Summary lecture 2

- WZ model: Exact lattice SUSY in 2D
- Appearance of twisted/KD fermions and relation to staggered.
- Today: Gauge symmetry $\mathcal{N}=2$ SYM in 2D
- Lattice formulation of $\mathcal{N}=4$ SYM in 4D

Ingredients of twisted gauge theory in 2D

- Expect to have twisted fermions $\left(\eta, \psi_{\mu}, \chi_{12}\right)$
- Gauge field $A_{\mu}, \mu=1 \ldots 2$
- 2 scalar fields B^{1}, B^{2} - needed for SUSY to match dof.
- \mathcal{Q} exact action with $\mathcal{Q}^{2}=0$
- But also twisting procedure acts on all fields charged under flavor group .. not just fermions.
- Specifically, scalars B are vectors under flavor. Expect they will transform as vectors under twisted rotation group

$2 \mathrm{D} \mathcal{N}=2 \mathrm{YM}$

- Fields: gauge field, 2 scalars, 2 Majorana fermions (dim red of $\mathcal{N}=1 \mathrm{YM}$ in 4D)
- Twist: consider 2 fermions as matrix

$$
\lambda_{\alpha}^{i} \rightarrow \Psi_{\alpha \beta}
$$

Expand:

$$
\Psi=\frac{\eta}{2} I+\psi_{\mu} \gamma_{\mu}+\chi_{12} \gamma_{1} \gamma_{2}
$$

- $\eta, \psi_{\mu}, \chi_{\mu \nu}$ twisted fermions
- Scalar fermion - scalar supersymmetry \mathcal{Q} with $\mathcal{Q}^{2}=0$

Twisted action and SUSY

Twisted form of action (adjoint fields with AH generators)

$$
\begin{aligned}
& S=\frac{1}{g^{2}} \mathcal{Q} \int \operatorname{Tr}\left(\chi_{\mu \nu} \mathcal{F}_{\mu \nu}+\eta\left[\overline{\mathcal{D}}_{\mu}, \mathcal{D}_{\mu}\right]-\frac{1}{2} \eta d\right) \\
& \mathcal{Q} \mathcal{A}_{\mu}=\psi_{\mu} \\
& \mathcal{Q} \psi_{\mu}=0 \\
& \mathcal{Q} \overline{\mathcal{A}}_{\mu}=0 \\
& \mathcal{Q} \chi_{\mu \nu}=-\overline{\mathcal{F}}_{\mu \nu} \\
& \mathcal{Q} \eta=d \\
& \mathcal{Q} d=0
\end{aligned}
$$

Note: complexified gauge field $\mathcal{A}_{\mu}=A_{\mu}+i B_{\mu}, \mathcal{F}_{\mu \nu}(\mathcal{A})$

Untwisting

\mathcal{Q}-variation, integrate d :
$S=\frac{1}{g^{2}} \int \operatorname{Tr}\left(-\overline{\mathcal{F}}_{\mu \nu} \mathcal{F}_{\mu \nu}+\frac{1}{2}\left[\overline{\mathcal{D}}_{\mu}, \mathcal{D}_{\mu}\right]^{2}-\chi_{\mu \nu} \mathcal{D}_{[\mu} \psi_{\nu]}-\eta \overline{\mathcal{D}}_{\mu} \psi_{\mu}\right)$
Rewrite as

$$
S=\frac{1}{g^{2}} \int \operatorname{Tr}\left(-F_{\mu \nu}^{2}+2 B_{\mu} D_{\nu} D_{\nu} B_{\mu}-\left[B_{\mu}, B_{\nu}\right]^{2}+L_{F}\right)
$$

where

$$
L_{F}=\left(\begin{array}{ll}
\chi_{12} & \frac{\eta}{2}
\end{array}\right)\left(\begin{array}{cc}
-D_{2}-i B_{2} & D_{1}+i B_{1} \\
D_{1}-i B_{1} & D_{2}-i B_{2}
\end{array}\right)\binom{\psi_{1}}{\psi_{2}}
$$

Relation to conventional SYM model

Homework 5. Use the decomposition

$$
\begin{aligned}
\operatorname{Re} \mathcal{F}_{\mu \nu} & =F_{\mu \nu}-\left[B_{\mu}, B_{\nu}\right]^{2} \\
\operatorname{Im} \mathcal{F}_{\mu \nu} & =D_{[\mu} B_{\nu]}
\end{aligned}
$$

together with integration by parts to show that the bosonic action $\mathcal{F}^{\dagger} \mathcal{F}$ is indeed the usual one corresponding to a real YM term plus scalar kinetic and quartic terms
(D denotes the usual covariant derivative wrt to A)

2D Lattice construction

- Bosons: $\mathcal{A}_{\mu}(x) \rightarrow \mathcal{U}_{\mu}(n)$. Complexified Wilson links.
- Fermions: η on sites, ψ_{μ} same links as \mathcal{U}_{μ}, χ_{12} diagonal links.

$$
\begin{array}{rll}
\eta(\mathbf{x}) & \rightarrow G(\mathbf{x}) \eta(\mathbf{x}) \mathbf{G}^{\dagger}(\mathbf{x}) & \\
\psi_{\mu}(\mathbf{x}) & \rightarrow G(\mathbf{x}) \psi_{\mu}(\mathbf{x}) \mathbf{G}^{\dagger}(\mathbf{x}+\mu) & \\
\chi_{\mu \nu}(\mathbf{x}) & \rightarrow G(\mathbf{x}+\mu+\nu) \chi_{\mu \nu}(\mathbf{x}) \mathbf{G}^{\dagger}(\mathbf{x}) \quad \text { Orientation ensures G.I } \\
\mathcal{U}_{\mu}(\mathbf{x}) & \rightarrow G(\mathbf{x}) \mathcal{U}_{\mu}(\mathbf{x}) \mathbf{G}^{\dagger}(\mathbf{x}+\mu) &
\end{array}
$$

Derivative technology

- Nilpotent SUSY transformations same as in continuum except $\mathcal{A}_{\mu} \rightarrow \mathcal{U}_{\mu}$
- Derivatives replaced with covariant differences compatible with lattice G.I eg.

$$
\mathcal{D}_{\mu}^{(+)} \mathcal{U}_{\nu}=\mathcal{F}_{\mu \nu}=\mathcal{U}_{\mu}(x) \mathcal{U}_{\nu}(x+\mu)-\mathcal{U}_{\nu}(x) \mathcal{U}_{\mu}(x+\nu)
$$

eg:

$$
\mathcal{U}_{\mu}(x) \mathcal{U}_{\nu}(x+\mu) \rightarrow G(x) \mathcal{U}_{\mu}(x) G(x+\mu)^{\dagger} G(x+\mu) \mathcal{U}_{\nu}(x+\mu) G(x+\mu+\nu)^{\dagger}
$$

transforms as lattice 2-form
Contract with $\chi_{\mu \nu}$ - gauge invariant loop.

Continuing

- Commutator term $\left[\overline{\mathcal{D}}_{\mu}, \mathcal{D}_{\mu}\right]$ on lattice becomes

$$
\overline{\mathcal{D}}_{\mu}^{(-)} \mathcal{U}_{\mu}(x)=\mathcal{U}_{\mu}(x) \overline{\mathcal{U}}_{\mu}(x)-\overline{\mathcal{U}}_{\mu}(x-\mu) \mathcal{U}_{\mu}(x-\mu)
$$

Transforms like site field - hence $\operatorname{Tr}\left(\eta \overline{\mathcal{D}}_{\mu}^{(-)} \mathcal{U}_{\mu}\right)$ G.I

- Technology for defining gauge covariant difference ops generalizes to arbitrary lattice p forms and lattice derivs in case of adjoint fields (Aratyn et al)
- All become shifted commutators. For $\mathcal{U}=1$ curl-like derivs become forward difference ops. Divergence-like derivs replaced by backward derivs. Ensures no fermion doubling (Rabin, Joos, Becher)

Geometrical discretization

- Any SYM with $\mathcal{Q} \geq 2^{D}$ supercharges can be twisted and discretized this way.
- Lattice theories inherit 1 or more exact SUSYs
- Local, gauge invariant and free of fermion doubling.
- May also be derived by orbifolding a supersymmetric matrix theory - unique lattice theories ?
- Can be used as non-perturbative definition of theory .. discuss later for discussion of how to take limit $a \rightarrow 0$ (fine tuning question)

Twisting in D dimensions

- Consider (extended) SUSY theories possessing additional flavor (R) symmetries.
- Twist: decompose fields under $G=\operatorname{Diag}\left(S O_{\text {Lorentz }}(D) \times S O_{R}(D)\right)$. Can only twist when flavor symmetry large enough ..
- Fermions: spinors under both factors - become integer spin after twisting.
- Scalars transform as vectors under R-symmetry - vectors after twisting.
- Gauge fields remain vectors - combine with scalars to make complex gauge fields. Still just $U(N)$ gauge symmetry.

Important: flat space: just a change of variable

Putting it all together

- Discussed 1D, 2D with and without gauge invariance
- How a non-abelian theory in 4D ?
- Constrained ... if we want to preserve at least 1 SUSY on lattice - need to have theory whose flavor (R) symmetry group contains $\mathrm{SO}(\mathrm{D})$ - Euclidean Lorentz group.
- In $\mathrm{D}=4$: only $\mathcal{N}=4$ picked out.
- Alternatively: A Kähler-Dirac field in 4D has
$1+4+6+4+1=16$ components. Four Majorana fermions

Twisted continuum $\mathcal{N}=4$ SYM

- $\mathcal{N}=4$ contains 4 gauge fields A_{μ}, 4 Majorana fermions, and six scalars $(\mathcal{N}=4$ arises by dim red of $\mathcal{N}=1$ in 10 dims$)$
- Appropriate twist due to Marcus. $S O(4)^{\prime}=S O_{R}(4) \times S O_{\text {rot }}(4)$
- After twisting expect:
- Kähler-Dirac field $\left(\eta, \psi_{\mu}, \chi_{\mu \nu}, \theta_{\mu \nu \lambda}, \kappa_{1234}\right)$
- Gauge field $A_{\mu}, \mu=1 \ldots 4$
- 6 scalars decompose as 1 vector B_{μ} and 2 scalars $(S O(6) \rightarrow S O(4) \times S O(2))$

5D description

Can package these fields more compactly as dimensional reduction of 5D theory!

- 16 fermions: $\Psi=\left(\eta, \psi_{m}, \chi_{m n}\right), m, n=1 \ldots 5$
- 10 bosons as 5 complex gauge fields $\mathcal{A}_{m}, m=1 \ldots 5$

Remarkably twisted action:

$$
\begin{gathered}
S=\mathcal{Q} \int\left(\chi_{a b} F_{a b}+\eta\left[\overline{\mathcal{D}}_{a}, \mathcal{D}_{a}\right]-1 / 2 \eta d\right)+S_{\text {closed }} \\
(\text { Almost }) \text { same as 2D example ! } \\
S_{\text {closed }}=\int \epsilon_{a b c d e} \chi_{a b} \overline{\mathcal{D}}_{c} \chi_{d e} \\
\mathcal{Q} S_{\text {closed }}=0 \text { by Bianchi }
\end{gathered}
$$

Lattice $\mathcal{N}=4$ theory

\[

\]

- Fields live on links of A_{4}^{*} lattice - 5 basis vectors correspond to vectors from center of hypertetrahedron to vertices.
- $\eta \quad x \rightarrow x$
- $\psi_{a} \quad x \rightarrow x+\mu_{a}$
- $\chi_{a b} \quad x+\mu_{a}+\mu_{b} \rightarrow x$
- All fields transform like links: $X_{p} \rightarrow G(x) X_{p} G^{\dagger}(x+p)$
- Single exact lattice SUSY $\mathcal{Q}^{2}=0$

Lattice action

$$
\begin{aligned}
& S=\beta\left(S_{1}+S_{2}\right) \\
& S_{1}=\sum_{\mathbf{x}} \operatorname{Tr}\left(\mathcal{F}_{a b}^{\dagger} \mathcal{F}_{a b}+\frac{1}{2}\left(\overline{\mathcal{D}}_{a}^{(-)} \mathcal{U}_{a}\right)^{2}\right. \\
&\left.-\chi_{a b} \mathcal{D}_{[a}^{(+)} \psi_{b]}-\eta \overline{\mathcal{D}}_{a}^{(-)} \psi_{a}\right) \\
& S_{2}=-\frac{1}{2} \sum_{\mathbf{x}} \operatorname{Tr}_{{ }_{a b c d e}} \chi_{d e}\left(\mathbf{x}+\mu_{\mathbf{a}}+\mu_{\mathbf{b}}+\mu_{\mathbf{c}}\right) \overline{\mathcal{D}}_{\mathbf{c}}^{(-)} \chi\left(\mathbf{x}+\mu_{\mathbf{c}}\right)
\end{aligned}
$$

Comments

- Bosonic action is just Wilson plaquette if $\mathcal{U}_{a}^{\dagger} \mathcal{U}_{a}=1$. (Homework problem. Use formula for \mathcal{F} to see this explicitly)
- Thus no boson doubling. Hence by exact SUSY no fermion doubling.
- $S_{\text {closed }}$ supersymmetric ? Remarkably, Bianchi identity holds also on lattice!
(Another homework problem: show that $\left.\epsilon_{a b c d e} \mathcal{D}_{c}^{(+)} \mathcal{D}_{b}^{(+)} \mathcal{U}_{a}=0\right)$
- Gauge invariance of $S_{\text {closed }}$ term follows from fact that sum over 5 distinct (via epsilon symbol) basis vectors form closed loop. And sum over 5 basis links yields zero.

Some words about A_{4}^{*} lattice

- In 2D - A_{2}^{*} - triangular lattice
- Deformation of : hypercubic lattice plus body diagonal
- Key feature: 5 basis vectors which are therefore linearly dependent $\sum_{a}^{5} \mathbf{e}_{a}=0$
- High point group symmetry - important for counter term structure ...
- Fermions inhabit the A_{4}^{*} lattice plus additional 'face links' $\mathbf{e}_{a}+\mathbf{e}_{b}$.
- Introduce lattice with half lattice spacing. Can map fermion action onto that of reduced staggered quarks

Outstanding questions

Lattice theories are:
local, gauge invariant, doubler free and invariant under one SUSY
Two questions:

- Is rotational symmetry restored as $a \rightarrow 0$?
- What about restoration of full SUSY ?

Must understand how lattice theory renormalizes ...
Two approaches

- Examine at 1-loop using p. theory
- Attempt a non-perturbative tuning by measuring broken SUSY Ward identities

