
Summary lec 4

I Discussed theoretical formulation of Q = 4 SYM in 2D and
Q = 16 SYM in 4D

I Outstanding theoretical issue: lattice actions preserve 1 SUSY
what fine tuning needed for restoration of full SUSY in
continuum limit ?

I Info from (lattice) p theory - renormalization ..
I Non-perturbative checks

I Simulations:
I Pfaffian complex – sign/phase problem ?
I Scalar infrared divergences ?



Quantum corrections

I Lattice theory we have described certainly yields N = 4 in
naive continuum limit

I But what about quantum corrections ? 15 SUSYs broken at
O(a). Naively they are restored a→ 0. Seen that loop effects
can change this ....

I What are possible dangerous counter terms that can arise ?
I Lattice symmetries tell us what may happen in principle.

Here:
I Gauge invariance
I Q-symmetry.
I Point group symmetry - eg. S5 for A∗

4
I Exact fermionic shift symmetry η → η + εI



Analysis of counter terms

I Care only about relevant counter terms – use dimensional
analysis to rank terms [Ψ] = 3/2, [U ] = 1. Only care about
[O] ≤ 4

I Q symmetry implies all terns are Q-exact.

I So O ∼ Q (ΨUU) ([Q] = 1/2) (no Q(ΨU) ops)

I O must correspond to (trace of) closed loop for G.I

I S5 symmetry – operator should be invariant under
permutation of indices.

Find:

S =
∑

Tr

[
α1χabFab + α2ηD

(−)
a Ua −

1

2
α3ηd − α4Sclosed

]



Observations

I Only marginal ops already in classical action possible.

I Spreading fermions over links has a bonus: generic fermion
bilinears not allowed by gauge invariance - fermions remain
massless.

I Log fine tuning needed if α1 6= α2 6= α3 6= α4

I S5 PGS guarantees twisted SO(4)′ restored as a→ 0. Any
relevant SO(4) breaking counter term would break S5.

I Absence of scalar masses can be confirmed by computing
effective potential Γeff(Uc)



Sketch of 1-loop Γeff = 0 - bosons

I Classical vacua
constant commuting complex matrices Uclassical

µ

I Expand to quadratic order Uµ(x) = I +Aclassical
µ + aµ(x).

I Fix gauge using function D(−)
µ aµ + h.c = 0. Choose Feynman

parameter so that bosonic action looks like

SB = aνD
(−)
µ D(+)

µ aν

I Integrate - results in factor det−5
(
D(−)
µ D

(+)
µ

)
I Here D dnotes covariant difference operator in background
Aclassical



Fermionic contribution

I Ghosts: Faddev-Popov term is just

det
(
D(−)
µ D(+)

µ

)
I Fermion operator takes the same form as in bare action with

the rule that all discrete covariant difference ops are too be
taken in the background field.

I One can also show (use fact that all covariant difference ops
in general background commute)(

Pf (MF )
Maple

= det4
(
D(−)
µ D(+)

µ

))
I Thus Zpbc = 1 and Γ[Aclassical] = 0 at 1-loop.



Consequences

I Actually this result remains true to all orders! Since S ∼ βQΛ
can show that ∂ lnZ

∂β =< QΛ >= 0 and hence Z has no
dependence on β. Can be computed exactly as β →∞ -
semiclassical limit (1-loop)

I Thus classical moduli space not lifted due to quantum
corrections! So scalars naturally massless in lattice theory -
exact SUSY indeed protects theory and reduces fine tuning.



Going further

I Thus we learn on the basis of lattice symmetries and the
topological nature of Q that quantum corrections can at most
log shift the coefficients of the separate Q invariant kinetic
terms that make up the classical action.

I In principle restoration of additional 15 susys can depend on
differential flows in these wave function renormalizations due
to quantum effects.

I To proceed further we must do an explicit 1-loop calc using
lattice p theory



Ingredients for perturbation theory

Lattice rules for A∗4 lattice (Feynman gauge):

I Boson propagator < AC
a (k)AD

b (−k) >= 1
k̂2
δabδ

CD with

k̂2 = 4
∑

a sin2 (ka/2)

I Fermion propagator M−1KD(k) = 1
k̂2
MKD(k) with M(k) a

16× 16 block matrix acting on (η, ψa, χab)

I Vertices: ψη, ψχ and χχ.

I Only 4 Feynman graphs needed to find 1-loop contributions to
fermion self-energies (determines 3 out of 4 coeffs)

I One additional bosonic propagator for remaining coeff.



Example: chi-chi propagator

Compute all amputated fermion self energies. Final result:

I Fermion self-energies vanish for p → 0. Zero mass.

I Σ
(2)
i = 1 + Ag2 lnµa. Single A for all fermion Σi .



Why so simple ?

I The lattice diagrams are just log divergent - like their
continuum counterparts.

I Furthermore, these divergences are the same as the continuum
theory since they originate in regions of k space where the
lattice vertices and propagators approach their continuum
counterparts.

I But in the continuum theory the coefficients of the different
self -energies must be same - since that theory has full
supersymmetry which would be violated if the different
twisted components picked up different corrections.

I Remember that twisting (in the continuum) is just a change
of variables....

I Conclusion: the lattice theory must also (at 1 loop) inherit
this structure and hence also require no fine tuning to
approach a continuum limit with full susy.



Summary

I Perturbative studies indicate that scalars remain massless to
all orders in g

I Potential log tuning needed to handle wave function
renormalization but at 1-loop even this is not present. So no
tuning needed aty weak coupling

I Actually same args indicate that β(g) = 0 at 1-loop !in lattice
theory!

I To understand situation for strong coupling need simulations.
Measure Ward identities corresponding to broken SUSYs as
β →∞. Are they restored ? If not can I tune bare αi by hand
to zero them out ?



Numerical Implementation: problems ...

1. After integration over the twisted fermions we find a Pfaffian
Pf(M(U)). In general this is complex. Monte Carlo requires a
positive definite weight. Thus we perform simulations using

(M†M)
1
4 . Fold phase into observables using reweighting. If

fluctuations in phase large - fails - famous sign problem.

2. Non-trivial moduli space: (scalar) fields can run off to infinite
values as long as [Bµ,Bν ] = 0. Survives quantum corrections.
Stability of simulations ?



Simulations

I RHMC algorithm (as for lattice QCD)

I Need C++ objects for twisted fermions, (complexified) gauge
fields.

I A∗4 can be deformed to hypercubic lattice plus body diagonal -
index fields on latter (simple)

I Can parallelize with e.g. MPI or use GPUs



Scalars

I Simulate U(N) theories. Observe that trace mode of scalars is
indeed unstable. Regulate using mass term

∆S = µ2
∑[

1

N
Tr
(
U†aUa

)
− 1

]2
As a→ 0 U†U → e2B ∼ I + 2B so gives mass to trace mode
only

I Since sector decouples susy is naively ok as a→ 0 ...

I Exact 0 mode of fermions removed by using apbc.

I Test in 2D. Looked at Q = 4 and Q = 16 theories



Scalar eigenvalues vs lattice spacing
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Figure: Q = 4 model β = 1, U(2)

Sending L→∞ holding t = g2β2 fixed. See aB → 0 as required.



Pfaffian phase vs lattice spacing
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Figure: Q = 4 model β = 1, U(2)

Phase fluctuations go to zero in continuum limit



Q-supersymmetry

Q=4, UH2L, BMASS=1.0, PBC=-1
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Figure: Q = 4 model β = 1.0, U(2)

Exact Q Ward identity. SUSY OK as a→ 0



Gauge-gravity dualities

Original AdS/CFT correspondence:

Quantum N = 4 YM dual Semiclassical strings +D3-branes

In practice most tests/applications: YM taken at large (N, λ) -
classical solutions SUGRA in AdS5

Many other examples eg. Low temperature thermodyamics of
dimensionally reduced theory

N = 4 SYM in D = (p + 1) and Semiclassical black Dp-branes

Explore using lattice actions ...



Black holes from YM

p = 0 case: black holes in type II SUGRA – dual to large N low T

N = 4 on circle (with T .Wiseman, Imperial)
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Energy vs temperature for SYMQM system+BH prediction using
semiclassical Bekenstein-Hawking.

Single deconfined phase.



Black Strings

p = 1 case: black string in type II SUGRA – dual to large N

N = 4 on 2D torus (sizes rx and rτ )

I Depending on rx , rτ black string solution may become less
stable than black hole. Supergravity analysis predicts
rτ < cr2x , rx , rτ →∞ (c unknown)
Gregory-LaFlamme transition in gravity

I In dual gauge theory see thermal phase transition associated

with breaking of center symmetry - order parameter spatial
Polyakov line.

work with A. Joseph and T. Wiseman



Black hole-black string phase transition

Boundary between confined/deconfined phases corresponds to
1
N |Ps | = 0.5
Good agreement with supergravity - blue curve - rτ = cr2x with
fitted c ∼ 3.5 .
Good agreement with high T dim reduction - red curve



Conclusions

I Lattice SUSY is a fascinating field with potential to play a
role both in LHC physics and string theory.

I In some cases a fraction of SUSY can be preserved on lattice -
using discretizations of topologically twisted theories.

I Renormalization of these theories strongly constrained by
exact lattice symmetries including exact SUSY.

I Simulation of these theories feasible at strong coupling using
same tools as for lattice QCD.

I New lattice theories may offer new insight into gauge-gravity
dualities and problems in quantum gravity.
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M . Ünsal, Phys. Rep 2009 (arXiv:0903:4881)

I J. Giedt, Int. J. Mod. Phys.A21:3039-3094,2006.

I Very many others ... (Damgaard, Sugino, d’Adda, Kawamoto,
Matsuura,Wipf,...) More than 50 papers in last few years

I Didn’t talk about: sigma models, theories with fundamentals,
susy breaking


