HADRONS AND HADRONIC MATTER IN CHIRAL QUARK MODELS

David Blaschke

Institute for Theoretical Physics, University of Wroclaw, Poland Bogoliubov Laboratory for Theoretical Physics, JINR Dubna, Russia

Contents:

- I. Introduction and basic results
- II. Order parameters, gap equations, phase diagram
- III. Mesonic fluctuations, Bethe-Salpeter equation, Mott effect
- IV. Hadron resonance gas, chemical freeze-out, QCD phase transition
- V. Signals of the QGP, electromagnetic probes etc.

Lattice QCD, hadron structure and hadronic matter; Dubna, 05.-16.09.2011

HADRONS AND HADRONIC MATTER IN CHIRAL QUARK MODELS

David Blaschke

Institute for Theoretical Physics, University of Wroclaw, Poland Bogoliubov Laboratory for Theoretical Physics, JINR Dubna, Russia

Main motivations for effective chiral quark models of $\mathbf{QCD}|_{T,\mu}$:

- Qualitative and quantitative interpretation and understanding of lattice QCD results
- Extension from finite-T/low- μ to low-T/high- μ region of the QCD phase diagram
- Application to HIC energy scan programs (RHIC, SPS, NICA, CBM) and compact stars
- Calculation of in-medium processes, prediction of QGP signals

Lattice QCD, hadron structure and hadronic matter; Dubna, 05.-16.09.2011

MANY PARTICLE SYSTEMS & QUANTUM FIELD THEORY

System

society

plasmas

animals, plants

nuclear matter

quark matter

PARTITION FUNCTION FOR QUANTUM CHROMODYNAMICS (QCD)

• Partition function as a Path Integral (imaginary time $\tau = i t$, $0 \le \tau \le \beta = 1/T$) \Rightarrow PS I

$$Z[T, V, \mu] = \int \mathcal{D}\bar{\psi}\mathcal{D}\psi\mathcal{D}A \exp\left\{-\int_{0}^{\beta} d\tau \int_{V} d^{3}x \,\mathcal{L}_{QCD}(\psi, \bar{\psi}, A)\right\}$$

• QCD Lagrangian, non-Abelian gluon field strength: $F^a_{\mu\nu}(A) = \partial_{\mu}A^a\nu - \partial_{\nu}A^a_{\mu} + g f^{abc}[A^b_{\mu}, A^c_{\nu}]$

$$\mathcal{L}_{QCD}(\psi,\bar{\psi},A) = \bar{\psi}[i\gamma^{\mu}(\partial_{\mu} - igA_{\mu}) - m - \gamma^{0}\mu]\psi - \frac{1}{4}F^{a}_{\mu\nu}(A)F^{a,\mu\nu}(A)$$

• Numerical evaluation: Lattice gauge theory simulations (hotQCD, Wuppertal-Budapest)

- Equation of state: $\varepsilon(T) = -\partial \ln Z[T, V, \mu] / \partial \beta$
- Phase transition at $T_c = 170 \text{ MeV}$
- Problem: Interpretation ?

$$\varepsilon/T^4 = \frac{\pi^2}{30}N_\pi \sim 1$$
 (ideal pion gas)
 $\varepsilon/T^4 = \frac{\pi^2}{30}(N_G + \frac{7}{8}N_Q) \sim 15.6$ (quarks and gluons)

 \implies Borsanyi et al., arxiv:1007.2580

PHASEDIAGRAM OF QCD: LATTICE SIMULATIONS

PHASEDIAGRAM OF QCD: LATTICE SIMULATIONS

LATTICE QCD EOS VS. RESONANCE GAS

Ideal hadron gas mixture ...

$$\varepsilon(T) = \sum_{i=\pi,\rho,\dots} g_i \int \frac{d^3p}{(2\pi)^3} \frac{\sqrt{p^2 + m_i^2}}{\exp(\sqrt{p^2 + m_i^2}/T) + \delta_i}$$

missing degrees of freedom below and above T_c

Resonance gas ... Karsch, Redlich, Tawfik, Eur.Phys.J. C29, 549 (2003)

$$\varepsilon(T) = \sum_{i=\pi,\rho,\dots} \varepsilon_i(T) + \sum_{r=M,B} g_r \int dm \ \rho(m) \int \frac{d^3p}{(2\pi)^3} \frac{\sqrt{p^2 + m^2}}{\exp(\sqrt{p^2 + m^2}/T) + \delta_i}$$

 $\rho(m) \sim m^\beta \exp(m/T_H)$... Hagedorn mass spektrum

too many degrees of freedom above T_c

LATTICE QCD EOS AND MOTT-HAGEDORN GAS

$$\varepsilon_{\rm R}(T, \{\mu_j\}) = \sum_{i=\pi, K, \dots} \varepsilon_i(T, \{\mu_i\}) + \sum_{r=M, B} g_r \int_{m_r} dm \int ds \ \rho(m) A(s, m; T) \int \frac{d^3 p}{(2\pi)^3} \frac{\sqrt{p^2 + s}}{\exp\left(\frac{\sqrt{p^2 + s} - \mu_r}{T}\right) + \delta_r}$$

Hagedorn mass spectrum: $\rho(m)$

Spectral function for heavy resonances:

$$A(s,m;T) = N_s \frac{m\Gamma(T)}{(s-m^2)^2 + m^2\Gamma^2(T)}$$

Ansatz with Mott effect at $T = T_H = 192$ MeV:

$$\Gamma(T) = B\Theta(T - T_H) \left(\frac{m}{T_H}\right)^{2.5} \left(\frac{T}{T_H}\right)^6 \exp\left(\frac{m}{T_H}\right)$$

No width below T_H : Hagedorn resonance gas Apparent phase transition at $T_c \sim 160 \text{ MeV}$

Blaschke & Bugaev, Fizika B13, 491 (2004) Prog. Part. Nucl. Phys. 53, 197 (2004) Blaschke & Yudichev (2006)

HADRONIC CORRELATIONS ABOVE T_c : LATTICE QCD

Hadron correlators $G_H \Longrightarrow$ spectral densities $\rho_H(\omega, T)$

$$G_H(\tau, T) = \int_0^\infty d\omega \rho_H(\omega, T) \frac{\cosh(\omega(\tau - T/2))}{\sinh(\omega/2T)}$$

Maximum entropy method Karsch et al. PLB 530 (2002) 147

Result:

Correlations persist above T_c ! Karsch et al. NPA 715 (2003)

 J/ψ and η_c survive up to $T \sim 1.6T_c$ Asakawa, Hatsuda; PRL 92 (2004) 012001

HADRONIC CORRELATIONS IN THE PHASEDIAGRAM OF QCD

HADRONIC CORRELATIONS IN THE PHASEDIAGRAM OF QCD

PHASEDIAGRAM OF QCD: CHIRAL MODEL FIELD THEORIES

CHIRAL MODEL FIELD THEORY FOR QUARK MATTER

• Partition function as a Path Integral (imaginary time $\tau = i t$)

$$Z[T, V, \mu] = \int \mathcal{D}\bar{\psi}\mathcal{D}\psi \exp\left\{-\int_{V}^{\beta} d\tau \int_{V} d^{3}x [\bar{\psi}(i\gamma^{\mu}\partial_{\mu} - m - \gamma^{0}\mu)\psi - \mathcal{L}_{\text{int}}]\right\}$$

• Current-current interaction (4-Fermion coupling)

$$\mathcal{L}_{\text{int}} = \sum_{M=\pi,\sigma,\dots} G_M (\bar{\psi}\Gamma_M \psi)^2 + \sum_D G_D (\bar{\psi}^C \Gamma_D \psi)^2$$

Bosonization (Hubbard-Stratonovich Transformation)

$$Z[T, V, \mu] = \int \mathcal{D}M_M \mathcal{D}\Delta_D^{\dagger} \mathcal{D}\Delta_D \exp\left\{-\sum_M \frac{M_M^2}{4G_M} - \sum_D \frac{|\Delta_D|^2}{4G_D} + \frac{1}{2} \operatorname{Tr} \ln S^{-1}[\{M_M\}, \{\Delta_D\}]\right\}$$

- Collective (stochastic) fields: Mesons (M_M) and Diquarks (Δ_D)
- Systematic evaluation: Mean fields + Fluctuations
 - Mean-field approximation: order parameters for phase transitions (gap equations)
 - Lowest order fluctuations: hadronic correlations (bound & scattering states)
 - -Higher order fluctuations: hadron-hadron interactions

NJL MODEL FOR NEUTRAL 3-FLAVOR QUARK MATTER

Thermodynamic Potential $\Omega(T,\mu) = -T \ln Z[T,\mu]$

$$\Omega(T,\mu) = \frac{\phi_u^2 + \phi_d^2 + \phi_s^2}{8G_S} + \frac{|\Delta_{ud}|^2 + |\Delta_{us}|^2 + |\Delta_{ds}|^2}{4G_D} - T\sum_n \int \frac{d^3p}{(2\pi)^3} \frac{1}{2} \operatorname{Tr} \ln\left(\frac{1}{T}S^{-1}(i\omega_n,\vec{p})\right) + \Omega_e - \Omega_0.$$

InverseNambu – GorkovPropagator $S^{-1}(i\omega_n, \vec{p}) = \begin{bmatrix} \gamma_\mu p^\mu - M(\vec{p}) + \mu \gamma^0 & \widehat{\Delta}(\vec{p}) \\ \widehat{\Delta}^{\dagger}(\vec{p}) & \gamma_\mu p^\mu - M(\vec{p}) - \mu \gamma^0 \end{bmatrix},$

$$\widehat{\Delta}(\vec{p}) = i\gamma_5 \epsilon_{\alpha\beta\gamma} \epsilon_{ijk} \Delta_{k\gamma} g(\vec{p}) \; ; \; \Delta_{k\gamma} = 2G_D \langle \bar{q}_{i\alpha} i\gamma_5 \epsilon_{\alpha\beta\gamma} \epsilon_{ijk} g(\vec{q}) q_{j\beta}^C \rangle.$$

Fermion Determinant (Tr In D = In det D): $\operatorname{Indet}[\beta S^{-1}(i\omega_n, \vec{p})] = 2\sum_{a=1}^{18} \ln\{\beta^2[\omega_n^2 + \lambda_a(\vec{p})^2]\}$.

Result for the thermodynamic Potential (Meanfield approximation)

$$\Omega(T,\mu) = \frac{\phi_u^2 + \phi_d^2 + \phi_s^2}{8G_S} + \frac{|\Delta_{ud}|^2 + |\Delta_{us}|^2 + |\Delta_{ds}|^2}{4G_D} - \int \frac{d^3p}{(2\pi)^3} \sum_{a=1}^{18} \left[\lambda_a + 2T \ln\left(1 + e^{-\lambda_a/T}\right)\right] + \Omega_e - \Omega_0.$$

Color and electric charge neutrality constraints: $n_Q = n_8 = n_3 = 0$, $n_i = -\partial \Omega / \partial \mu_i = 0$, Equations of state: $P = -\Omega$, etc.

MOTT EFFECT: NJL MODEL PRIMER

Meson propagator: RPA-type resummation,

 $D_h(P) \sim [1 - G\Pi_h(P)]^{-1},$

e.g. Pion Pseudoscalar polarization fuction ($m_q = m_{\bar{q}} = m$)

$$\Pi_{\pi}(\bar{M}_{\pi},\vec{0}) = -\frac{N_c}{8\pi^2} \left\{ 2A(m) - (M_{\pi} - i\Gamma_{\pi}/2)^2 B(M_{\pi},\vec{0};m,m) \right\}$$

Finite temperature (Matsubara)

$$A(m) = -4 \int_{\Lambda} dp \frac{p^2}{\sqrt{E(p)}} \tanh(E(p)/2T) \text{ real}$$

$$B(P_0, \vec{0}; m, m) = 8 \int_{\Lambda} dp \frac{p^2 \tanh(E(p)/2T)}{E(p)[4E^2(p) - P_0^2]} \text{ real for } T < T_c$$

Complex polarization function \Rightarrow Breit-Wigner type spectral function

Elaschke, Burau, Volkov, Yudichev: EPJA 11 (2001) 319

Charm meson sector, see Gottfried, Klevansky, PLB 286 (1992) 221

Blaschke, Burau, Kalinovsky, Yudichev, Prog. Theor. Phys. Suppl. **149** (2003) 182

MOTT EFFECT: HEAVY MESON GENERALIZATION

$$\Pi_{D}(P^{2};T) = 4I_{1}^{\Lambda}(m_{u};T) + 4I_{1}^{\Lambda}(m_{c};T) + 4\left(P^{2} - (m_{u} - m_{c})^{2}\right)I_{2}^{(\lambda_{P},\Lambda)}(P^{2}, m_{u}, m_{c};T),$$

$$I_{2}^{(\lambda_{M},\Lambda)}(M, m_{u}, m_{c};T) = \frac{N_{c}}{8\pi^{2}M}\int_{\lambda_{P}}^{\Lambda} dp \ p^{2} \left[\frac{\widetilde{E}_{uc} \tanh(E_{u}/2T)}{E_{u}(E_{u}^{2} - \widetilde{E}_{uc}^{2})} + \frac{\widetilde{E}_{cu} \tanh(E_{c}/2T)}{E_{c}(E_{c}^{2} - \widetilde{E}_{cu}^{2})}\right],$$

$$\widetilde{E}_{ij} = (m_{i}^{2} - m_{j}^{2} + M^{2})/2M,$$
Infrared cutoff $(M_{\pi}(T_{c}) = 2m_{u}(T_{c}) = 2m_{u}^{c})$

$$\lambda_{P} = [m_{u}^{c}\theta(m_{u} - m_{u}^{c}) + m_{u}\theta(m_{u}^{c} - m_{u})] \times \theta(P^{2} - 4(m_{u}^{c})^{2})\sqrt{P^{2}/(2m_{u}^{c})^{2} - 1},$$
Meson spectral properties (mass M, width Γ)
$$G \operatorname{ReII}(P^{2} = M^{2};T) = 1$$

$$\Gamma(T) = \operatorname{ImI}(M^{2};T)/[M(T) \operatorname{ReII'}(M^{2};T)]$$

$$\leftarrow \operatorname{Blaschke, Burau, Kalinovsky, Yudichev, Prog. Theor. Phys. Suppl. 149 (2003) 182.$$

MOTT EFFECT: NJL MODEL PRIMER

RPA-type resummation of quark-antiquark scattering in the mesonic channel M,

defines Meson propagator

$$D_M(P_0, P; T) \sim [1 - J_M(P_0, P; T)]^{-1},$$

by the complex polarization function J_M \rightarrow Breit-Wigner type spectral function

$$\mathcal{A}_{M}(P_{0}, P; T) = \frac{1}{\pi} \text{Im} D_{M}(P_{0}, P; T)$$

$$\sim \frac{1}{\pi} \frac{\Gamma_{M}(T) M_{M}(T)}{(s - M_{M}^{2}(T))^{2} + \Gamma_{M}^{2}(T) M_{M}^{2}(T)}$$

For $T < T_{Mott}$: $\Gamma \to 0$, i.e. bound state $\mathcal{A}_M(P_0, P; T) = \delta(s - M_M^2(T))$

Light meson sector:

Blaschke, Burau, Volkov, Yudichev: EPJA 11 (2001) 319

Charm meson sector: Blaschke, Burau, Kalinovsky, Yudichev, Prog. Theor. Phys. Suppl. **149** (2003) 182

HEAVY QUARK POTENTIAL FROM LATTICE QCD

Blaschke, Kaczmarek, Laermann, Yudichev, EPJC 43, 81 (2005); [hep-ph/0505053]

Color-singlet free energy F_1 in quenched QCD

$$\langle \operatorname{Tr}[L(0)L^{\dagger}(r)] \rangle = \exp[-F_1(r)/T]$$

Long- and short- range parts

$$F_1(r,T) = F_{1,\text{long}}(r,T) + V_{1,\text{short}}(r)e^{-(\mu(T)r)^2}$$

$$F_{1,\text{long}}(r,T) = \text{'screened' confinement pot.}$$
$$V_{1,\text{short}}(r) = -\frac{4}{3} \frac{\alpha(r)}{r}, \ \alpha(r) = \text{running coupl. (1)}$$

Quarkonium ($Q\bar{Q}$)	1S	1P ₁	2S
Charmonium ($c\bar{c}$)	J/ψ(3097)	χ_{c1} (3510)	ψ^\prime (3686)
Bottomonium ($b\bar{b}$)	Ύ (9460)	χ_{b1} (9892)	Ύ′ (10023)

 \implies Lecture Petreczky

Schroedinger Eqn: bound & scattering states

Quarkonia bound states at finite T:

$$[-\nabla^2/m_Q + V_{\text{eff}}(r,T)]\psi(r,T) = E_B(T)\psi(r,T)$$

Binding energy vanishes $E_B(T_{Mott}) = 0$: Mott effect Scattering states:

$$\frac{d\delta_S(k,r,T)}{dr} = -\frac{m_Q V_{\text{eff}}}{k} \sin(kr + \delta_S(k,r,T))$$

Levinson theorem:

Phase shift at threshold jumps by π when bound state \rightarrow resonance at $T = T_{Mott}$ Blaschke, Kaczmarek, Laermann, Yudichev EPJC 43, 81 (2005); [hep-ph/0505053]

T-MATRIX APPROACH TO QUARKONIA IN THE QGP

Riek & Rapp, PRC 82 (2010); arxiv:1005.0769

Open question: Wich potential to use?

$$\begin{array}{rcl} U &=& F-T \frac{dF}{dT} \\ V(r;T) &=& F(r;T)-F(\infty,T) \mbox{ or } F \leftrightarrow U \end{array}$$

Result: J/ψ good resonance below 1.5 T_c for F, and 2.5 T_c for U

Lattice:Kaczmarek et al. (left), Petreczky et al. (right)

PHASEDIAGRAM OF QCD: HEAVY-ION COLLISIONS

PHASEDIAGRAM: FREEZE-OUT IN HEAVY-ION COLLISIONS

Statistical model describes composition of hadron yields in Heavy-Ion Collisions with few freeze-out parameters.

$$\ln Z[T, V, \{\mu\}] = \pm V \sum_{i} \frac{g_i}{2\pi^2} \int_0^\infty dp \ p^2 \ln[1 \pm \lambda_i \exp(-\beta \varepsilon_i(p))]$$
$$\lambda_i(T, \{\mu\}) = \exp[\beta(\mu_B B_i + \mu_S S_i + \mu_Q Q_i)]$$

Braun-Munzinger, Redlich, Stachel, in *QGP III* (2003)

PHASEDIAGRAM: FREEZE-OUT IN HEAVY-ION COLLISIONS

Statistical model describes composition of hadron yields in Heavy-Ion Collisions with few freeze-out parameters.

$$\ln Z[T, V, \{\mu\}] = \pm V \sum_{i} \frac{g_i}{2\pi^2} \int_0^\infty dp \ p^2 \ln[1 \pm \lambda_i \exp(-\beta \varepsilon_i(p))]$$
$$\lambda_i(T, \{\mu\}) = \exp[\beta(\mu_B B_i + \mu_S S_i + \mu_Q Q_i)]$$

Braun-Munzinger, Redlich, Stachel, in *QGP III* (2003)

PHASEDIAGRAM: FREEZE-OUT IN HEAVY-ION COLLISIONS (II)

Statistical model describes composition of hadron yields in Heavy-Ion Collisions with few freeze-out parameters.

$$\ln Z[T, V, \{\mu\}] = \pm V \sum_{i} \frac{g_i}{2\pi^2} \int_0^\infty dp \ p^2 \ln[1 \pm \lambda_i \exp(-\beta \varepsilon_i(p))]$$
$$\lambda_i(T, \{\mu\}) = \exp[\beta(\mu_B B_i + \mu_S S_i + \mu_Q Q_i)]$$

Braun-Munzinger, Redlich, Stachel, in *QGP III* (2003)

PHASEDIAGRAM: FREEZE-OUT IN HEAVY-ION COLLISIONS (III)

Strange MatterHorn (Pisarski)

PHASEDIAGRAM: FREEZE-OUT IN HEAVY-ION COLLISIONS (III)

Baryon \rightarrow Meson Dominance

PHASEDIAGRAM: FREEZE-OUT IN HEAVY-ION COLLISIONS (IV)

Baryon \rightarrow Meson Dominance

PHASEDIAGRAM: FREEZE-OUT IN HEAVY-ION COLLISIONS (V)

Andronic et al., arxiv:0911.4806; NPA (2010)

A SNAPSHOP OF THE SQGP

Horowitz et al. PRD (1985), D.B. et al. PLB (1985), Röpke, Blaschke, Schulz, PRD (1986) Thoma,[hep-ph/0509154] Gelman et al., PRC 74 (2006)

- Strong correlations present: hadronic spectral functions above T_c (lattice QCD)
- Finite width due to rearrangement collisions (higher order correlations)
- Liquid-like pair correlation function (nearest neighbor peak)

Quantum kinetic approach to J/ ψ breakup

Inverse lifetime for Charmonium states

$$\begin{aligned} \tau^{-1}(p) &= \Gamma(p) = \Sigma^{>}(p) \mp \Sigma^{<}(p) \\ \Sigma^{\stackrel{>}{<}}(p,\omega) &= \int_{p'} \int_{p_1} \int_{p_2} (2\pi)^4 \delta_{p,p';p_1,p_2} |\mathcal{M}|^2 G_{\pi}^{\stackrel{>}{>}}(p') \ G_{D_1}^{\stackrel{>}{<}}(p_1) \ G_{D_2}^{\stackrel{>}{<}}(p_2) \\ G_h^{>}(p) &= [1 \pm f_h(p)] A_h(p) \text{ and } G_h^{<}(p) = f_h(p) A_h(p) \\ \tau^{-1}(p) &= \int \frac{d^3 \mathbf{p}'}{(2\pi)^3} \int ds' \quad f_{\pi}(\mathbf{p}',s') \ A_{\pi}(s') v_{\text{rel}} \ \sigma^*(s) \end{aligned}$$

In-medium breakup cross section

$$\sigma^*(s) = \int ds_1 \ ds_2 \ A_{D_1}(s_1) \ A_{D_2}(s_2) \ \sigma(s; s_1, s_2)$$

Medium effects in spectral functions A_h and $\sigma(s; s_1, s_2)$

$$A_h(s) = \frac{1}{\pi} \frac{\Gamma_h(T) \ M_h(T)}{(s - M_h^2(T))^2 + \Gamma_h^2(T) M_h^2(T)} \longrightarrow \delta(s - M_h^2)$$

resonance \Leftarrow Mott-effect \Leftarrow bound state

Blaschke et al., Heavy Ion Phys. 18 (2003) 49

"Anomalous" J/ ψ suppression in Mott-Hagedorn gas

Survival probability for J/ψ

$$S(E_T)/S_N(E_T) = \exp\left[-\int_{t_0}^{t_f} dt \ \tau^{-1}(n(t))\right]$$

Threshold: Mott effect for hadrons Blaschke and Bugaev, Prog. Part. Nucl. Phys. 53 (2004) 197

In progress: full kinetics with gain processes (D-fusion), HIC simulation

LOW-MASS DILEPTON PRODUCTION IN HEAVY-ION COLLISIONS

Dilepton mass spectrum: NA60 experiment

PHASEDIAGRAM OF DEGENERATE QUARK MATTER

PHASEDIAGRAM OF DEGENERATE QUARK MATTER

NJL MODEL FOR NEUTRAL 3-FLAVOR QUARK MATTER

Thermodynamic Potential $\Omega(T,\mu) = -T \ln Z[T,\mu]$

$$\Omega(T,\mu) = \frac{\phi_u^2 + \phi_d^2 + \phi_s^2}{8G_S} + \frac{|\Delta_{ud}|^2 + |\Delta_{us}|^2 + |\Delta_{ds}|^2}{4G_D} - T\sum_n \int \frac{d^3p}{(2\pi)^3} \frac{1}{2} \operatorname{Tr} \ln\left(\frac{1}{T}S^{-1}(i\omega_n,\vec{p})\right) + \Omega_e - \Omega_0.$$

InverseNambu – GorkovPropagator $S^{-1}(i\omega_n, \vec{p}) = \begin{bmatrix} \gamma_\mu p^\mu - M(\vec{p}) + \mu \gamma^0 & \widehat{\Delta}(\vec{p}) \\ \widehat{\Delta}^{\dagger}(\vec{p}) & \gamma_\mu p^\mu - M(\vec{p}) - \mu \gamma^0 \end{bmatrix},$

$$\widehat{\Delta}(\vec{p}) = i\gamma_5 \epsilon_{\alpha\beta\gamma} \epsilon_{ijk} \Delta_{k\gamma} g(\vec{p}) \; ; \; \Delta_{k\gamma} = 2G_D \langle \bar{q}_{i\alpha} i\gamma_5 \epsilon_{\alpha\beta\gamma} \epsilon_{ijk} g(\vec{q}) q_{j\beta}^C \rangle.$$

Fermion Determinant (Tr In D = In det D): $\operatorname{Indet}[\beta S^{-1}(i\omega_n, \vec{p})] = 2\sum_{a=1}^{18} \ln\{\beta^2[\omega_n^2 + \lambda_a(\vec{p})^2]\}$.

Result for the thermodynamic Potential (Meanfield approximation)

$$\Omega(T,\mu) = \frac{\phi_u^2 + \phi_d^2 + \phi_s^2}{8G_S} + \frac{|\Delta_{ud}|^2 + |\Delta_{us}|^2 + |\Delta_{ds}|^2}{4G_D} - \int \frac{d^3p}{(2\pi)^3} \sum_{a=1}^{18} \left[\lambda_a + 2T \ln\left(1 + e^{-\lambda_a/T}\right)\right] + \Omega_e - \Omega_0.$$

Color and electric charge neutrality constraints: $n_Q = n_8 = n_3 = 0$, $n_i = -\partial \Omega / \partial \mu_i = 0$, Equations of state: $P = -\Omega$, etc.

QUARK MATTER IN COMPACT STARS

Rüster et al: PRD 72 (2005) 034004 Blaschke et al: PRD 72 (2005) 065020 Abuki, Kunihiro: NPA 768 (2006) 118 The phases are characterized by 3 gaps:

- NQ: $\Delta_{ud} = \Delta_{us} = \Delta_{ds} = 0$;
- NQ-2SC: $\Delta_{ud} \neq 0$, $\Delta_{us} = \Delta_{ds} = 0$, $0 \le \chi_{2SC} \le 1$;
- **2SC**: $\Delta_{ud} \neq 0$, $\Delta_{us} = \Delta_{ds} = 0$;
- uSC: $\Delta_{ud} \neq 0$, $\Delta_{us} \neq 0$, $\Delta_{ds} = 0$;
- CFL: $\Delta_{ud} \neq 0$, $\Delta_{ds} \neq 0$, $\Delta_{us} \neq 0$;

Result:

- Gapless phases only at high T,
- CFL only at high chemical potential,
- At T \leq 25-30 MeV: mixed NQ-2SC phase,
- Critical point (T_c , μ_c)=(48 MeV, 353 MeV),
- Strong coupling, $\eta = 1$, changes?.

Order Parameters: Masses and Diquark Gaps

Masses (M) and Diquark gaps (Δ) as a function of the chemical potential at T = 0

Left: Gap in excitation spectrum (T = 0) Right: 'Gapless' excitations (T = 60 MeV)

QUARK MATTER IN COMPACT STARS: MASS-RADIUS CONSTRAINT

Solve TOV Eqn. \rightarrow Hybrid stars fulfill constraint!

Klähn et al: Constraints on the high-density EoS ... PRC 74 (2006); [nucl-th/0602038], [astro-ph/0606524] Isolated Neutron star RX J1856: M-R constraint from thermal emission

• Low-mass X-ray binary 4U 1636: Mass constraint from ISCO obs.

QUARK MATTER IN COMPACT STARS: COOLING CONSTRAINT

Popov et al: Neutron star cooling constraints ... PRC 74, 025803 (2006); [nucl-th/0512098] Neutrinos carry energy off the star, Cooling evolution (schematic) by

$$\frac{dT(t)}{dt} = -\frac{\epsilon_{\gamma} + \sum_{j=Urca,\dots} \epsilon_{\nu}^{j}}{\sum_{i=q,e,\gamma,\dots} c_{V}^{i}}$$

• Most efficient process: Urca

• Exponential suppression by pairing gaps! $\Delta \sim 10...100 \text{ keV}$

SUMMARY

- Mott-Hagedorn model as alternative interpretation of Lattice data
- Microscopic formulation of the hadronic Mott effect within a chiral quark model
- Mesonic (hadronic) correlations important for $T > T_c$
- Resonance gas with Mott effect and transition to PNJL plasma
- Step-like enhancement of threshold processes due to Mott effect
- Reaction kinetics for strong correlations in plasmas applicable @ SPS and RHIC
- Finite density: critical endpoint, color superconductivity, quark matter in compact stars

LECTURE II: ORDER PARAMETERS AND PHASE DIAGRAM FOR NJL-LIKE MODELS

- Polyakov-loop Nambu–Jona-Lasinio (PNJL) model
- Nonlocal (P)NJL models (PL-DSE approach)