QCD Thermodynamics on the lattice

Frithjof Karsch

Bielefeld University & Brookhaven National Laboratory

Day I:

- Introduction: Dense Matter and Heavy Ion collisions
- Finite-T lattice QCD: Chiral symmetry and the hadron spectrum Day II:
 - Chiral (phase) transition: O(4) scaling and T_c
 - Deconfinement: Polyakov loop and Z(3) symmetry, baryon number and electric charge fluctuations, the QCD equation of state
 - thermodynamics at $\mu_B \neq 0$ (lectures by C. Schmidt)

Helmholtz Summer School Lattice QCD, Hadron Structure and Hadronic Matter Dubna, Russia, 5-18 September, 2011

Phase diagram for $\mu_B = 0$

drawn to scale

Is physics at the physical quark mass point sensitive to (universal) properties of the chiral phase transition?

physical point may be above m_s^{tric}

 $N_{ au} = 4, 6;$ improved actions: $\Rightarrow m_{ps}^{crit} \leq 70 \text{ MeV}$ FK et al, NP(Proc.Suppl) 129 (2004) 614 G. Endrodi et al, PoS LAT 2007 (2007) 182 (also $N_{ au} = 6$, unimp.)

2 (+1)-flavor QCD and O(N) spin models

physics of QCD at low energies as well as close to the chiral phase transition is described by effective, O(N) symmetric spin models

- T = 0: chiral symmetry breaking at T = 0, $m_q = 0$ as well as leading temperature and quark mass dependent corrections are related to universal properties of 4-dimensional, O(4) symmetric spin models
- $T \simeq T_c$: chiral symmetry restoration at $T = T_c$, $m_q = 0$ as well as leading temperature and quark mass dependent corrections are related to universal properties of 3-dimensional, O(4) symmetric spin models

R. Pisarski and F. Wilczek, PRD29 (1984) 338 K. Rajagopal and F. Wilczek, hep-ph/0011333 A. Pelissetto and E. Vicari, Phys. Rept 368 (2002) 549

Spontaneous Symmetry Breaking

O(N) spin models in *d*-dimensions

- non-vanishing expectation value, *M*, of the scalar field, $\Phi_{||}$, parallel to the symmetry breaking field *H*
- (N-1) transverse (Goldstone) modes give corrections for non-zero
 H (spin waves); controlled by M and the decay constant F for
 Goldstone modes

$$M_{H} = M_{0} \left(1 - rac{N-1}{32\pi^{2}} rac{M_{0}H}{F_{0}^{4}} \ln \left(rac{M_{0}H}{F_{0}^{2}\Lambda_{M}}
ight) + \mathcal{O}(H^{2})
ight) ~~,~~d=4$$

$$M_{H} = M_{0} \left(1 + rac{N-1}{8\pi} rac{(M_{0}H)^{1/2}}{F_{0}^{3}} + \mathcal{O}(H)
ight) \ , \ d = 3$$

P. Hasenfratz and H, Leutwyler, NPB343, 241 (1990) D.J. Wallace and R.K.P. Zia, PRB12, 5340 (1975)

Spontaneous Symmetry Breaking (cont.)

(chiral) susceptibilities diverge below T_c for H
ightarrow 0

$$\chi_H = rac{\mathrm{d}M_H}{\mathrm{d}H} \sim \langle \Phi_{||}^2
angle - \langle \Phi_{||}
angle^2 \sim egin{cases} H^{-1/2} &, \ d=3 \ -\ln H &, \ d=4 \end{cases}$$

divergence in the zero-field (chiral) limit

$$\chi_{H=0}(T) = \begin{cases} \infty & , T \leq T_c \\ A(T-T_c)^{-\gamma} & , T > T_c \end{cases}$$

divergence at T_c

$$\chi_H(T = T_c) = H^{1/\delta - 1}$$
, $T = T_c$

crit. exp. O(2) [O(4)]: $\gamma = 1.32 \; [1.45], 1 - 1/\delta = 0.79 \; [0.79]$

Critical behavior & chiral limit of QCD

Universal critical behavior: $f(T, \mu_q, m_q) = f_s + f_r$ existence of (hyper-)scaling relations between critical exponents suggests that f_s is a homogenous function with a free 'scale parameter' b

$$egin{array}{rll} f_s(T,\mu_q,m_q) &=& b^{-1}f_s(tb^{y_t},hb^{y_h}) \ && h=m_q/T &, & t=\left|rac{T-T_c}{T_c}
ight|+A\mu_q^2 \end{array}$$

9 two relevant fields t, h;

h couples to symmetry breaking operators; *t* depends (to leading order) on all couplings/parameters that
do not break the symmetry

Critical behavior & chiral limit of QCD

Universal critical behavior (thermal)

$$m_q \equiv 0$$
: $f_s(T, \mu_q, 0) = b^{-1} f_s(t b^{1/(2-\alpha)}) \sim t^{2-\alpha}$

 $lpha < 0 ext{ for } O(N) ext{ } ext{ } ext{specific heat has a cusp}$

$$t \equiv 0$$
: $f_s(0, \mu_q, m_q) = b^{-1} f_s(m_q b^{1/(1+1/\delta)}) \sim m_q^{1+1/\delta}$

O(N) models:

$$\alpha = (2y_t - 1)/y_t$$
, $\beta = (1 - y_h)/y_t$ and $\delta = y_h/(1 - y_h)$

Ν	lpha	$oldsymbol{eta}$	δ
2	-0.007(6)	0.3455(20)	4.808(7)
4	-0.19(6)	0.38(1)	4.82(5)

hyper-scaling relations: $lpha+2eta+\gamma=2$, d
u=2-lpha

Critical behavior & chiral limit of QCD

Universal critical behavior (thermal)

$$m_q \equiv 0$$
: $f_s(T, \mu_q, 0) = b^{-1} f_s(t b^{1/(2-\alpha)}) \sim t^{2-\alpha}$

 $lpha < 0 ext{ for } O(N) ext{ } ext{ } ext{specific heat has a cusp}$

$$t \equiv 0$$
: $f_s(0, \mu_q, m_q) = b^{-1} f_s(m_q b^{1/(1+1/\delta)}) \sim m_q^{1+1/\delta}$

fluctuations of Goldstone modes influence behavior in the chiral limit also away from (thermal) criticality

$$\int c(T)\sqrt{m_q} + d(T)m_q + \text{regular} \quad T < T_c$$

$$\langle \bar{\psi}\psi \rangle \sim \begin{cases} c_{\delta}m_q^{1/\delta} + d(T_c)m_q + \text{regular} & T = T_c \\ d(T)m_q + \text{regular} & T > T_c \end{cases}$$

$$\Rightarrow \chi_m \sim \left. \frac{\partial \langle \bar{\psi}\psi \rangle}{\partial m_q} \right|_{m_q=0} \sim \begin{cases} \infty & T \leq T_c \\ t^{-\gamma} & T > T_c \end{cases}$$

O(N) scaling and chiral transition

thermodynamics in the vicinity of a critical point:

$$\frac{p}{T^4} = \frac{1}{VT^3} \ln Z(V,T) = t^{2-\alpha} f_s(t/h^{1/\beta\delta}) + f_r(V,T)$$

with scaling fields, $t \equiv \frac{1}{t_0} \frac{T - T_c}{T_c}$, $h \equiv \frac{1}{h_0} H$, $(H \sim m_q)$

In the vicinity of (t, h) = (0, 0) the chiral order parameter and its susceptibility are given in terms of scaling functions

$$M = h^{1/\delta} f_G(z)$$
 , $\chi_M = \partial M/\partial h = h^{1/\delta - 1} f_{\chi}(z)$
 $\chi_t = \partial M/\partial T = rac{1}{t_0 T_c} h^{(eta - 1)/\deltaeta} f_G'(z)$

$$f_{\chi}(z) = rac{1}{\delta} \left(f_G(z) - rac{z}{\beta} f'_G(z)
ight)$$

Scaling functions from studies of $O(N)$ spin models in 3-dimensions

3-d, O(N) scaling functions

2-flavor QCD is in the same universality class as 3-d, O(4) spin models

O(2): J. Engels et al., 2001 O(4): J. Engels et al., 2003

staggered fermions only have a
 O(2) symmetry at finite lattice spacing

3-d, O(4) models close to T_c

condensate shows \sqrt{H} dependence and O(4) scaling

magnetic equation of state reflects O(4) scaling including Goldstone modes

Scaling in (2+1)-flavor QCD

 $\mathcal{O}(a^2)$ improved staggered fermions

- S. Ejiri et al. (BNL-Bielefeld-GSI), arXiv:0909.5122
- A. Bazavov et al. (HotQCD), in preparation

chiral condensate

$$\langle \bar{\psi}\psi
angle_l = rac{1}{N_\sigma^3 N_ au} rac{1}{4} rac{\partial \ln Z}{\partial m_l a}$$

order parameter: dimensionless; multiplicative renormalized

$$M_b \equiv rac{m_s \langle ar{\psi} \psi
angle_l}{T^4}$$
scaling fields: $h \equiv rac{1}{h_0} rac{m_l}{m_s}$; $t = rac{1}{t_0} rac{T - T_c}{T_c}$ $z = t/h^{1/eta \delta}$

Chiral condensate: $N_{\tau} = 4$:

ullet evidence for $\sqrt{m_l}$ term in $\langle ar{\psi} \psi
angle$

for orientation: $eta=3.28~T\simeq188$ MeV, $eta=3.30~T\simeq196$ MeV

• Statistics:

20.000-40.000 trajectories per (β, m_q)

O(N) scaling analysis; p4-action

$$M\equiv h^{1/\delta}f_G(z) ~~;~~ z=t/h^{1/eta\delta}$$

9 3 parameter fit: t_0 , h_0 , T_c

$$t = rac{1}{t_0} rac{T - T_c}{T_c} \;,\; h = rac{1}{h_0} rac{m_l}{m_s}$$

• use only data for $m_l/m_s \leq 1/20,\,eta \in [3.285,3.31]$

O(N) scaling analysis; p4-action

$$M\equiv h^{1/\delta}f_G(z) ~~;~~ z=t/h^{1/eta\delta}$$

9 3 parameter fit: t_0 , h_0 , T_c

$$t = rac{1}{t_0} rac{T - T_c}{T_c} \;,\; h = rac{1}{h_0} rac{m_l}{m_s}$$

use only data for $m_l/m_s \leq 1/20, \, eta \in [3.285, 3.31]$

Scaling of the chiral susceptibility

$$M=h^{1/\delta}f_G(z)~~,~~\chi_M=\partial M/\partial h=h^{1/\delta-1}f_\chi(z)$$
 $t=rac{1}{t_0}rac{T-T_c}{T_c}~,~h=rac{1}{h_0}rac{m_l}{m_s}$

$$\chi_m/T^2 ~=~ N_ au^3 rac{{
m d} \langle ar \psi \psi
angle_q}{{
m d} (m_q/T)}$$

$$f_{\chi}(z) \;\; = \;\; \chi_m h_0 / h^{1/\delta - 1} \equiv h_0^{1/\delta} \left(rac{m_l}{m_s}
ight)^{1 - 1/\delta} \chi_m \; ,$$

 $f_{\chi}(z)$ has maximum at $z \equiv z_p \Rightarrow$ scaling of pseudo-critical temperatures:

$$z = z_p \iff t = h^{1/\beta\delta} \Leftrightarrow T(m_l) = T_c + A\left(rac{m_l}{m_s}
ight)^{1/\beta\delta}$$

Chiral Susceptibility

chiral condensate

$$\langle \bar{\psi}\psi
angle_l = rac{n_f}{4} rac{1}{N_\sigma^3 N_\tau} \mathrm{Tr} \langle M_l^{-1}
angle, \; ,$$

chiral susceptibility:

$$\chi_m(T) \;\;=\;\; rac{\partial \langle \psi \psi
angle_l}{\partial m_l} = \chi_{disc} + \chi_{con} \;,$$

$$egin{aligned} \chi_{disc} &= \; rac{n_f^2}{16 N_\sigma^3 N_\tau} \left\{ \langle \left({
m Tr} M_l^{-1}
ight)^2
ight
angle - \langle {
m Tr} M_l^{-1}
ight
angle^2
ight\} \;, \ \chi_{con} &= \; -rac{n_f}{4} {
m Tr} \sum_x \langle \, M_l^{-1}(x,0) M_l^{-1}(0,x) \,
angle \end{aligned}$$

(staggered fermion normalization)

Scaling of the chiral susceptibility

$$\frac{\chi_m}{T^2} \sim \left(\frac{m_l}{m_s}\right)^{-1+1/\delta} \quad (T = T_c)$$

$$\sim \left(\frac{m_l}{m_s}\right)^{-1/2} \quad (T < T_c)$$

$$\sim \text{ const.}(T - T_c)^{-\gamma} \quad (T > T_c)$$

asqtad action

Scaling of the chiral susceptibility

$$f_{\chi}(z) \;\; = \;\; rac{\chi_m}{T^2} \, h_0 / h^{1/\delta - 1} \equiv h_0^{1/\delta} \left(rac{m_l}{m_s}
ight)^{1 - 1/\delta} rac{\chi_m}{T^2} \; ,$$

p4-action

Pseudo-critical temperatures

- Calculations with HISQ and asquad actions at three values of the lattice cut-off: $N_{\tau} = 6, 8$ and 12
- pseudo-critical temperatures defined in terms of peaks in the chiral susceptibility
- control dependence on the choice of the temperature scale, e.g.

$$rac{1}{T} = N_ au a(g^2)$$

need to determine $a(g^2)$ through calculation of an "experimentally" known observable. For instance, a mass $-m_H a(g^2)$.

$$\Rightarrow \frac{m_H}{T} = m_H a(g^2) N_\tau$$

Pseudo-critical temperatures

- calculations with HISQ and asqtad actions at three values of the lattice cut-off: $N_{\tau} = 6, 8$ and 12
- pseudo-critical temperatures defined in terms of peaks in the chiral susceptibility
- \bullet control dependence on the choice of the temperature scale, e.g. r_1

Pseudo-critical temperatures

- calculations with HISQ and asqtad actions at three values of the lattice cut-off: $N_{\tau} = 6, 8$ and 12
- pseudo-critical temperatures defined in terms of peaks in the chiral susceptibility
- control dependence on the choice of the temperature scale

Pseudo-critical temperatures continuum extrapolation

consistent with: Y. Aoki et al, Phys. Lett. B643, 46 (2006)

Deconfinement

and

chiral symmetry restoration

Confinement and deconfinement

confinement

- stick together, find a comfortable separation
- controlled by confinement potential

$$V(r) = -rac{4}{3}rac{lpha(r)}{r} + \sigma r$$

Confinement and deconfinement

confinement

- stick together, find a comfortable separation
- controlled by confinement potential

$$V(r)=-rac{4}{3}rac{lpha(r)}{r}+\sigma r$$

$$lpha(r)\equiv rac{g^2(r)}{4\pi}\sim rac{1}{\ln(1/r\Lambda)}$$

deconfinement

- free floating in the croud
- average distance always smaller than r_{af} :

$$r_{af} = \sqrt{rac{4}{3} rac{lpha(r)}{\sigma}} ~\simeq~ 0.25\,{
m fm}$$

Deconfinement

⇔ breaking/restoration of global symmetries

exist only for $m_q=0$ and $m_q
ightarrow\infty$

 $\begin{array}{ll} \text{confinement:} & \underline{m_q \to \infty} \\ \lim_{r \to \infty} V_{\bar{q}q}(r) \to \infty \\ \text{string tension } \sigma > 0 \end{array}$

Deconfinement

phase transition \iff breaking/restoration of global symmetries

heavy quark free energy:

$$F_{ar q q}(ec x,T)\equiv -T~\ln G_L(ec x,T)$$

Polyakov loop expectation value:

$$\langle L
angle \equiv \left(\lim_{ert ec x ert
angle o \infty} G_L(ec x,T)
ight)^{1/2}$$

Polyakov loop susceptibility:

$$\chi_L \equiv \langle L^2
angle - \langle L
angle^2$$

 $\label{eq:product}$ exist only for $m_q = 0$ and $m_q o \infty$

$$\begin{array}{ll} \text{confinement:} & \underline{m_q \to \infty} \\ \lim_{r \to \infty} V_{\bar{q}q}(r) \to \infty \\ \text{string tension } \sigma > 0 \end{array}$$

Deconfinement $(m_q = \infty)$

confined phase $(T < T_c)$:

 $\frac{F(R,T)}{T} = \frac{\sigma(T)}{T^2}RT + \ln(RT)$

deconfined phase $(T > T_c)$:

 $\frac{F(R,T)}{T} = \frac{\alpha}{(RT)^n} e^{-m_D R} + \text{const.}$

Deconfinement $(m_q < \infty)$

 $\Uparrow \sim 1 \; \mathrm{fm}$: string breaking

Deconfinement $(m_q < \infty)$

L not an order parameter; non-singular?

 $\Leftarrow |\langle L
angle|^2 > 0$

string breaking for $m_q < \infty$ shifts gradually to smaller distances at higher temperatures

 $\Uparrow \sim 1 \; \mathrm{fm}$: string breaking

Remormalized Polyakov loop in QCD

(2+1)-flavor QCD: $24^3 \times 6$, $32^3 \times 8$, $48^3 \times 12$

 $L_{
m ren} \equiv Z^{N_{ au}}(eta) \langle L
angle$

A. Bazavov et al. (HotQCD Collaboration) arXiv:1107.5027

Remormalized Polyakov loop in QCD

(2+1)-flavor QCD: $24^3 \times 6$, $32^3 \times 8$, $48^3 \times 12$

 $L_{\rm ren} \equiv Z^{N_{\tau}}(\beta) \langle L \rangle$

not a good order parameter for $m_q < \infty$

need a deconfinement criterion that is linked to critical behavior also for $m_q \rightarrow 0$

A. Bazavov et al. (HotQCD Collaboration) arXiv:1107.5027

Quark number susceptibility... ...and its susceptibility

- rapid change in quark/baryon/strangeness number susceptibility reflects change in mass of the carrier of these quantum numbers DECONFINEMENT
- quark number susceptibility feels nearby singular point just like the energy density

scaling field:
$$t = \left| \frac{T - T_c}{T_c} \right| + A \left(\frac{\mu_q}{T_c} \right)^2$$
, $\mu_{crit} = 0$
singular part: $f_s(T, \mu_q) = b^{-1} f_s(t b^{1/(2-\alpha)}) \sim t^{2-\alpha}$

Y. Hatta, T. Ikeda, PRD67 (2003) 014028

$$egin{aligned} c_2 &\equiv \chi_q \sim rac{\partial^2 \ln \mathcal{Z}}{\partial \mu_q^2} \sim t^{1-lpha} &, \quad c_4 \sim rac{\partial^4 \ln \mathcal{Z}}{\partial \mu_q^4} \sim t^{-lpha} & (\mu=0) \ & \epsilon \sim rac{\partial \ln \mathcal{Z}}{\partial T} \sim t^{1-lpha} &, \quad C_V \sim rac{\partial^2 \ln \mathcal{Z}}{\partial T^2} \sim t^{-lpha} & (\mu=0) \end{aligned}$$

 $\Rightarrow 2^{nd}$ derivative w.r.t μ_q "looks like energy density" $\Rightarrow 4^{th}$ derivative w.r.t μ_q "looks like specific heat"

Hadronic fluctuations at $\mu > 0$ from Taylor expansion coefficients at $\mu = 0$

 $n_f=2,\ m_\pi\simeq 770$ MeV: S. Ejiri, FK, K.Redlich, PLB633 (2006) 275 $n_f=2+1,\ m_\pi\simeq 220$ MeV: RBC-Bielefeld, preliminary

quadratic and quartic fluctuations

$$\chi_{2}^{x} = \frac{\partial^{2} p/T^{4}}{\partial (\mu_{x}/T)^{2}} = \frac{1}{VT^{3}} \langle (\delta N_{x})^{2} \rangle_{\mu=0} = \frac{1}{VT^{3}} \langle N_{x}^{2} \rangle_{\mu=0}$$

$$egin{aligned} \chi_4^x &=& rac{\partial^4 p/T^4}{\partial (\mu_x/T)^4} = rac{1}{VT^3} \left(\langle (\delta N_x)^4
angle - 3 \langle (\delta N_x)^2
angle^2
ight)_{\mu=0} \ &=& rac{1}{VT^3} \left(\langle N_x^4
angle - 3 \langle N_x^2
angle^2
ight)_{\mu=0} \end{aligned}$$

with $x=u,\ d,\ s$ or $B,\ Q,\ S$

Hadronic resonance gas \Rightarrow Boltzmann approximation

heavy resonances,
$$T \ll m_H \Rightarrow Boltzmann statistics$$

thermodynamics: $p(T, \mu_B) = \frac{T}{V} \ln Z(T, \mu_B, V) = \sum_m p_m(T, \mu_B)$
 $\ln Z(T, \mu_B, V) = \sum_{i \in \text{mesons}} \ln Z_{m_i}^B(T, V) + \sum_{i \in \text{baryons}} \ln Z_{m_i}^F(T, \mu_B, V)$
contribution of baryons (fermions, -) or mesons (bosons, +) with mass m
 $m = d (m)^2 \frac{\infty}{2}$
 $\mu_B \equiv B\mu_q$
 $\mu_B \equiv B\mu_q$
 $\mu_B \equiv B\mu_q$
 $\mu_B \equiv B\mu_q$

$$\frac{p_m}{T^4} = \frac{d}{\pi^2} \left(\frac{m}{T}\right)^2 \sum_{\ell=1}^{\infty} (\pm 1)^{\ell+1} \ell^{-2} K_2(\ell m/T) \cosh(\ell \mu_B/T) \qquad \mu_1 = \mu_q$$

$$\uparrow_{K_2(x)} \simeq \sqrt{\pi/2x} \exp(-x) , \quad x >> 1$$

• only $\ell = 1$ contributes for $(m_H - \mu_B) \gtrsim T$

 \Rightarrow Boltzmann approximation:

$$\frac{p_m}{T^4} = \frac{d}{\pi^2} \left(\frac{m}{T}\right)^2 K_2(m/T) \cosh(\mu_B/T)$$

Quark number in Boltzmann approximation

baryonic sector of pressure in a hadron resonance gas;

 $m_B \gg T \Rightarrow$ Boltzmann approximation: $p_B/T^4 = \sum_{m \leq m_{max}} p_m/T^4$

with $p_m/T^4 = F(T, m, V) \cosh(\frac{B\mu_B}{T})$

$$\chi_2^B \equiv \frac{\partial^2 p_m / T^4}{\partial (\mu_B / T)^2} = B^2 F(T, m, V) \cosh(\frac{B\mu_B / T}{T})$$

$$\chi_4^B \equiv rac{\partial^4 p_m/T^4}{\partial (\mu_B/T)^4} = B^4 F(T,m,V) \cosh(rac{B\mu_B/T}{D})$$

ratio of fourth (χ_4^B) and second (χ_2^B) cumulant of quark number fluctuation gives "unit of charge" carried by the particle with mass "*m*":

$$m \gg T \quad \Rightarrow \quad R^B_{4,2} \equiv rac{\chi^B_4}{\chi^B_2} = B^2$$

Charge fluctuations in Boltzmann approximation

hadronic resonance gas: contributions from neutral ($G^{(1)}: \pi^0, ...$) and charged ($G^{(2)}: \pi^{\pm}, ...$) mesons and baryons as well as doubly charged baryons ($G^{(3)}: \Delta^{++}, ...$)

$$rac{\mu(T,\mu_B=0,\mu_Q)}{T^4} \simeq G^{(1)}(T) + G^{(2)}(T) \cosh{(\mu_Q/T)} + G^{(3)}(T) \cosh{(2\mu_Q/T)}$$

Charge fluctuations at $\mu_B = 0$;
enhanced contribution from $G^{(3)}$ i.e. from doubly charged baryons

$$R^Q_{4,2} \equiv rac{\chi^Q_4}{\chi^Q_2} \ = rac{G^{(2)} + 16G^{(3)}}{G^{(2)} + 4G^{(3)}} o \ 1 ext{ for } T o 0$$

contribution of doubly charged baryons increases quartic relative to quadratic fluctuations

Cumulant ratios

ratios of cumulants reflect carriers of baryon number and charge

$$R^x_{4,2} = \chi^x_4/\chi^x_2 ~~,~~x=B,~Q$$

$$R^q_{4,2} = egin{cases} 1 & , ext{HRG} \ rac{2}{3\pi^2} + \mathcal{O}(g^3) & , ext{high} - T \end{cases}$$

$$R^Q_{4,2} = egin{cases} 1 & , ext{HRG}, T o 0 \ rac{34}{15\pi^2} + \mathcal{O}(g^3) & , ext{high} - T \end{cases}$$

Quadratic fluctuations of baryon number charge & strangeness in (2+1)-flavor QCD

p4-action, coarse lattices, strong taste violations vanishing chemical potentials:

 \Rightarrow smooth change of quadratic fluctuations across transition region chiral limit: χ_2^B , $\chi_2^Q \sim |T - T_c|^{1-\alpha} + \text{regular}$

RBC-Bielefeld, arXiv:0811.1006

Quadratic fluctuations of baryon number charge & strangeness in (2+1)-flavor QCD

HotQCD preliminary

HISQ-action, $N_{ au}=6,\ 8,\ 12$

vanishing chemical potentials:

⇒ smooth change of quadratic fluctuations across transition region good agreement with HRG model at low T

Quartic fluctuations of baryon number charge & strangeness in (2+1)-flavor QCD

p4-action, coarse lattices, strong taste violations vanishing chemical potentials:

 \Rightarrow large light quark number & charge fluctuations across transition region chiral limit: χ_4^B , $\chi_4^Q \sim |T - T_c|^{-\alpha} + \text{regular}$

Ratios of quartic and quadratic fluctuations of charges in (2+1)-flavor QCD

chiral limit: ratios $\sim |T - T_c|^{-lpha} + \mathrm{regular}$

 \Rightarrow enhancement over resonance gas values? (need to improve $N_{\tau} = 6$) \Rightarrow may be observable in event-by-event fluctuations quark sector quickly ($T \ge 1.5T_c$) behaves perturbative

Higher moments of charge fluctuations at RHIC and LHC

higher moments (e.g. 6th order) are drastically different in QCD close to criticality and in a hadron resonance gas, e.g.

$$rac{\mu_B=0}{\chi^{(6)}_{B,0}} = \left\{ egin{array}{c} =1 \ <0 \end{array}, ext{ hadron resonance gas} \ <0 \end{array}, ext{ QCD at the crossover transition}
ight.$$

QCD Thermodynamics: Simulating hot and dense matter

^a the	lattice: $\mathbf{N}_{\sigma}^3 imes \mathbf{N}_{\tau}$
	$egin{array}{llllllllllllllllllllllllllllllllllll$
	bulk thermodynamics:
1/T =Ν _τ α	$\frac{p}{T^4} = -\frac{1}{VT^3} \ln Z$
$\leftarrow V^{1/3} = N_{\sigma}a \longrightarrow$	$rac{\epsilon}{T^4} = -rac{1}{VT^4}rac{\partial}{\partial T^{-1}}\ln Z$
partition function: $Z(V, T, \mu) = \int \mathcal{D}\mathcal{A} \ Det M(\mathcal{A}, \mu) \ e^{-S_G}$	$rac{n_q}{T^3} = rac{1}{VT^3} rac{\partial}{\partial \mu_s/T} \ln Z$
$\frac{c^{1/T}}{c}$	$\frac{\chi_q}{\chi_q} = \frac{1}{\frac{1}{2}} \frac{\partial^2 \ln Z}{\partial^2 \ln Z}$
$ig S_E = \int_{m 0}' dx_0 \int_{m V} d^3x \; {\cal L}_E({\cal A},\psi,ar \psi,m \mu)$	$egin{array}{lll} T^2 & VT^3 \partial (\mu_q/T)^2 \ &= rac{T}{-} ig(\langle N_q^2 angle - \langle N_q angle^2 ig) \end{array}$
temperature volume chemical poter	$V (\begin{array}{c} & q \\ & q \end{array})$

Calculating the EoS on lines of constant physics (LCP)

Interaction measure for $N_f = 2 + 1 \quad \Leftrightarrow$ Trace Anomaly

$$egin{aligned} rac{\epsilon-3p}{T^4} &= Trac{\mathrm{d}}{\mathrm{d}T}\left(rac{p}{T^4}
ight) = \left(arac{\mathrm{d}eta}{\mathrm{d}a}
ight)_{LCP}rac{\partial p/T^4}{\partialeta} \ &= \left(rac{\epsilon-3p}{T^4}
ight)_{gluon} + \left(rac{\epsilon-3p}{T^4}
ight)_{fermion} + \left(rac{\epsilon-3p}{T^4}
ight)_{\hat{m}_s/\hat{m}_l} \end{aligned}$$

The pressure

$$\left.rac{p}{T^4}
ight|_{eta_0}^{eta} = \int_{T_0}^T \mathrm{d}T \; rac{1}{T}\left(rac{\epsilon-3p}{T^4}
ight)$$

need T-scale, $aT = 1/N_{\tau}$ and its relation to the gauge coupling $a \equiv a(\beta)$

N.B.: $a(\beta)$ is only defined through physical observables \Rightarrow choose a simple one

Critical temperature, equation of state and the resonance gas

Hagedorn spectrum : $\rho(m_H) \sim c \ m_H^a \ e^{m_H/T_H}$

$$\ln Z(\mathbf{T}, \boldsymbol{\mu}_{B}) = \int \mathrm{d}m_{H} \ \rho(m_{H}) \ \ln Z_{m_{H}}(\mathbf{T}, \boldsymbol{\mu}_{B})$$

resonance gas: $\sim 1500 \text{ d.o.f. from}$ $\sim 300 \text{ exp. known resonances}$ vs.lattice calculation: (2+1)-flavor QCD, $m_q/T = 0.4$ resonances give large contribution at T_c • explain eos for $T \leq T_c$;

Trace anomaly: $(\epsilon - 3p)/T^4$

..towards the cont. limit: $N_{ au}=6,\ 8,\ 12$

- basic input for the calculation of all bulk thermodynamic observables
- cut-off effects in the peak region seem to be under control within HISQ and asqtad calculations
- origin of differences with stout calculations at present 'unclear'

Trace anomaly: $(\epsilon - 3p)/T^4$

..comparison with HRG model at low T

the HRG model is a good approximation to the QCD EoS at low temperature

Energy Density and Light Quark Susceptibility

- singular parts of ϵ/T^4 and χ_l/T^2 have identical T-dependence
- ϵ/T^4 and χ_l/T^2 couple to pions at low temperature $\chi_l, \ \epsilon \sim \exp(-m_\pi/T)$

 \checkmark ϵ/T^4 and χ_l/T^2 sensitive to change in light degrees of freedom

Summary: Phase transition and bulk thermodynamics

- The scaling of thermodynamic quantities in the vicinity of the QCD (crossover) transition is consistent with the expected O(4) scaling close to the chiral limit of 2-flavor QCD.
 Many details still need to be settled
- The QCD (phase) transition temperature (T_c) is about 160 MeV at $\mu_B = 0$, which is close to the experimentally determined freeze-out temperature (T_{freeze}) Maybe a bit too low?
- Higher moments of fluctuations of conserved charges became increasingly sensitive to critical behavior and may 'keep memory' of a nearby chiral phase transition even if $T_{freexe} \neq T_c$?.
- The QCD transition shows many features expected from a 'deconfinement transition'.