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Motivation

I Motivation: SUSY theories - improved U.V behavior. Light
Higgs natural in SUSY ...

I More tractable analytically – toy models for understanding
confinement and chiral symmetry breaking

I Key component of string theory – remove tachyon of bosonic
string.

I AdSCFT – super YM theories may tell us about gravity ..

I Realistic theories must break SUSY nonperturbatively at low
energies – lattice.
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Problems with lattice SUSY

I Extension of Poincare symmetry: {Q,Q} = γ.P. Broken by
lattice.

I Equivalently: Leibniz rule does not hold for difference
operators

I Fermion doubling - nB 6= nF . Wilson terms break SUSY.

I Consequence: Naively discretized classical action breaks
SUSY. Effective action picks up (many) SUSY violating
operators. Generically some of these relevant.

I SUSY violating couplings generated via divergent Feynman
graphs. Couplings must be fine tuned as a→ 0. Unnatural
and impractical.
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Solutions

I Just do it.
I Certain simple cases eg. N = 1 SYM in 4D – single

counterterm using Wilson fermions. Or use DWF where gluino
mass is zero as Ls →∞

I For D < 4 finite number of divergences occuring at small
numbers of loops - calc using (lattice) perturbation theory and
subtract with counter terms

I For special class of theories can find novel discretizations
which preserve one or more SUSY’s exactly. Discretize a
reformulation of continuum theory in twisted variables.
Connections to topological field theory, orbifold constructions,
....
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Plan

I Motivation/Problems.

I Witten’s SUSYQM. Naive discretization. Fine tuning.
Modification to maintain exact SUSY.

I Nicolai maps. Topological/twisted field theory interpretation.

I Lifting to 2D. Wess Zumino models. Twisting in 2D.
Kähler-Dirac fermions.

I Gauge theories. Example: N = 2 SYM.

I Lifting to 4D. N = 4 SYM.

I Simulations: tools and problems
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Witten’s SUSYQM

S =

∫
dt

1

2

(
dφ

dt

)2

+
1

2
P ′(φ)2 +

1

2
ψi

dψi

dt
+ iψ1ψ2P ′′(φ)

Invariant under 2 SUSYs:

δAφ = ψ1εA δBφ = ψ2εB
δAψ1 = dφ

dt εA δBψ1 = −iP ′εB
δAψ2 = iP ′εA δBψ2 = dφ

dt εB

Homework problem 1: verify these invariances
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Continuum variation

Find:

δAS =

∫
dt iε

(
P ′

dψ2

dt
+

dφ

dt
P ′′ψ2

)
Need to integrate by parts and use Leibniz to get zero. Problem
for lattice.
Notice that δ2A = δ2B = d

dt acting on any field.

Example of SUSY algebra since H = d
dt .
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Naive discretization

Place fields on sites of (periodic) 1D lattice. Replace
∫

dt →∑
t a

and replace d
dt by symmetric difference (fermion doubling ?)

a∆S fx =
1

2
(f (x + a)− f (x − a))

Now find:

δASL =
∑
t

iε
(

P ′∆Sψ2 + ∆SφP ′′ψ2

)
Leibniz rule does not hold for lattice difference ops - susy breaking
term O(a).
Naively goes away as a→ 0.
But radiative quantum corrections can change that ...
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Aside on fermion doubling

I On lattice replace fermion derivative by suitable finite
difference op.

I Natural choice ∂ → ∆s where
∆s f (x) = 1

2 (f (x + a)− f (x − a))

I In k-space: sin(ka)=0 for ka = 0 and ka = π - doubler mode

I Additional mode does not decouple in continuum limit.

I Add (irrelevant) Wilson op.
∆W f = −1

2 (f (x + a) + f (x − a)− 2f (x)) - in k space lifts
mass of additional modes to cut-off.

I Modify P ′ → P ′ + ∆Wφ
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Specific model

I Consider P ′ = mφ2 + gφ3

I Add Wilson mass term to P ′ - no doubles

I Action breaks both supersymmetries by terms O(a) (Leibniz
broken)

I Test restoration of SUSY by extracting boson and fermion
masses from 2pt functions and examining as a→ 0.

I See that SUSY is not restored even in QM (a finite theory in
continuum!) What is going on ?
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Boson/fermion masses - naive
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Figure: P ′ = mφ+ gφ3, m = 10.0, g = 100.0
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Radiative corrections

Points to note:

I Any Feynman graph which is convergent in U.V can be
discretized naively (Reisz theorem).

I Restrict attention to superficially divergent continuum graphs.

I In previous example only one of these. One loop fermion
contribution to boson mass.

I Homework Problem 2. Convince yourself of this!

I Notice in continuum this diagram is actually finite because of
additional symmetries - hence continuum theory is finite as
expected. Not true on lattice ...
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Radiative corrections II

Continuum:

Σcont = 6g

∫ π
a

−π
a

dp

2π

−ip + m

p2 + m2

Actually convergent (p → −p symmetry)

Σcont = 6g

(
1

π
tan−1

π

2ma

)
∼ 6g

(
1

2
+O(ma)

)
Lattice result is

Σlatt =
6g

L

L−1∑
k=0

−2i sin (πkL )e i(
πk
L
) + ma

sin2 (πkL ) + (ma)2
→ 6g !
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Intuitive argument

Consider using lattice derivative:

∆s +
r

2
mW

Doubler mass M = m + 2r/a. Consider limit where r << 1. Then
ma << Ma << 1. Lattice integral is approx:

Σ =

∫ π
a

π
a

dp

2π

m

p2 + m2
+

∫ π
a

π
a

dp

2π

M

p2 + M2

=
1

π

(
tan−1

π

2ma
+ tan−1

π

2Ma

)
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Radiative corrections III

I If take a→ 0 after doing sum get twice the result!

I Would be doublers have mass O(1/a) and make an additional
contribution to integral (don’t decouple from small loops)

I Lattice p theory can be different from continuum!

I Restore SUSY need to add counterterm

SL → SL +
∑
t

3gφ2

SUSY broken but regained now as a→ 0. Example of general
approach: naive discretizations of SUSY actions require fine
tuning of counterterms to achieve SUSY continuum limit.
For superrenormalizable theories can be done in (lattice) p
theory.
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Masses - counterterm corrected

Figure: P ′ = mφ+ gφ3, m = 10.0, g = 100.0
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Exact SUSY

For SUSYQM can do better. Find combination of SUSY’s that can
be preserved on lattice.
Notice that:

δASL = −iδB
∑
x

P ′∆Sφ δBSL = iδA
∑
x

P ′∆Sφ

Thus

(δA + iδB) SL = − (δA + iδB) O where O =
∑
t

P ′∆Sφ

So can find δSexact of form

Sexact
L =

∑
t

1

2
(∆Sφ)2 +

1

2
P ′

2
+ P ′∆Sφ+ ψ(∆S + P ′′)ψ
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Exact SUSY II

Where
ψ = 1√

2
(ψ1 + iψ2)

ψ = 1√
2

(ψ1 − iψ2)

and the new supersymmetry acts:

δφ = ψε
δψ = 0

δψ = (∆Sφ+ P ′(φ))ε

Notice: δ2 = 0 now. No translations.

Sb
L =

∑
x

(
∆Sφ+ P ′(φ)

)2
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Masses - exact SUSY
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Figure: Boson and fermion masses vs lattice spacing for supersymmetric
action
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Exact SUSY action

I Exact lattice SUSY possible with SB = 1
2N2 where

N = ∆Sφ+ P ′ = ∆−φ+ P ′local
I Corresponding fermion operator ∆− + P ′′

I Notice that additional operator that is added to action is a
total derivative in continuum. Needed to restore single SUSY
on lattice

I This structure not a coincidence ...
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Nicolai map

Partition function:

Z =

∫
DφDψDψ e−S =

∫
Dφ det

(
∆− + P ′′

)
e−SB

Change variables to N = ∆−φ+ P ′(φ) Jacobian is det
(
∂Ni
∂φj

)
.

Cancels fermionic determinant!

Z =

∫ ∏
i

dNie
−N 2

i

Details of P(φ) disappeared! Z is a topological invariant. Simple
argument: < SB >= 1

2Nd.o.f
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Ward identities

Classical invariance of action replaced by relationships between
correlation functions of form

< δO >= 0

Choosing O = ψxφy we find

< ψxψy > + < (∆−φ+ P ′)xφy >= 0

Expect other SUSY δ̄ = 1√
2

(δA − iδB) broken.

Restored in continuum limit without fine tuning.
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More on 2nd SUSY ?

I Replace N → −∆+φ+ P ′(φ).

I Interchanges ψ, ψ and leaves fermion det unchanged.

I Bosonic action changes by term that is total deriv in
continuum. Nonzero on lattice.

I However existence of 1 exact susy prohibits appearance of
counter term gφ2 in effective action.

I Thus 2nd susy restored automatically as a→ 0 or equivalently
long distances ..
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Ward identities II
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Figure: m = 10.0, g = 800.0, from Kaestner et al.
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Topological field theory

Notice that δ2 = 0 for all fields using EOM.
Can render symmetry nilpotent off-shell by introducing auxiliary
field

Qφ = ψ
Qψ = 0

Qψ = B
QB = 0

Note: absorbed ε into variation δ and renamed it Q. Also

Sb
L =

∑
x

−B(∆−φ+ P ′)− 1

2
B2
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TQFT II

Remarkably:

SL = Q
∑
x

ψ(−∆−φ− P ′ − 1

2
B)

The action is Q-exact. Like BRST ?
Consider bosonic model with S(φ) = 0. Invariant under φ→ φ+ ε
–topological symmetry.
Quantize: pick gauge function N = 0 and introduce Fadeev-Popov
factor

Z =

∫
Dφ det (

∂N
∂φ

)e−
1
2α
N 2(φ)

Interpret ψ,ψ as ghost fields (α = 1) recover our model!
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Moral of the story

I Fine tuning problems can be handled in D < 4 by perturbative
lattice calcs.

I In some cases can do better – find combinations of the
supersymmetries in (some) SUSY models which are nilpotent.
No immediate conflict with SUSY algebra.

I (Twisted) reformulations are closely connected to construction
of TQFT. Actions are Q-exact. Easy to translate to lattice.

I Help protect lattice theory from SUSY violating ops.
Additional (broken) SUSYs now regained without fine tuning
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