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» Motivation: SUSY theories - improved U.V behavior. Light
Higgs natural in SUSY ...

» More tractable analytically — toy models for understanding
confinement and chiral symmetry breaking

» Key component of string theory — remove tachyon of bosonic
string.
» AdSCFT — super YM theories may tell us about gravity ..

» Realistic theories must break SUSY nonperturbatively at low
energies — lattice.
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Problems with lattice SUSY

» Extension of Poincare symmetry: {Q, Q} = ~.P. Broken by
lattice.

» Equivalently: Leibniz rule does not hold for difference
operators

» Fermion doubling - ng # ng. Wilson terms break SUSY.

» Consequence: Naively discretized classical action breaks
SUSY. Effective action picks up (many) SUSY violating
operators. Generically some of these relevant.

» SUSY violating couplings generated via divergent Feynman
graphs. Couplings must be fine tuned as a — 0. Unnatural
and impractical.
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> Just do it.
» Certain simple cases eg. N'=1 SYM in 4D - single
counterterm using Wilson fermions. Or use DWF where gluino
mass is zero as Ly — 00
» For D < 4 finite number of divergences occuring at small
numbers of loops - calc using (lattice) perturbation theory and
subtract with counter terms
» For special class of theories can find novel discretizations
which preserve one or more SUSY's exactly. Discretize a
reformulation of continuum theory in twisted variables.
Connections to topological field theory, orbifold constructions,
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» Motivation/Problems.

> Witten's SUSYQM. Naive discretization. Fine tuning.
Modification to maintain exact SUSY.

> Nicolai maps. Topological/twisted field theory interpretation.

» Lifting to 2D. Wess Zumino models. Twisting in 2D.
Kahler-Dirac fermions.

» Gauge theories. Example: A/ =2 SYM.
> Lifting to 4D. N = 4 SYM.

» Simulations: tools and problems
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Witten's SUSYQM

2
5= fo5(G) + 2P @R guG ')

Invariant under 2 SUSYs:

dap = trea Ogp = oep
Sahr = en gy = —iPleg
Saa = iPlea dpin = e

Homework problem 1: verify these invariances
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Continuum variation

Find: J
54S = / dt ie (P’ ¢2 dfp”zpz)

Need to integrate by parts and use Leibniz to get zero. Problem
for lattice.

Notice that (5 53 = H acting on any field.

Example of SUSY algebra since H = %.

Simon Catterall Introduction to Lattice Supersymmetry



Naive discretization

Place fields on sites of (periodic) 1D lattice. Replace [dt — >, a
and replace % by symmetric difference (fermion doubling ?)

al’f, = %(f(x +a) — f(x — a))

Now find:

6aSL =Y i€ (P'ASyn + A6P )
t

Leibniz rule does not hold for lattice difference ops - susy breaking
term O(a).

Naively goes away as a — 0.

But radiative quantum corrections can change that ...
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Aside on fermion doubling

» On lattice replace fermion derivative by suitable finite
difference op.

» Natural choice 0 — A® where

A®f(x) = % (f(x+a)—f(x—a))
> In k-space: sin(ka)=0 for ka = 0 and ka = 7 - doubler mode
» Additional mode does not decouple in continuum limit.

» Add (irrelevant) Wilson op.
Awf = —3(f(x+a)+ f(x —a) — 2f(x)) - in k space lifts
mass of additional modes to cut-off.

> Modify P/ — P/ + Ay¢
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Specific model

» Consider P’ = m¢? + g
» Add Wilson mass term to P’ - no doubles

» Action breaks both supersymmetries by terms O(a) (Leibniz
broken)

> Test restoration of SUSY by extracting boson and fermion
masses from 2pt functions and examining as a — 0.

» See that SUSY is not restored even in QM (a finite theory in
continuum!) What is going on ?
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Boson /fermion masses - naive
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Figure: P' = m¢ + g¢®, m = 10.0, g = 100.0
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Radiative corrections

Points to note:

> Any Feynman graph which is convergent in U.V can be
discretized naively (Reisz theorem).

» Restrict attention to superficially divergent continuum graphs.

> In previous example only one of these. One loop fermion
contribution to boson mass.

» Homework Problem 2. Convince yourself of this!

» Notice in continuum this diagram is actually finite because of
additional symmetries - hence continuum theory is finite as
expected. Not true on lattice ...
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Radiative corrections Il

Continuum: .
a2 dp—ip+m
ZCont:6g/7r27_‘_,)2_‘_’,”2

Actually convergent (p — —p symmetry)

1 4T 1
zcont = 6g (71' tan ! 2ma> ~ 6g (2 + (’)(ma))

Lattice result is

6g = —2/sm k)
Liatt = — Lk
L Z: sin? (ZX) 4 (ma)?
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Intuitive argument

Consider using lattice derivative:
r
AS —+ EmW

Doubler mass M = m + 2r/a. Consider limit where r << 1. Then
ma << Ma << 1. Lattice integral is approx:

s _ /de m +/§dp M
 Jx 2w p? + m? = 27 p? + M?2

= 1 (tan_1 T + tan_1 L)
oo 2ma 2Ma
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Radiative corrections |l

> If take a — 0 after doing sum get twice the result!

» Would be doublers have mass O(1/a) and make an additional
contribution to integral (don't decouple from small loops)

» Lattice p theory can be different from continuum!

» Restore SUSY need to add counterterm

SL— S+ 389
t

SUSY broken but regained now as a — 0. Example of general
approach: naive discretizations of SUSY actions require fine
tuning of counterterms to achieve SUSY continuum limit.

For superrenormalizable theories can be done in (lattice) p
theory.
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Masses - counterterm corrected
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Figure: P’ = mo + g¢3, m = 10.0, g = 100.0
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Exact SUSY

For SUSYQM can do better. Find combination of SUSY's that can
be preserved on lattice.
Notice that:

0aSL=—i0g Y P'N°¢ 58S =i6a ) PA%¢

Thus

(6a+i08)SL = —(6a+ids) O  where O =) P'A%p
t
So can find §Sexact of form

1 1 _
Sixact:ZE(AS¢)2+§P/2+P/AS¢+w(AS+P//)¢
t
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Exact SUSY Il

Where

¥ %(% + i)
o= 5 — i)
and the new supersymmetry acts:
op = e
oYy = 0

S = (A% + P'(¢))e
Notice: 2 = 0 now. No translations.

st=3" (8% +P@)

X
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Masses - exact SUSY
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Figure: Boson and fermion masses vs lattice spacing for supersymmetric
action
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Exact SUSY action

» Exact lattice SUSY possible with Sg = %Nz where
N = AS¢+ P = A_¢+ Pllocal

» Corresponding fermion operator A~ + P”

» Notice that additional operator that is added to action is a
total derivative in continuum. Needed to restore single SUSY
on lattice

» This structure not a coincidence ...
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Partition function:

7= / D¢pDyDY e~ = / Do det (A + P") e>"

Change variables to N' = A~ ¢ + P’(¢) Jacobian is det (%@f)
Cancels fermionic determinant!

7= /Hd/\/,-eW

Details of P(¢) disappeared! Z is a topological invariant. Simple
argument: < Sg >= $Ngof

Simon Catterall Introduction to Lattice Supersymmetry



Classical invariance of action replaced by relationships between
correlation functions of form

<00>=0
Choosing O = v, ¢, we find
<Pby >+ < (A p+ P)xgp, >=0

Expect other SUSY 6 = \%(5,4 — idp) broken.
Restored in continuum limit without fine tuning.
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More on 2nd SUSY ?

» Replace N = —At¢+ P'(¢).
» Interchanges 1, 1) and leaves fermion det unchanged.

» Bosonic action changes by term that is total deriv in
continuum. Nonzero on lattice.

» However existence of 1 exact susy prohibits appearance of
counter term g¢? in effective action.

> Thus 2nd susy restored automatically as a — 0 or equivalently
long distances ..
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Ward identities |l
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Figure: m = 10.0, g = 800.0, from Kaestner et al.

Simon Catterall

ion to Lattice Supersymmetry



Topological field theory

Notice that %2 = 0 for all fields using EOM.
Can render symmetry nilpotent off-shell by introducing auxiliary

field
Q = ¢
Q = 0
Qv = B
QB = 0

Note: absorbed € into variation 4 and renamed it Q. Also

1
SE=) -B(A ¢+ P)- 552
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TQFT Il

Remarkably:
— _ 1
SL= Q;M—A ¢—P — 53)

The action is Q-exact. Like BRST ?

Consider bosonic model with §(¢) = 0. Invariant under ¢ — ¢ + ¢
—topological symmetry.

Quantize: pick gauge function A/ = 0 and introduce Fadeev-Popov
factor

Z:/Dqs det(%/(\b/)eixm(@

Interpret 1,70 as ghost fields (aw = 1) recover our model!
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Moral of the story

» Fine tuning problems can be handled in D < 4 by perturbative
lattice calcs.

> In some cases can do better — find combinations of the
supersymmetries in (some) SUSY models which are nilpotent.
No immediate conflict with SUSY algebra.

» (Twisted) reformulations are closely connected to construction
of TQFT. Actions are Q-exact. Easy to translate to lattice.

» Help protect lattice theory from SUSY violating ops.
Additional (broken) SUSYs now regained without fine tuning

Simon Catterall Introduction to Lattice Supersymmetry



