- ▶ Discussed theoretical formulation of Q = 4 SYM in 2D and Q = 16 SYM in 4D
- Outstanding theoretical issue: lattice actions preserve 1 SUSY what fine tuning needed for restoration of full SUSY in continuum limit ?
 - Info from (lattice) p theory renormalization ...
 - Non-perturbative checks
- Simulations:
 - Pfaffian complex sign/phase problem ?
 - Scalar infrared divergences ?

- Lattice theory we have described certainly yields N = 4 in naive continuum limit
- But what about quantum corrections ? 15 SUSYs broken at O(a). Naively they are restored a → 0. Seen that loop effects can change this
- What are possible dangerous counter terms that can arise ?
- Lattice symmetries tell us what may happen in principle. Here:
 - Gauge invariance
 - ► *Q*-symmetry.
 - Point group symmetry eg. S^5 for A_4^*
 - Exact fermionic shift symmetry $\eta \rightarrow \eta + \epsilon I$

Analysis of counter terms

- Care only about *relevant* counter terms use dimensional analysis to rank terms [Ψ] = 3/2, [U] = 1. Only care about [O] ≤ 4
- Q symmetry implies all terns are Q-exact.
- ► So $O \sim Q(\Psi U U)$ ([Q] = 1/2) (no $Q(\Psi U)$ ops)
- O must correspond to (trace of) closed loop for G.I
- S⁵ symmetry operator should be invariant under permutation of indices.

Find:

$$S = \sum \operatorname{Tr} \left[\alpha_1 \chi_{ab} \mathcal{F}_{ab} + \alpha_2 \eta \overline{\mathcal{D}}_a^{(-)} \mathcal{U}_a - \frac{1}{2} \alpha_3 \eta d - \alpha_4 S_{\text{closed}} \right]$$

- Only marginal ops *already in classical action* possible.
- Spreading fermions over links has a bonus: generic fermion bilinears not allowed by gauge invariance - fermions remain massless.
- Log fine tuning needed if $\alpha_1 \neq \alpha_2 \neq \alpha_3 \neq \alpha_4$
- S⁵ PGS guarantees twisted SO(4)' restored as a → 0. Any relevant SO(4) breaking counter term would break S⁵.
- Absence of scalar masses can be confirmed by computing effective potential Γ_{eff}(U^c)

Classical vacua

constant commuting complex matrices $\mathcal{U}_{\mu}^{\rm classical}$

- Expand to quadratic order $U_{\mu}(x) = I + A_{\mu}^{\text{classical}} + a_{\mu}(x)$.
- ► Fix gauge using function \$\overline{D}_{\mu}^{(-)}a_{\mu} + h.c = 0\$. Choose Feynman parameter so that bosonic action looks like

$$S_B = \overline{a}_{
u} \overline{\mathcal{D}}_{\mu}^{(-)} \mathcal{D}_{\mu}^{(+)} a_{
u}$$

- ▶ Integrate results in factor $\det^{-5}\left(\overline{\mathcal{D}}_{\mu}^{(-)}\mathcal{D}_{\mu}^{(+)}\right)$
- ► Here D dnotes covariant difference operator in background A^{classical}

Fermionic contribution

Ghosts: Faddev-Popov term is just

$$\det\left(\overline{\mathcal{D}}_{\mu}^{(-)}\mathcal{D}_{\mu}^{(+)}\right)$$

- Fermion operator takes the same form as in bare action with the rule that all discrete covariant difference ops are too be taken in the background field.
- One can also show (use fact that all covariant difference ops in general background commute)

$$\left(Pf(M_F) \stackrel{Maple}{=} \det^4 \left(\overline{\mathcal{D}}_{\mu}^{(-)} \mathcal{D}_{\mu}^{(+)} \right) \right)$$

• Thus $Z_{\rm pbc} = 1$ and $\Gamma[A^{\rm classical}] = 0$ at 1-loop.

- Actually this result remains true to all orders! Since S ~ βQΛ can show that ∂ln Z / ∂β =< QΛ >= 0 and hence Z has no dependence on β. Can be computed exactly as β → ∞ - semiclassical limit (1-loop)
- Thus classical moduli space not lifted due to quantum corrections! So scalars naturally massless in lattice theory exact SUSY indeed protects theory and reduces fine tuning.

- Thus we learn on the basis of lattice symmetries and the topological nature of Q that quantum corrections can at most log shift the coefficients of the separate Q invariant kinetic terms that make up the classical action.
- In principle restoration of additional 15 susys can depend on differential flows in these wave function renormalizations due to quantum effects.
- To proceed further we must do an explicit 1-loop calc using lattice p theory

Lattice rules for A_4^* lattice (Feynman gauge):

- Boson propagator $\langle \overline{\mathcal{A}}_{a}^{C}(k)\mathcal{A}_{b}^{D}(-k) \rangle = \frac{1}{\hat{k}^{2}}\delta_{ab}\delta^{CD}$ with $\hat{k}^{2} = 4\sum_{a}\sin^{2}(k_{a}/2)$
- Fermion propagator M⁻¹_{KD}(k) = ¹/_{k²}M_{KD}(k) with M(k) a 16 × 16 block matrix acting on (η, ψ_a, χ_{ab})
- Vertices: $\psi \eta$, $\psi \chi$ and $\chi \chi$.
- Only 4 Feynman graphs needed to find 1-loop contributions to fermion self-energies (determines 3 out of 4 coeffs)
- One additional bosonic propagator for remaining coeff.

Example: chi-chi propagator

Compute all amputated fermion self energies. Final result:

• Fermion self-energies vanish for $p \rightarrow 0$. Zero mass.

•
$$\Sigma_i^{(2)} = 1 + Ag^2 \ln \mu a$$
. Single A for all fermion Σ_i .

Why so simple ?

- The lattice diagrams are just log divergent like their continuum counterparts.
- Furthermore, these divergences are the same as the continuum theory since they originate in regions of k space where the lattice vertices and propagators approach their continuum counterparts.
- But in the continuum theory the coefficients of the different self -energies must be same - since that theory has full supersymmetry which would be violated if the different twisted components picked up different corrections.
- Remember that twisting (in the continuum) is just a change of variables....
- Conclusion: the lattice theory must also (at 1 loop) inherit this structure and hence also require no fine tuning to approach a continuum limit with full susy.

- Perturbative studies indicate that scalars remain massless to all orders in g
- Potential log tuning needed to handle wave function renormalization but at 1-loop even this is not present. So no tuning needed aty weak coupling
- ► Actually same args indicate that β(g) = 0 at 1-loop !in lattice theory!
- ► To understand situation for strong coupling need simulations. Measure Ward identities corresponding to broken SUSYs as $\beta \rightarrow \infty$. Are they restored ? If not can I tune bare α_i by hand to zero them out ?

- After integration over the twisted fermions we find a Pfaffian Pf(M(U)). In general this is *complex*. Monte Carlo requires a positive definite weight. Thus we perform simulations using (M[†]M)^{1/4}. Fold phase into observables using reweighting. If fluctuations in phase large fails famous sign problem.
- 2. Non-trivial moduli space: (scalar) fields can run off to infinite values as long as $[B_{\mu}, B_{\nu}] = 0$. Survives quantum corrections. Stability of simulations ?

- RHMC algorithm (as for lattice QCD)
- Need C++ objects for twisted fermions, (complexified) gauge fields.
- A₄^{*} can be deformed to hypercubic lattice plus body diagonal index fields on latter (simple)
- Can parallelize with e.g. MPI or use GPUs

Simulate U(N) theories. Observe that trace mode of scalars is indeed unstable. Regulate using mass term

$$\Delta S = \mu^2 \sum \left[\frac{1}{N} \operatorname{Tr} \left(U_a^{\dagger} U_a \right) - 1
ight]^2$$

As a \rightarrow 0 $U^{\dagger}U \rightarrow e^{2B} \sim I + 2B$ so gives mass to trace mode only

- Since sector decouples susy is naively ok as $a \rightarrow 0 \dots$
- Exact 0 mode of fermions removed by using apbc.
- Test in 2D. Looked at Q = 4 and Q = 16 theories

Scalar eigenvalues vs lattice spacing

Sending $L \to \infty$ holding $t = g^2 \beta^2$ fixed. See $aB \to 0$ as required.

Pfaffian phase vs lattice spacing

Phase fluctuations go to zero in continuum limit

< 🗇 🕨

≣ >

Exact ${\mathcal Q}$ Ward identity. SUSY OK as $a \to 0$

Original AdS/CFT correspondence:

Quantum $\mathcal{N} = 4$ YM dual Semiclassical strings +D3-branes

In practice most tests/applications: YM taken at large (N, λ) - classical solutions SUGRA in AdS_5

Many other examples eg. Low temperature thermodyamics of dimensionally reduced theory

 $\mathcal{N} = 4$ SYM in D = (p+1) and Semiclassical black Dp-branes

回下 ・ヨト ・ヨト

Explore using lattice actions ...

p = 0 case: black holes in type II SUGRA – dual to large N low T $\mathcal{N} = 4$ on circle (with T .Wiseman, Imperial)

Energy vs temperature for SYMQM system+BH prediction using semiclassical Bekenstein-Hawking. Single deconfined phase.

p = 1 case: black string in type II SUGRA – dual to large N $\mathcal{N} = 4$ on 2D torus (sizes r_x and r_τ)

- Depending on r_x , r_τ black string solution may become less stable than black hole. Supergravity analysis predicts $r_\tau < cr_x^2$, r_x , $r_\tau \to \infty$ (c unknown) Gregory-LaFlamme transition in gravity
- In dual gauge theory see thermal phase transition associated with breaking of center symmetry - order parameter spatial Polyakov line.

work with A. Joseph and T. Wiseman

Black hole-black string phase transition

Boundary between confined/deconfined phases corresponds to $\frac{1}{N}|P_s| = 0.5$ Good agreement with supergravity - blue curve - $r_{\tau} = cr_x^2$ with fitted $c \sim 3.5$. Good agreement with high T dim reduction - red curve

- Lattice SUSY is a fascinating field with potential to play a role both in LHC physics and string theory.
- In some cases a fraction of SUSY can be preserved on lattice using discretizations of topologically twisted theories.
- Renormalization of these theories strongly constrained by exact lattice symmetries including exact SUSY.
- Simulation of these theories feasible at strong coupling using same tools as for lattice QCD.
- New lattice theories may offer new insight into gauge-gravity dualities and problems in quantum gravity.

See these recent reviews and references therein.

- Exact lattice supersymmetry, S. Catterall, D. B. Kaplan and M. Ünsal, Phys. Rep 2009 (arXiv:0903:4881)
- ► J. Giedt, Int. J. Mod. Phys.A21:3039-3094,2006.
- Very many others ... (Damgaard, Sugino, d'Adda, Kawamoto, Matsuura,Wipf,...) More than 50 papers in last few years
- Didn't talk about: sigma models, theories with fundamentals, susy breaking