\tau) \equiv \lim_{N \to \infty} \left(\frac{\epsilon}{2\pi}\right)^{N/2} \prod_{i=1}^{N} dx_{i}, \qquad S_{E}[x(\tau)] \sim \int d\tau \left[\frac{m}{2} \left(\frac{dx(\tau)}{d\tau}\right)^{2} + V(x(\tau))\right].$$

Result: summation over fictitious paths in imaginary time

Our main interest: correlation functions in Heisenberg picture:

$$\langle \ \Omega(\tau', \tau'', ...) \ \rangle = Z^{-1} \int Dx(\tau) \ \Omega(\tau', \tau'', ...) \ e^{-S_E[x(\tau)]}$$

(Proof as for partition function Z.)

- \implies no operators, but trajectories $x(\tau)$ and Euclidean action $S_E[x(\tau)]$,
- \implies correlators resemble classical statistical averages,
- \implies we use $\beta = N\epsilon$ with N finite, but large, i.e. "lattice approximation".

2.2. Path integral quantization of scalar fields

- Lattice formulation allows non-perturbative computation from first principles.
- Axiomatic field theory starts from lattice formulation.

Illustration: scalar field, Euclidean space-time.

$$S[\phi] = \int d^4x \left[\frac{1}{2} (\partial_\mu \phi)^2 + V(\phi) \right], \quad V(\phi) = \frac{1}{2} m_0^2 \phi^2 + \frac{1}{4!} g_0 \phi^4.$$

 $L=N_{s}a$ ["Lattice" taken from A. Kronfeld, hep-ph/0209231]

$$S_{\text{Latt}} = a^4 \sum_{n} \left\{ \frac{1}{2} \sum_{\mu=1}^{4} (\phi_{n+\hat{\mu}} - \phi_n)^2 \frac{1}{a^2} + V(\phi_n) \right\}$$

 \implies no unique discretization,

 \implies even more - systematic improvement scheme exists (Symanzik).

Boundary condition: $\phi(x + L_{\mu} \cdot \hat{\mu}) = \phi(x)$

Spectrum: $-\frac{\pi}{a} \le k_{\mu} = \frac{2\pi}{L_{\mu}} n_{\mu} \le \frac{\pi}{a}$

Quantization:

Path integral for time ordered correlation functions and vacuum transition amplitude

$$\langle \phi(x_1 \cdots \phi(x_N) \rangle = Z^{-1} \int \prod_x d\phi(x) \{\phi(x_1) \cdots \phi(x_N)\} e^{-S[\phi]}$$
(1)
$$Z = \int \prod_x d\phi(x) e^{-S[\phi]}$$
(2)

 \uparrow lattice approximation and rescaling $\phi \longrightarrow \phi \cdot \sqrt{g_0}$.

$$\langle \phi_{n_1} \cdots \phi_{n_N} \rangle = Z_{\text{Latt}}^{-1} \int \prod_n d\phi_n \{ \phi_{n_1} \cdots \phi_{n_N} \} e^{-\frac{1}{g_0} S_{\text{Latt}}}$$
(3)

$$Z_{\text{Latt}} = \int \prod_{n} d\phi_n \ e^{-\frac{1}{g_0}S_{\text{Latt}}}$$
(4)

Compare with: $\mathcal{Z}(T,V) = \int \prod_{i=1}^{f} dq_i \ dp_i \ e^{-\frac{1}{kT}H(q_i,p_i)}$

Scalar Higgs model in some detail:

$$\phi = \sqrt{2\kappa} \frac{\varphi}{a}, \quad g_0 = \frac{6\lambda}{\kappa^2}, \quad m_0^2 = \frac{1-2\lambda-8\kappa}{a^2\kappa}.$$
$$S_{\text{Latt}} = -2\kappa \sum_{n,\mu} \varphi_n \varphi_{n+\hat{\mu}} + \lambda \sum_n (\varphi_n^2 - 1)^2 + \sum_n \varphi_n^2$$

(κ 'Hopping parameter')

No lattice spacing visible. How does the continuum limit occur? In practice need for determining correlation lengths

$$L_4 = N_4 a \gg \zeta \equiv m^{-1} \gg a$$

Continuum limit corresponds to 2^{nd} order phase transition:

$$\zeta/a \to \infty$$
 whereas $m_1/m_2 \to \text{const.}$

$$\lambda \to \infty : \quad \kappa = \text{fixed} \quad \Longrightarrow \quad \varphi_n = \pm 1 \,.$$
$$Z_{\text{Latt}} \to \text{const.} \cdot \sum_{\varphi_n = \pm 1} \exp\left(-2\kappa \sum_{n,\mu} \varphi_n \varphi_{n+\hat{\mu}}\right)$$

 $\implies \qquad \text{Ising model in 4D,} \\ \implies \qquad 2^{nd} \text{ order phase transition at } \kappa_c = 0.0748.$

 $\lambda < \infty$: find critical line $\kappa = \kappa_c(\lambda)$.

Comment:

renormalized coupling $\lambda_{ren} \to 0$ for $\kappa \to \kappa_c$

- \implies non-interacting theory in the continuum limit or
- \implies effective theory at finite cutoff.

3. Discretizing gauge fields

3.1. QCD: a short introduction

The strong force of hadrons realized by quarks interacting with gluons

- Quarks (= fermionic matter field) occur with
 - $-N_c = 3$ "colour" states (gauge group $SU(N_c)$),
 - $N_f = 6$ (?) "flavour" states (up, down, strange, charm, bottom, top, ...),
 - 4 "spinor" states.
- <u>Gluons</u> (= bosonic gauge field) occur with
 - $N_c^2 1 = 8$ "colour" states (adjoint repr. of $SU(N_c)$),
 - 4 space-time components.

Colour neutral bound states:

$$qqq$$
: baryons $-p, n, \ldots,$
 $q\bar{q}$: mesons $-\pi, \rho, K, \ldots$

QCD: quark fields
$$\psi_f(x) \equiv \{(\psi_f(x))_s^{\alpha}, \alpha = 1, \dots, N_c, s = 1, \dots, 4\}$$

minimally coupled to gluon fields $A^a_{\mu}(x), \mu = 0, \dots, 3, x = (\vec{x}, t).$

$$S[\bar{\psi},\psi,A] = \int d^4x \left(-\frac{1}{2} \operatorname{tr} G^{\mu\nu} G_{\mu\nu} + \sum_{f=1}^{N_f} \bar{\psi}_f (i\gamma_\mu D^\mu - m_f) \psi_f \right)$$

 $G_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} + ig_0[A_{\mu}, A_{\nu}], \quad D_{\mu} = \partial_{\mu}\mathbf{1} + ig_0A_{\mu}, \quad A_{\mu} = A^a_{\mu}T^a,$ $T^a \ (a = 1, \dots, N^2_c - 1) \quad -\text{ generators of } SU(N_c),$ with $[T^a, T^b] = if^{abc}T^c, \quad 2\text{tr}(T^aT^b) = \delta_{ab}, \quad \text{tr}T^a = 0.$

• local gauge invariance – the main principle of the standard model

$$\psi'(x) = g(x)\psi(x), \quad A'_{\mu}(x) = g(x)A_{\mu}g^{\dagger}(x) - \frac{i}{g_0}(\partial_{\mu}g(x))g^{\dagger}(x), \quad g(x) \in SU(N_c)$$

leaves action $S[\bar{\psi}, \psi, A]$ invariant for any g(x).

• quantization with Euclidean path integral analogously to QM:

$$\langle \Omega(\bar{\psi},\psi,A) \rangle = Z^{-1} \int DA_{\mu} D\bar{\psi} D\psi \ \Omega(\bar{\psi},\psi,A) \ e^{-S_E[\bar{\psi},\psi,A]}$$

 $DA_{\mu} = \prod_x dA_{\mu}(x); \ D\psi = \prod_x d\psi(x) \ - \ \text{Grassmannian measure}$

⇒ weak coupling ($\alpha_s \ll O(1)$): perturbation theory, requires gauge fixing; ⇒ stronger coupling ($\alpha_s \simeq O(1)$): lattice theory, Dyson-Schwinger eqs., ...

3.2. Gauge fields on a lattice

K. Wilson '74:

Local $SU(N_c)$ gauge symmetry kept exact by non-local prescription on a 4d Euclidean lattice \implies link variables

$$A_{\mu}(x_n) \Longrightarrow U_{n,\mu} \equiv P \exp ig_0 \int_{x_n}^{x_n + \hat{\mu}a} A_{\mu}(x) dx_{\mu} \in SU(N_c)$$
$$\simeq e^{iag_0 A_{\mu}(x_n)} \simeq \mathbf{1} + iag_0 A_{\mu}(x_n) + O(a^2)$$

Gauge transformation $g_n \equiv g(x_n) \in SU(N_c)$ for $a \to 0$:

$$\begin{aligned} A'_{\mu}(x_{n}) &\simeq g_{n}A_{\mu}g_{n}^{\dagger} - \frac{i}{ag_{0}}(g_{n+\hat{\mu}} - g_{n})g_{n}^{\dagger} \\ U'_{n,\mu} &= \mathbf{1} + iag_{0}A'_{\mu}(x_{n}) + O(a^{2}) \\ &= iag_{0} \ g_{n}A_{\mu}g_{n}^{\dagger} + g_{n+\hat{\mu}}g_{n}^{\dagger} + O(a^{2}), \quad g_{n} = g_{n+\hat{\mu}} + O(a) \\ &= g_{n+\hat{\mu}}(\mathbf{1} + iag_{0}A_{\mu}(x_{n}) + O(a^{2}))g_{n}^{\dagger} \\ &= g_{n+\hat{\mu}} \ U_{n,\mu} \ g_{n}^{\dagger} \end{aligned}$$

Transformation of a product of variables of connected links

$$U'(n+\hat{\mu}+\hat{\nu},n) \equiv U'_{n+\hat{\mu},\nu}U'_{n,\mu} = g_{n+\hat{\mu}+\hat{\nu}}U_{n+\hat{\mu},\nu}U_{n,\mu}g_n^{\dagger} = g_{n+\hat{\mu}+\hat{\nu}}U(n+\hat{\mu}+\hat{\nu},n)g_n^{\dagger}$$

can be generalized to arbitrary continuum path: "Schwinger line" (parallel transporter)

$$U(x_{2}, x_{1}) = P \exp \left\{ ig_{0} \int_{x_{1}}^{x_{2}} A_{\mu} dx_{\mu} \right\},$$

$$\implies U'(x_{2}, x_{1}) = g(x_{2})U(x_{2}, x_{1})g^{\dagger}(x_{1}).$$

$$\implies \operatorname{tr} \left(P \exp \left\{ ig_{0} \oint A_{\mu} dx_{\mu} \right\} \right) = \operatorname{invariant.}$$

Combination with matter field: $\psi'(x) = g(x)\psi(x), \quad \psi'^{\dagger}(x) = \psi^{\dagger}(x)g^{\dagger}(x)$

 $\implies \psi^{\dagger}(x_2)U(x_2, x_1)\psi(x_1) = \text{invariant.}$

Lattice gauge action: from elementary closed (Wilson) loops ("plaquettes")

$$\begin{split} U_{n,\mu\nu} &\equiv U_n \ U_{n+\hat{\mu},\nu} \ U_{n+\hat{\nu},\mu}^{\dagger} \ U_{n,\nu}^{\dagger} , \\ S_G^W &= \bar{\beta} \sum_{n,\mu<\nu} \left(1 \ -\frac{1}{N_c} \operatorname{Re} \operatorname{tr} U_{n,\mu\nu} \right), \quad \bar{\beta} = \frac{2N_c}{g_0^2} \\ &= \frac{1}{2} \sum_n a^4 \operatorname{tr} G^{\mu\nu} G_{\mu\nu} + O(a^2), \\ &\to \frac{1}{2} \int d^4x \operatorname{tr} G^{\mu\nu} G_{\mu\nu}. \end{split}$$

 $Proof: \longrightarrow homework, tutorial.$

Comments:

- Improvement of S_G^W : suppression of O(a)-corrections by adding contributions from larger loops (e.g. various 6-link loops) or contributions of loops in higher group representations (e.g. adjoint representation)

- Test: non-trivial vacuum field = pure gauge

$$U_{n\mu}^{(vac)} \equiv g_{n+\hat{\mu}} g_n^{\dagger}, \text{ for arbitrary } g_n \in SU(N_c)$$

Re tr $U_{n,\mu\nu} = N_c \implies S_G^W = 0.$

Path integral quantization:

replacement $\int \prod_{x,\mu} dA_{\mu}(x) \longrightarrow \int \prod_{n,\mu} [dU]_{n,\mu}, \quad [dU]$ "Haar measure". Properties: $U, V \in G = SU(N_c)$ in fundamental representation, then

• $\int_G [dU] = 1$ normalization,

•
$$\int_G f(U)[dU] = \int_G f(VU)[dU] = \int_G f(UV)[dU], \quad [d(UV)] = [d(VU)] = [dU],$$

•
$$\int_G f(U)[dU] = \int_G f(U^{-1})[dU]$$

Examples:

$$U(1): \quad U = e^{i\varphi} \implies [dU] = \frac{1}{2\pi}d\varphi, \quad \int f(U)[dU] \equiv \frac{1}{2\pi}\int_0^{2\pi}d\varphi \ f(U(\varphi));$$

$$SU(2): \quad U = B^0 + i\vec{\sigma} \cdot \vec{B}, \quad \sum_i (B^i)^2 = 1 \implies [dU] = \frac{1}{\pi^2} \ \delta(B^2 - 1) \ d^4B,$$

$$\vec{\sigma} - \text{Pauli matrices.}$$

Expectation values, correlation functions in pure gauge theory:

$$\langle W \rangle = \frac{1}{Z} \int (\prod_{n,\mu} [dU_{n\mu}]) W[U] e^{-S_G[U]}, \quad Z = \int (\prod_{n,\mu} [dU_{n\mu}]) e^{-S_G[U]}.$$

Gauge invariance:

 $U'_{n\mu} = g_{n+\hat{\mu}} U_{n\mu} g^{\dagger}_n \implies dU'_{n\mu} = dU_{n\mu}, \quad S_G[U'] = S_G[U]$ Then immediately

$$\langle W' \rangle = \frac{1}{Z'} \int (\prod_{n,\mu} [dU'_{n\mu}]) W[U'] e^{-S_G[U']}$$
$$= \frac{1}{Z} \int (\prod_{n,\mu} [dU_{n\mu}]) W[U'] e^{-S_G[U]}$$

 \implies invariant, if W[U] itself is gauge invariant.

Fortunately, holds in most of the applications of lattice gauge theory !

Exceptions:

Quark, gluon, ghost propagators or various vertex functions.

Gauge fixing is required, e.g. Landau/Lorenz gauge, as in perturbation theory. However, gauge condition not uniquely solvable - "Gribov problem".

Lattice discretized path integral allows to study analytically:

- $\bar{\beta} \to \infty$, $g_0 \to 0$: (lattice) perturbation theory by expanding all link variables $U_{n\mu} = e^{iag_0 A_{\mu}(x_n)}$ in powers of g_0 . Inverse lattice spacing a^{-1} acts as UV cutoff.
- $\bar{\beta} \to 0, \ g_0 \to \infty$: strong coupling expansion by expanding in powers of $\bar{\beta}$

$$\exp\left\{-\bar{\beta}\sum_{n,\mu<\nu}\left(1 - \frac{1}{N_c} \operatorname{Re} \operatorname{tr} U_{n,\mu\nu}\right)\right\}$$

Mostly we have to rely on $g_0 \simeq O(1) \implies$ Monte Carlo simulation.

3.3. Wilson and Polyakov loops

Closed Wilson loops

$$W[U] \equiv \operatorname{tr}\left(P \exp\left\{ig_0 \oint A_{\mu} dx_{\mu}\right\}\right)$$

play important rôle for explaining quark confinement.

Sketch of the proof [cf. book H. Rothe, '92]:

Consider (infinitely) heavy $Q\bar{Q}$ -pair. Gauge-invariant state at fixed t':

$$\bar{\psi}_{\alpha}^{(Q)}(\vec{x},t') \ U(\vec{x},t';\vec{y},t') \ \psi_{\beta}^{(Q)}(\vec{y},t') \ |\Omega\rangle$$

with

$$U(\vec{x}, t'; \vec{y}, t') = P \exp\left\{ ig_0 \int_{\vec{x}}^{\vec{y}} A_{\mu}(\vec{z}, t') \, dz_{\mu} \right\} \,.$$

Compute 2-pt. function for $Q\bar{Q}$ -pair - propagation from 0 to t: $G_{\alpha',\beta';\alpha,\beta}(\vec{x}',\vec{y}',t; \ \vec{x},\vec{y},0)$ $= \langle \Omega | T \{ \bar{\psi}_{\beta'}^{(Q)}(\vec{y}',t) U(\vec{y}',t;\vec{x}',t) \psi_{\alpha'}^{(Q)}(\vec{x}',t) \cdot \bar{\psi}_{\alpha}^{(Q)}(\vec{x},0) U(\vec{x},0;\vec{y},0) \psi_{\beta}^{(Q)}(\vec{y},0) \} | \Omega \rangle.$ Euclidean time $t = -i\tau$; for $\tau \to \infty$, $M_Q \to \infty$ expect

$$G_{\alpha',\beta';\alpha,\beta} \propto \delta^{(3)}(\vec{x}-\vec{x}') \,\delta^{(3)}(\vec{y}-\vec{y}') \,C_{\alpha',\beta';\alpha,\beta}(\vec{x},\vec{y}) \,\exp(-E(R)\tau)$$

E(R) = energy of the lowest state (above vacuum), i.e. $Q\bar{Q}$ -potential.

Path integral representation:

$$G_{\alpha',\beta';\alpha,\beta} = \frac{1}{Z} \int DA \int D\psi^{(Q)} D\bar{\psi}^{(Q)} \left(\bar{\psi}_{\beta'}^{(Q)}(\vec{y}',\tau) \dots \psi_{\beta}^{(Q)}(\vec{y},0) \right) \exp(-S[\bar{\psi}^{(Q)},\psi^{(Q)},A])$$

Carry out (Grassmanian) fermion integration \rightarrow product of Green's functions for Q, \bar{Q} and Det \rightarrow const for $M_Q \rightarrow \infty$. Static limit – neglect spatial derivatives $(i\gamma^{\mu}D_{\mu}) \rightarrow (i\gamma^4 D_4)$ \rightarrow Green's function:

$$[i\gamma^4 D_4(A) - M_Q] K(z, z'; A) = \delta^{(4)}(z - z').$$

Solution:

$$K(z, z'; A) \sim P \exp\left\{ig_0 \int_0^\tau A_0(\vec{z}, t') dt'\right\} \,\delta^{(3)}(\vec{z} - \vec{z}') \cdot \mathbf{K}$$

with **K** containing projectors $P_{\pm} = \frac{1}{2}(1 \pm \gamma^4)$.

Combine time-like phase factors at $\vec{z} = \vec{x}, \vec{y}$ with space-like ones $U(\vec{x}, 0; \vec{y}, 0), \ U(\vec{y}, \tau; \vec{x}, \tau)$.

Result:

$$G_{\alpha',\beta';\alpha,\beta} \sim \langle W \rangle \equiv \left\langle \operatorname{tr} P \exp\left\{ ig_0 \oint A_{\mu} dx_{\mu} \right\} \right\rangle$$

with closed rectangular path of extension $R \times \tau$.

For
$$\tau \to \infty$$
: $\langle W \rangle \propto \exp(-E(R) \cdot \tau)$.

Confinement:

 $E(R) \propto \sigma R$ for large $R \iff \langle W \rangle \propto \exp(-\sigma \cdot (R \cdot \tau))$ (area law)

Polyakov loops and non-zero temperature QCD [cf. lecture by P. Petreczky]

[Gross, Pisarski, Yaffe, Rev.Mod.Phys. 53 (1981) 43;

Svetitsky, Yaffe, Nucl.Phys. B210 (1982) 423; Svetitsky, Phys.Rept. 132 (1986) 1]

Partition function:

$$Z = \operatorname{Tr} \exp(-\beta \hat{H}), \quad \beta = 1/k_B T,$$

$$= \sum_x \langle x | (\exp(-\epsilon \hat{H}))^N | x \rangle, \quad N\epsilon = \beta,$$

$$= C \int Dx \exp(-S_E[x(t)]), \quad S_E = \int_0^\beta dt \ [\frac{m}{2} \dot{x}(t)^2 + V(x(t))]$$

with $x(0) = x(\beta)$, i.e. periodicity.

For Yang-Mills theory analogous proof of path integral representation is non-trivial:

- Hamiltonian approach within gauge $A_0^a = 0$,
- trace integration produces integration over auxiliary field A_4^a ,
- \implies full Euclidean Yang-Mills action recovered.

Result:

$$Z_G = C \int DAe^{-S_G[A]}, \qquad S_G[A] = \int_0^\beta dt \int d^3x \ \frac{1}{2} \operatorname{tr}(G_{\mu\nu}G_{\mu\nu})$$

with $A^a_\mu(\vec{x}, 0) = A^a_\mu(\vec{x}, \beta),$ and $G_{\mu\nu} = G^a_{\mu\nu}T^a$ Euclidean

Applied to lattice pure gauge theory:

$$Z_G \equiv \int [dU] e^{-S_G[U]}$$
, with $U_\mu(\vec{x}, 0) = U_\mu(\vec{x}, \beta)$, $\beta = aN_4 = \frac{1}{k_B T}$.

We are interested in the thermodynamic limit: $V^{(3)} \to \infty$. In practice, "aspect ratio" $N_s/N_4 \gg 1$ and periodic b.c.'s in spatial directions. Extension to full QCD: time-antiperiodic boundary conditions for fermionic fields from trace of statist. operator: $\psi(\vec{x}, 0) = -\psi(\vec{x}, \beta), \ \overline{\psi}(\vec{x}, 0) = -\overline{\psi}(\vec{x}, \beta)$. Polyakov loop:

$$L(\vec{x}) \equiv \frac{1}{N_c} \operatorname{tr} \prod_{x_4=1}^{N_4} U_4(\vec{x}, x_4), \qquad (a=1),$$

invariant w.r. to time-periodic gauge transformations $g(\vec{x}, 1) = g(\vec{x}, N_4 + 1)$.

Physical interpretation:

$$\langle L(\vec{x})\rangle = \exp(-\beta F_Q),$$

with F_Q free energy of an isolated infinitely heavy quark. Proof goes analogously as for Wilson loop expectation value.

 $\implies F_Q \to \infty, \text{ i.e. } \langle L(\vec{x}) \rangle \to 0 \text{ within the confinement phase.}$ $\implies \langle L(\vec{x}) \rangle \text{ order parameter for the deconfinement transition.}$

Spontaneous breaking of \mathbf{Z}_N center symmetry:

$$z_{\nu} = e^{2\pi i \frac{\nu}{N}} \mathbf{1} \in \mathbf{Z}_N \subset SU(N), \quad \nu = 0, 1, \dots, N-1$$

commute with all elements of SU(N). For SU(2): $z_{\nu} = \pm 1$. Global \mathbf{Z}_N -transformation:

$$U_4(\vec{x}, x_4) \rightarrow z \cdot U_4(\vec{x}, x_4)$$
 for all \vec{x} and fixed x_4

 $\implies L(\vec{x}) \rightarrow zL(\vec{x})$ not invariant.

 \implies Plaquette values $U_{n,i4} \rightarrow zz^{\star}U_{n,i4} = U_{n,i4}$, i.e. S_G invariant.

$\begin{array}{l} SU(2)\text{-case:}\\ L(\vec{x}) \rightarrow -L(\vec{x}) \ . \ \text{Both states have same statistical weight.}\\ \Longrightarrow \quad \langle L(\vec{x})\rangle = 0 \ . \end{array}$

 \implies Order parameter for the deconfinement transition:

$$\langle |\overline{L}| \rangle \equiv \left\langle \left| \frac{1}{V^{(3)}} \sum_{\vec{x}} L(\vec{x}) \right| \right\rangle \sim \begin{cases} 0 & \text{confinement} \\ 1 & \text{deconfinement} \end{cases}$$

analogously to spin magnetization for 3d Ising model.

SU(3)-case: \overline{L} complex-valued.

Confinement
$$\rightarrow \overline{L} \simeq 0$$
,
Deconfinement $\rightarrow \overline{L} \simeq z_{\nu}, \ \nu = 0, 1, 2.$

Notice: fermions break center symmetry. Then

- \Rightarrow Polyakov loop no order parameter, but still useful indicator.
- \Rightarrow Condensate $\langle \bar{\psi}\psi \rangle$ order parameter for chiral symmetry restoration.

3.4. Fixing the QCD scale

Expectation values $\langle W \rangle$ (of Wilson loops etc.) in pure gauge theory only depend on parameter $\bar{\beta} \equiv 2N_c/g_0^2$ (and linear lattice extensions N_{μ}).

View some Monte Carlo results in gluodynamics.

Static $Q\bar{Q}$ potential V(r) ($\equiv E(R)$) at small distances from Wilson loops. Necco, Sommer, '02

Alternative method: Polyakov loop correlator $\langle L(\vec{x_1}L(\vec{x_2}^{\dagger})) \propto \exp(-\beta V(r))(1+\ldots), r \equiv |\vec{x_1} - \vec{x_2}|$

Static $Q\bar{Q}$ force $F(r) \equiv dV/dr$ from Polyakov loop correlators at T = 0. \implies in perfect agreement with string model prediction

$$V(r) \sim \sigma r + \mu - \frac{\pi}{12 r} + O(r^{-2}).$$

F(r) allows to fix the scale by comparing with phenomenologically known $\bar{c}c$ or $\bar{b}b$ -potential [R. Sommer, '94]:

$$F(r_0) r_0^2 = 1.65 \quad \leftrightarrow \quad r_0 \simeq 0.5 \text{ fm}$$

If *Sommer scale* r_0 is determined in lattice units *a* for certain $\overline{\beta}$, spacing $a(\overline{\beta})$ can be fixed in physical units.

3.5. Renormalization group and continuum limit

Assume for a physical observable Ω (e.g. string tension σ , critical temperature T_c , glueball mass M_g, \ldots) in the continuum limit

$$\lim_{a \to 0} \Omega\left(g_0(a), a\right) = \Omega_c$$

Then renormalization group Eq.

$$\frac{d \Omega}{d(\ln a)} = 0 \implies \left(\frac{\partial}{\partial(\ln a)} - \beta(g_0)\frac{\partial}{\partial g_0}\right)\Omega(g_0, a) = 0$$

with $\beta(g_0) \equiv -\frac{\partial g_0}{\partial(\ln a)}$ known from perturbation theory
 $\beta(g)/g^3 = -\beta_0 - \beta_1 g^2 + O(g^4).$

For $SU(N_c)$ and N_f massless fermions, independent on renormalization scheme:

$$\beta_0 = \frac{1}{(4\pi)^2} \left(\frac{11}{3} N_c - \frac{2}{3} N_f \right),$$

$$\beta_1 = \frac{1}{(4\pi)^4} \left(\frac{34}{3} N_c^2 - \frac{10}{3} N_c N_f - \frac{N_c^2 - 1}{N_c} N_f \right).$$

For pure gluodynamics: $N_c = 3$, $N_f = 0 \implies \beta_0 > 0$. Solution yields continuum limit

$$a(g_0) = \frac{1}{\Lambda_{Latt}} (\beta_0 g_0^2)^{-\frac{\beta_1}{2\beta_0^2}} \exp\left(-\frac{1}{2\beta_0 g_0^2}\right) (1 + O(g_0^2)).$$

$$\Rightarrow \qquad 1/a \to \infty \quad \text{for} \quad g_0 \to 0 \quad (\text{or} \quad \bar{\beta} \to \infty), \quad asymptotic \ freedom.$$

Corresponds to second order phase transition.

In practice, tune g_0, N_4 for getting correlation lengths ξ , such that:

 $N_4 \gg \xi/a(g_0) \gg 1.$

At non-zero $T = 1/L_4 = 1/(N_4 a(\bar{\beta}))$:

T can be varied by changing $\overline{\beta}$ at fixed N_4 or N_4 at fixed $\overline{\beta}$.

4. Simulating gauge fields

4.1. How does Monte Carlo work?

Realization in quantum mechanics:

M. Creutz, B. Freedman, A stat. approach to quantum mechanics, Annals Phys. 132(1981)427

Here consider n-dim. integral: $\langle f \rangle = \int_{\Omega} d^n x f(x) w(x)$ with $0 \le w(x) \le 1$, $\int_{\Omega} w(x) d^n x = 1$. $\langle f \rangle = \int_{\Omega} d^n x f(x) \int_{0}^{w(x)} d\eta = \int_{\Omega} d^n x \int_{0}^{1} d\eta f(x) \Theta(w(x) - \eta)$

Importance sampling by selecting x in acc. with w(x):

- (a) choose randomly: $x \in \Omega$ and $\eta \in [0, 1]$,
- (b) acceptance check: accept x, if η satisfies $\eta < w(x)$, otherwise reject.
- \implies From accepted $x^{(i)}$'s estimate $\langle f \rangle \simeq (1/N) \sum_{i=1}^{N} f(x^{(i)}).$
- \implies However, efficiency small, if acceptance rate in large areas of Ω is low.

More efficient: appropriate Markov chain $x^{(1)}, x^{(2)}, \ldots$ generated with transition probability $P(x^{(i)} \rightarrow x^{(i+1)})$ satisfying *detailed balance condition*

$$w(x)P(x \to x') = w(x')P(x' \to x)$$

- sufficient for w(x) becoming fix-point of the Markov chain,
- obviously satisfied for $P(x \to x') \equiv w(x')$.

Markov chains realizable step-by-step by selecting single components x_{ν} keeping all $x_{\mu}, \mu \neq \nu$ fixed.

Heat bath method:

- If possible determine x'_{ν} with probability $\omega(x'_{\nu}) \sim w(x_1, \ldots, x'_{\nu}, \ldots, x_n)$.
- Replace old value x_{ν} by x'_{ν} .
- Repeat procedure for other component x_{μ} .

Metropolis method:

- random shifts $x_{\nu} \to x'_{\nu} = x_{\nu} + \eta$, $\eta \in (-\epsilon, +\epsilon)$ with ϵ approp. chosen,
- if $\omega(x'_{\nu}) > \omega(x_{\nu})$, then accept x'_{ν} ,
- if $\omega(x'_{\nu}) < \omega(x_{\nu})$, then accept with probability $\omega(x'_{\nu})/\omega(x_{\nu})$,
- accepted values x'_{ν} replace x_{ν} .

4.2. Creutz' heat bath method

Assume statistical weight $w[U] \sim e^{-S_G[U]}$ with plaquette action

$$S_G[U] = \bar{\beta} \sum_{n,\mu < \nu} \left(1 - \frac{1}{N_c} \operatorname{Re} \operatorname{tr} U_{n,\mu\nu} \right).$$

Select a single link variable: $U_{n_0,\mu_0} \equiv U_0$. There are 6 plaquettes containing this link and contributing to S_G :

$$S_G[U_0; \{U\} \setminus U_0] = C[\{U\} \setminus U_0] - \frac{\bar{\beta}}{N_c} \sum_{S=1}^6 \operatorname{Re} \operatorname{tr} (U_0 U_S)$$
$$= C - \frac{\bar{\beta}}{N_c} \operatorname{Re} \operatorname{tr} (U_0 A), \quad A = \sum_{S=1}^6 U_S$$

Call open plaquette $U_S =$ "staple".

Assume A be fixed ("heat bath") \implies link variable U_0 to be determined with probability

$$w(U_0) \ [dU_0] \sim \exp\left(\frac{\bar{\beta}}{N_c} \operatorname{Re} \operatorname{tr} (U_0 A)\right) \ [dU_0]$$

Metropolis:

- apply random shifts $U_0 \to U'_0 = GU_0$, with $G \in U_{\epsilon}(\mathbf{1}) \subset SU(N_c)$,
- carry out Metropolis acceptance steps.

Heat bath for SU(2):

Normalize $V = A/\sqrt{\det A} \in SU(2)$, put $VU_0 \equiv U$ and use invariance of Haar measure

$$w(U)[dU] \sim \exp(\rho \operatorname{tr} U)[dU], \quad \rho = \frac{\beta \sqrt{\det A}}{2}$$
$$U \equiv B^0 \mathbf{1} + i\sigma \vec{B}, \quad [dU] = \frac{1}{\pi^2} \,\delta(B^2 - 1) \,d^4B, \quad \operatorname{tr} U = 2B^0$$
$$\implies \qquad w(U)[dU] \sim \exp\left(2\rho B^0\right) \delta(B^2 - 1) \,d^4B$$
$$\implies \qquad \operatorname{determine} \ U \ \text{and} \ U_0 = V^{\dagger}U.$$

Heat bath for $SU(N_c)$ [Cabibbo, Marinari, '82] Use SU(2) heat bath algorithm for various subgroup embeddings into $SU(N_c)$.

5. Fermions on the lattice

5.1. Naive discretization and fermion doubling

Path integral for fermions requires anticomm. variables – Grassmann algebra:

$$\eta_i, \bar{\eta}_i, i = 1, 2, \dots, N \quad \text{with} \quad \bar{\eta}_i \text{ adjoint to } \eta_i,$$

$$\{\eta_i, \eta_j\} \equiv \eta_i \eta_j + \eta_j \eta_i$$

$$= \{\bar{\eta}_i, \eta_j\} = \{\bar{\eta}_i, \bar{\eta}_j\} = \dots = 0,$$

$$\eta_i^2 = 0,$$

such that any function has representation

$$f(\eta) = f_0 + \sum_i f_i \eta_i + \sum_{i \neq j} f_{ij} \eta_i \eta_j + \dots + f_{12...N} \eta_1 \eta_2 \dots \eta_N,$$

correspondingly for $f(\eta, \bar{\eta})$.

E.g.
$$g(\eta, \bar{\eta}) = \exp(-\sum_{i,j} \bar{\eta}_i A_{ij} \eta_j) = \prod_{ij=1}^N (1 - \bar{\eta}_i A_{ij} \eta_j).$$

Integration rules (same as differentiation):

$$\int d\eta_{i} = \int d\bar{\eta}_{i} = 0, \qquad \int d\eta_{i}\eta_{i} = \int d\bar{\eta}_{i}\bar{\eta}_{i} = 1,$$
$$\{d\eta_{i}, d\eta_{j}\} = \{d\bar{\eta}_{i}, d\eta_{j}\} = \{d\bar{\eta}_{i}, d\bar{\eta}_{j}\} = \{d\eta_{i}, \eta_{j}\} = \dots = 0.$$

Most important for us:

$$\begin{split} I[A] &= \int \prod_{l=1}^{N} d\bar{\eta}_{l} d\eta_{l} \exp\left(-\sum_{ij=1}^{N} \bar{\eta}_{i} A_{ij} \eta_{j}\right) = \det A, \\ Z[A;\rho,\bar{\rho}] &= \int \prod_{l=1}^{N} d\bar{\eta}_{l} d\eta_{l} \exp\left(-\sum_{ij=1}^{N} \bar{\eta}_{i} A_{ij} \eta_{j} + \sum_{i} (\bar{\eta}_{i} \rho_{i} + \bar{\rho}_{i} \eta_{i})\right), \\ &= \det A \cdot \exp\left(\sum_{ij=1}^{N} \bar{\rho}_{i} A_{ij}^{-1} \rho_{j}\right), \\ \langle \eta_{i} \bar{\eta}_{j} \rangle &= \frac{\int D(\bar{\eta} \eta) \ \eta_{i} \bar{\eta}_{j} \exp(-\bar{\eta} A \eta)}{\int D(\bar{\eta} \eta) \ \exp(-\bar{\eta} A \eta)} = A_{ij}^{-1}. \end{split}$$

Dirac Propagator (with Euclidean: $\{\gamma_{\mu}, \gamma_{\nu}\} = 2\delta_{\mu\nu}, \ \gamma_4 \equiv \gamma_M^0, \gamma_i \equiv -i\gamma_M^i$)

$$\langle \psi_{\alpha}(x)\bar{\psi}_{\beta}(y)\rangle = \frac{\int D\bar{\psi}D\psi \ \psi_{\alpha}(x)\bar{\psi}_{\beta}(y)\exp\left(-S_{F}[\bar{\psi}\psi]\right)}{\int D\bar{\psi}D\psi \ \exp\left(-S_{F}[\bar{\psi}\psi]\right)},$$

$$S_{F}[\bar{\psi}\psi] = \int d^{4}x \ \bar{\psi}(x)(\gamma_{\mu}\partial_{\mu}+m)\psi(x).$$

Naive lattice discretization:

rescale $m \to M/a$, $\psi_{\alpha}(x_n) \to \frac{1}{a^{3/2}} \hat{\psi}_{\alpha}(n)$, $\partial_{\mu} \psi_{\alpha}(x_n) \to \frac{1}{a^{5/2}} \hat{\partial}_{\mu} \hat{\psi}_{\alpha}(n)$

$$\hat{\partial}_{\mu}\hat{\psi}_{\alpha}(n) = \frac{1}{2} \left[\hat{\psi}_{\alpha}(n+\hat{\mu}) - \hat{\psi}_{\alpha}(n-\hat{\mu})\right]$$

$$S_F[\bar{\psi}\psi] \simeq \sum_{n,m;\alpha,\beta} \hat{\overline{\psi}}_{\alpha}(n) K_{\alpha\beta}(n,m) \hat{\psi}_{\beta}(m)$$

with $K_{\alpha\beta}(n,m) = \frac{1}{2} \sum_{\mu} (\gamma_{\mu})_{\alpha\beta} \left[\delta_{m,n+\hat{\mu}} - \delta_{m,n-\hat{\mu}} \right] + M \, \delta_{mn} \delta_{\alpha\beta}$

Free lattice Dirac propagator:

$$\langle \psi_{\alpha}(x)\bar{\psi}_{\beta}(y)\rangle = \lim_{a \to 0} \int_{-\pi/a}^{\pi/a} \frac{d^4p}{(2\pi)^4} \frac{[-i\sum_{\mu}\gamma_{\mu}\tilde{p}_{\mu} + m]_{\alpha\beta}}{\sum_{\mu}\tilde{p}_{\mu}^2 + m^2} e^{ip(x-y)}$$

with $\tilde{p}_{\mu} = \frac{1}{a} \sin(p_{\mu}a)$ to be compared with scalar case $\tilde{k}_{\mu} = \frac{2}{a} \sin(k_{\mu}a/2)$. For M = 0 in momentum space we get poles at all 2^d corners of the Brillouin zone $[(0000), (\pi/a \ 000), \ldots]$. \Longrightarrow "Doubling of fermion degrees of freedom".

Theorem by Nielsen, Ninomiya, '81:

Doubling problem can be avoided only by giving up at least one of:

- reflexion positivity,
- cubic symmetry,
- locality,
- chiral invariance in the zero mass case.

5.2. Wilson fermions and improvements

Wilson's choice – break chiral symmetry even at m = 0:

$$D_F = \gamma_\mu \partial_\mu \longrightarrow D_{\text{Latt}} \equiv D_F^W = \frac{1}{2} \left[\gamma_\mu (\nabla^*_\mu + \nabla_\mu) - ar \nabla^*_\mu \nabla_\mu \right],$$

where ∇_{μ} (∇^{*}_{μ}) forward (backward) gauge covariant derivatives

$$\nabla_{\mu}\psi(x_n) = \frac{1}{a} \left[U_{n,\mu}\psi(n+\hat{\mu}) - \psi(n) \right]$$

r – arbitrary real parameter, often chosen to be r = 1.

Lattice free Wilson fermion action:

$$S_F^W[\bar{\psi}\psi] \simeq \sum_{n,m;\alpha,\beta} \overline{\hat{\psi}}_{\alpha}(n) K_{\alpha\beta}^W(n,m) \hat{\psi}_{\beta}(m),$$

$$K^{W}_{\alpha\beta}(n,m) = (M+4r)\delta_{mn}\delta_{\alpha\beta} - \frac{1}{2}\sum_{\mu} \left[(r-\gamma_{\mu})_{\alpha\beta} \ \delta_{m,n+\hat{\mu}} + (r+\gamma_{\mu})_{\alpha\beta} \ \delta_{m,n-\hat{\mu}} \right]$$

Propagator:

$$\langle \psi_{\alpha}(x)\bar{\psi}_{\beta}(y)\rangle = \lim_{a \to 0} \int_{-\pi/a}^{\pi/a} \frac{d^4p}{(2\pi)^4} \frac{[-i\sum_{\mu}\gamma_{\mu}\tilde{p}_{\mu} + m(p)]_{\alpha\beta}}{\sum_{\mu}\tilde{p}_{\mu}^2 + m(p)^2} e^{ip(x-y)},$$

 \tilde{p}_{μ} as before, but $m(p) = m + \frac{2r}{a} \sum_{\mu} \sin^2(p_{\mu}a/2)$

For $a \to 0$

$$m(p) \rightarrow m \text{ for } p_{\mu} \neq \pm \frac{\pi}{a},$$

 $m(p) \rightarrow \infty \text{ for } p_{\mu} = \pm \frac{\pi}{a}.$

Problems:

- Chiral $SU(3)_A$ flavor symmetry explicitly broken.
- Eigenvalue value spectrum of D_F^W strongly differs from continuum spectrum.
- Discretization error $\delta S_F^W \sim O(a)$ compared with $\delta S_G^W \sim O(a^2)$ \implies improvement possible with clover term

$$S_F^{clover} = S_F^W + a^5 \sum_n c_{sw} \psi(x_n) \frac{i}{4} \sigma_{\mu\nu} \hat{F}_{\mu\nu} \psi(x_n) \,.$$

Sheikholeslami, Wohlert '85

 \implies alternative: twisted-mass fermions at maximal twist (cf. K. Jansen).

Chiral improvement: Ginsparg-Wilson fermions

Any lattice Dirac operator satisfying the Ginsparg-Wilson relation (GWR) Ginsparg, Wilson '82

$$\gamma_5 D_{\text{Latt}} + D_{\text{Latt}} \gamma_5 = a D_{\text{Latt}} \gamma_5 D_{\text{Latt}}$$

guaranties approximately local ($\sim O(a)$), but exact chiral symmetry. Lüscher '98

Topological charge becomes well defined

$$a^4 q_t(x_n) \sim \operatorname{Tr} \left[\gamma_5 \mathrm{D}_{\mathrm{Latt}}(\mathbf{x}_n, \mathbf{x}_n)\right],$$

Atiyah-Singer Index theorem holds

$$n_{-} - n_{+} = \operatorname{index}(D_{\text{Latt}}) = a^{4} \sum_{n} q_{t}(x_{n}).$$

 \implies tool for investigating topological excitations (instantons etc.).

Strategies to solve GWR:

• Neuberger's operator: exact solution of GWR

$$D+m \rightarrow D_N = \left\{ 1 + \frac{m}{2} (1 + A (A^{\dagger} A)^{-\frac{1}{2}}) \right\}, \quad A = 1 + s - D_F^W$$

Neuberger '98

Properties:

- $(\sqrt{A^{\dagger}A})^{-1}$ numerically involved: approximation by polynomials (Chebyshev approx.).
- Det D_N hard to compute, but required for full fermionic simulation.
- Discretization error still $O(a^2)$.
- Equivalent alternative domain wall fermions: extension to 5 dimensions

$$D_{\text{Latt}} = \frac{1}{2} \left[\gamma_5 (\partial_s^* + \partial_s) - a_s \partial_s^* \partial_s \right] + D_F^W - \frac{\rho}{a}, \quad 0 < \rho < 2$$

with boundary condition

$$P_{\pm}\psi(o,x) = P_{\pm}\psi((N_s+1)a_s,x) = 0, \qquad P_{\pm} = (1\pm\gamma_5)/2$$

and limit $N_s \to \infty$ and $a_s \to 0$

Kaplan '92; Shamir '93

- Approximative methods:
 - Renormalization group based perfect action approach
 - P. Hasenfratz, Niedermayer '94; DeGrand, \ldots '94
 - generalized (less local) ansatzes for D_{Latt} with parameters fixed from GWR

Gattringer '01

5.3. Staggered fermions

Kogut, Susskind, '75

- Use naive discretization and diagonalize action w.r. to spinor degrees of freedom.
- Neglect three of four degenerate Dirac components.
- Attribute the 16 fermionic degrees of freedom localized around one elementary hypercube to four *tastes* with four Dirac indices each.

Chiral symmetry restored \iff flavor symmetry broken. Naturally the mass-degenerated four-flavor case is described.

Rooting prescription:

for $N_f = 2 + 1(+1)$ 4th-root of the fermionic determinant is taken. \implies Locality violated (??)

Improvement possible by 'smearing' link variables.

5.4. How to compute typical QCD observables

Path integral quantization for Euclidean time \implies 'statistical averages'. Fermions as anticommuting Grassmann variables \implies analytically integrated \Rightarrow non-local effective action $S^{eff}(U)$. 'Partition function' for $f = 1, \dots, N_f$ light quark flavors:

$$Z = \int [dU] \prod_{f} [d\psi_{f}] [d\bar{\psi}_{f}] e^{-S^{G}(U) + \sum_{f} \bar{\psi}_{f} M_{f}(U)\psi_{f}}$$

$$= \int [dU] e^{-S^{G}(U)} \prod_{f} \operatorname{Det} M_{f}(U)$$

$$= \int [dU] e^{-S^{eff}(U)}, \quad S^{eff}(U) = S^{G}(U) - \sum_{f} \log(\operatorname{Det} M_{f}(U))$$

with $M_f(U) \equiv D_{\text{Latt}}(U) + m_f$.

To be simulated on a finite lattice $N_t \times N_s^3$, mostly with periodic boundary conditions for gluons (anti-periodic for quarks).

Observables: mostly gauge invariant.

[These and the following diagrams taken from C. Davies, hep-ph/0205181]

Pure gauge observables:

$$\langle \Omega \rangle = \frac{1}{Z} \int [dU] \prod_{f} [d\psi_{f}] [d\bar{\psi}_{f}] \Omega(U) e^{-S^{G}(U) + \sum_{f} \bar{\psi}_{f} M(U) \psi_{f}}$$
$$= \frac{1}{Z} \int [dU] \Omega(U) e^{-S^{eff}(U)}$$

Fermionic observables through correlators, e.g. for local (u, d)-meson current $H(x) = \bar{\psi}_u^a(x) \Gamma \psi_d^a(x)$

$$\langle H^{\dagger}(x)H(y) \rangle = \frac{1}{Z} \int [dU] \prod_{f} [d\psi_{f}] [d\bar{\psi}_{f}] \ H^{\dagger}(x)H(y) \ e^{-S^{G} + \sum_{f} \bar{\psi}_{f} M(U)\psi_{f}}$$
$$= \frac{1}{Z} \int [dU] \ (M(U)^{-1}(x,y))_{u}^{ab} \ \Gamma \ (M(U)^{-1}(y,x))_{d}^{ba} \ \Gamma \ e^{-S^{eff}(U)}$$

propagator $(M(U)^{-1}(x,y))_f$, f = u, d computed with conj. gradient method.

Quenched approximation: put Det $M(U) \equiv 1$, i.e. pure gauge field simulation.

- Det $M(U) \neq 1$ can be taken into account, but time consuming
- \implies Hybrid Monte Carlo, multibosonic algorithms,...
- \implies massively parallel supercomputers required.

The 3 critical limites:

$$CPU \simeq F_{\text{per}} \left(\frac{m_{\rho}}{m_{\pi}}\right)^{z_{\pi}} \left(\frac{L}{a}\right)^{z_{L}} \left(\frac{r_{0}}{a}\right)^{z_{a}}$$

Exponents depend on algorithms. To be determined empirically. E.g.

$$F_{\rm per} \simeq 6 \cdot 10^6$$
 flops, $\mathbf{z}_{\pi} \simeq 6$, $\mathbf{z}_{\rm L} \simeq 5$, $\mathbf{z}_{\rm a} \simeq 2$, $\mathbf{r}_0 \simeq 0.5$ fm

Ukawa, LATTICE 2001; in the meantime much improved, cf. C. Urbach's lecture

Our aim: computation of hadronic masses and matrix elements from various 2-point or 3-point functions

2-point functions:

$$\langle O_f(T)O_i(0)\rangle - \langle O_f\rangle\langle O_i\rangle = \sum_n \frac{\langle \operatorname{vac}|O_f|n\rangle\langle n|O_i|\operatorname{vac}\rangle}{2M_n} e^{-M_n T} \overset{T \to \infty}{\sim} e^{-M_0 T}$$

- $O_f \equiv H^{\dagger}$, $O_i \equiv H \implies$ extract masses of hadrons with quantum numbers related to non-local current H.
- $O_f \equiv J$, $O_i \equiv H \implies$ extract vacuum-to-hadron matrix elements (decay constants) with local current J.

2pt function for spectrum

2pt function for decay constant

3-point functions:

$$\langle H'^{\dagger}(T)J(t)H(0)\rangle = \sum_{n} \sum_{m} \frac{\langle \operatorname{vac}|\mathrm{H}^{\dagger}|\mathrm{m}\rangle\langle \mathrm{m}|\mathrm{J}|\mathrm{n}\rangle\langle \mathrm{n}|\mathrm{H}|\operatorname{vac}\rangle}{2M_{n}2M_{m}} e^{-M_{n}t} e^{-M_{m}(T-t)}$$

• allow to extract experimentally relevant hadron-to-hadron matrix elements for decay constants, moments of structure functions and form factors of hadrons.

3pt function for SL decay