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Abstract

The role of deformations in physics and mathematics lead to the
deformation philosophy promoted in mathematical physics by Flato
since the 70’s, exemplified by deformation quantization and its
manifold avatars, including quantum groups and the “dual” aspect of
quantum spaces. Deforming Minkowski space-time and its symmetry
to anti de Sitter has significant physical consequences that we sketch
(e.g. singleton physics). We end by presenting an ongoing program in
which anti de Sitter would be quantized in some regions, speculating
that this might explain baryogenesis in a universe in accelerated
expansion.
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The Earth is not flat

Act 0. Antiquity (Mesopotamia, ancient Greece).
Flat disk floating in ocean, or Atlas. Similar physical assumption in (ancient) China (Φ).

Act I. Fifth century BC: Pythogoras, theoretical
astrophysicist. Pythagoras is often considered as the first mathematician; he and

his students believed that everything is related to mathematics. On aesthetic (and

democratic?) grounds he conjectured that all celestial bodies are spherical.

Act II. 3rd century BC: Aristotle, phenomenologist
astronomer. Travelers going south see southern constellations rise higher above

the horizon, and shadow of earth on moon during the partial phase of a lunar eclipse is

always circular: fits physical model of sphere for Earth.

Daniel Sternheimer Dubna ASMP, 8 September 2008
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Eratosthenes “Experiment”

Act III. ca. 240 BC:
Eratosthenes, “experimentalist”.
Chief librarian of the Great Library in Alexandria. At summer solstice (21 June), knew

that sun (practically) at vertical in Aswan and angle of 2π
50 in Alexandria, “about” (based

on estimated average daily speed of caravans of camels?) 5000 stadions “North;”

assuming sun is point at∞ (all not quite), by simple geometry got circumference of

252000 “stadions”, 1% or 16% off correct value (Egyptian or Greek stadion). Computed

distance to sun as 804,000 kstadions and distance to moon as 780 kstadions, using

data obtained during lunar eclipses, and measured tilt of Earth’s axis 11/83 of 2π.

In China, ca. same time, different context: measure similarly distance of earth to sun

assuming earth is flat (the prevailing belief there until 17th century).

Daniel Sternheimer Dubna ASMP, 8 September 2008
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Riemann’s Inaugural Lecture

Quotation from Section III, §3. 1854 [Nature 8, 14–17 (1873)]

See http://www.emis.de/classics/Riemann/

The questions about the infinitely great are for the interpretation of
nature useless questions.

But this is not the case with the questions
about the infinitely small. . . .
It seems that the empirical notions on which the metrical
determinations of space are founded, . . . , cease to be valid for the
infinitely small. We are therefore quite at liberty to suppose that the
metric relations of space in the infinitely small do not conform to the
hypotheses of geometry; and we ought in fact to suppose it, if we can
thereby obtain a simpler explanation of phenomena.

Daniel Sternheimer Dubna ASMP, 8 September 2008
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Relativity

Paradox coming from Michelson & Morley
experiment (1887) resolved in 1905 by Einstein with special theory of
relativity. Experimental need triggered theory. In modern language: Galilean

geometrical symmetry group of Newtonian mechanics (SO(3) · R3 · R4) is deformed, in

Gerstenhaber’s sense, to Poincaré group (SO(3, 1) · R4) of special relativity.

A

deformation parameter comes in, c−1, c being a new fundamental constant, velocity of

light in vacuum. Time has to be treated on same footing as space, expressed mathematically as a purely

imaginary dimension. A counterexample to Riemann’s conjecture about infinitely great. General relativity:
deform Minkowskian space-time with nonzero pseudo-Riemannian curvature.
E.g. constant curvature, de Sitter (> 0) or AdS4 (< 0).
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Flato’s deformation philosophy

Physical theories have domain of applicability

defined by the relevant distances, velocities, energies, etc. involved. The passage from

one domain (of distances, etc.) to another doesn’t happen in an uncontrolled way:

experimental phenomena appear that cause a paradox and contradict [Fermi quote]

accepted theories.

Eventually a new fundamental constant enters, the formalism is

modified: the attached structures (symmetries, observables, states, etc.) deform the

initial structure to a new structure which in the limit, when the new parameter goes to

zero, “contracts” to the previous formalism. The question is, in which category to seek

for deformations? Physics is conservative: if start with e.g. category of associative or

Lie algebras, tend to deform in same category. But there are important generalizations:

e.g. quantum groups are deformations of (some commutative) Hopf algebras.
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Philosophy?

Mathematics and physics are two communities separated by a
common language. In mathematics one starts with axioms and
uses logical deduction therefrom to obtain results that are absolute
truth in that framework. In physics one has to make approximations,
depending on the domain of applicability.
As in other areas, a quantitative change produces a qualitative
change. (So we should deform, not extrapolate!) Engels (i.a.) developed
that point and gave a series of examples in Science to illustrate the transformation of
quantitative change into qualitative change at critical points (see
http://www.marxists.de/science/mcgareng/engels1.htm).
That is also a problem in psychoanalysis that was tackled using Thom’s
catastrophe theory. Robert M. Galatzer-Levy, Qualitative Change from Quantitative Change:

Mathematical Catastrophe Theory in Relation to Psychoanalysis, J. Amer. Psychoanal. Assn., 26 (1978), 921–935.

Deformation theory is an algebraic mathematical way to deal
with that “catastrophic” situation, most relevant to physics.

Daniel Sternheimer Dubna ASMP, 8 September 2008
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Why, what, how

Why Quantization? In physics, experimental need.
In mathematics, because physicists need it (and gives nice maths).
In mathematical physics, deformation philosophy.
What is quantization? In (theoretical) physics, expression of
“quantum” phenomena appearing (usually) in the microworld.
In mathematics, passage from commutative to noncommutative.
In (our) mathematical physics, deformation quantization.

How do we quantize? In physics, correspondence principle.
For many mathematicians (Weyl, Berezin, Kostant, . . . ), functor
(between categories of algebras of “functions” on phase spaces and
of operators in Hilbert spaces; take physicists’ formulation for God’s
axiom; but physicists are neither God nor Jesus; stones. . . ). Even Witten. . .
In mathematical physics, deformation (of composition laws)

Daniel Sternheimer Dubna ASMP, 8 September 2008
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Classical Mechanics and around

What do we quantize?
Non trivial phase spaces→ Symplectic and Poisson manifolds.
Symplectic manifold:Differentiable manifold M with nondegenerate
closed 2-form ω on M. Necessarily dim M = 2n. Locally:
ω = ωijdx i ∧ dx j ; ωij = −ωji ; detωij 6= 0; Alt(∂iωjk ) = 0. And one can
find coordinates (qi ,pi ) so that ω is constant: ω =

∑i=n
i=1 dq i ∧ dpi .

Define πij = ω−1
ij , then {F ,G} = πij∂iF∂jG is a Poisson bracket, i.e.

the bracket {·, ·} : C∞(M)× C∞(M)→ C∞(M) is a skewsymmetric
({F ,G} = −{G,F}) bilinear map satisfying:
• Jacobi identity: {{F ,G},H}+ {{G,H},F}+ {{H,F},G} = 0
• Leibniz rule: {FG,H} = {F ,H}G + F{G,H}
Examples:1) R2n with ω =

∑i=n
i=1 dq i ∧ dpi ;

2) Cotangent bundle T ∗N, ω = dα, where α is the canonical one-form
on T ∗N (Locally, α = −pidq i )

Daniel Sternheimer Dubna ASMP, 8 September 2008
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Poisson manifolds

Poisson manifold: Differentiable manifold M, and
skewsymmetric contravariant 2-tensor (not necessarily
nondegenerate) π =

∑
i,j π

ij∂i ∧ ∂j (locally) such that
{F ,G} = i(π)(dF ∧ dG) =

∑
i,j π

ij∂iF ∧ ∂jG is a Poisson bracket.
Examples:
1) Symplectic manifolds (dω = 0 = [π, π] ≡ Jacobi identity)
2) Lie algebra with structure constants Ck

ij and πij =
∑

k xk Ck
ij .

3) π = X ∧ Y , where (X ,Y ) are two commuting vector fields on M.
Facts : Every Poisson manifold is “foliated” by symplectic manifolds.
If π is nondegenerate, then ωij = (πij )−1 is a symplectic form.

A Classical System is a Poisson manifold (M, π) with a
distinguished smooth function, the Hamiltonian H : M → R.

Daniel Sternheimer Dubna ASMP, 8 September 2008
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Quantization in physics

Planck and black body radiation [ca.
1900]. Bohr atom [1913]. Louis de Broglie [1924]: “wave mechanics”
(waves and particles are two manifestations of the same physical reality).

Traditional quantization
(Schrödinger, Heisenberg) of classical system (R2n, {·, ·},H): Hilbert space

H = L2(Rn) 3 ψ where acts “quantized” Hamiltonian H, energy levels Hψ = λψ, and

von Neumann representation of CCR. Define q̂α(f )(q) = qα f (q) and p̂β (f )(q) = −i~ ∂f (q)
∂qβ

for f

differentiable inH. Then (CCR) [p̂α, q̂β ] = i~δαβ I (α, β = 1, ..., n).

Daniel Sternheimer Dubna ASMP, 8 September 2008
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Orderings, Weyl, Wigner

The couple (q̂, p̂) quantizes the coordinates

(q, p). A polynomial classical Hamiltonian H is quantized once chosen an operator

ordering, e.g. (Weyl) complete symmetrization of p̂ and q̂. In general the quantization

on R2n of a function H(q, p) with inverse Fourier transform H̃(ξ, η) can be given by

(Hermann Weyl [1927] with weight $ = 1):

H 7→ H = Ω$(H) =
∫

R2n H̃(ξ, η)exp(i(p̂.ξ + q̂.η)/~)$(ξ, η)dnξdnη.
E. Wigner [1932] inverse H = (2π~)−nTr[Ω1(H) exp((ξ.p̂ + η.q̂)/i~)].
Ω1 defines an isomorphism of Hilbert spaces between L2(R2n) and Hilbert–Schmidt

operators on L2(Rn). Can extend e.g. to distributions.

Constrained systems e.g. constraints fj (p, q) = 0 (⇒ also algebraic varieties and

manifolds with corners): Dirac formalism [1950].
Daniel Sternheimer Dubna ASMP, 8 September 2008
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Dirac quote

“... One should examine closely even the elementary and the satisfactory features of our Quantum Mechanics and

criticize them and try to modify them, because there may still be faults in them. The only way in which one can hope

to proceed on those lines is by looking at the basic features of our present Quantum Theory from all possible points

of view. Two points of view may be mathematically equivalent and you may think for that reason if

you understand one of them you need not bother about the other and can neglect it.
But it may be that one point of view may suggest a future development which another
point does not suggest, and although in their present state the two points of view are equivalent they may
lead to different possibilities for the future. Therefore, I think that we cannot afford to neglect any possible point of
view for looking at Quantum Mechanics and in particular its relation to Classical Mechanics. Any point of view which
gives us any interesting feature and any novel idea should be closely examined to see whether they suggest any
modification or any way of developing the theory along new lines.

A point of view which naturally suggests itself is to examine just how close we can make the connection between

Classical and Quantum Mechanics. That is essentially a purely mathematical problem – how close can we make the

connection between an algebra of non-commutative variables and the ordinary algebra of commutative variables? In

both cases we can do addition, multiplication, division...” Dirac, The relation of Classical to Quantum Mechanics

(2nd Can. Math. Congress, Vancouver 1949). U.Toronto Press (1951) pp 10-31.

Daniel Sternheimer Dubna ASMP, 8 September 2008
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Classical↔ Quantum correspondence

The correspondence H 7→ Ω(H) is not an
algebra homomorphism, neither for ordinary product of functions nor
for the Poisson bracket P (“Van Hove theorem”). Take two functions u1 and
u2, then (Groenewold [1946], Moyal [1949]):
Ω−1

1 (Ω1(u1)Ω1(u2)) = u1u2 + i~
2 {u1, u2}+ O(~2), and similarly for bracket.

More precisely Ω1 maps into product and bracket of operators (resp.):
u1 ∗M u2 = exp(tP)(u1, u2) = u1u2 +

∑∞
r=1

t r

r !
P r (u1, u2) (with 2t = i~),

M(u1, u2) = t−1 sinh(tP)(u1, u2) = P(u1, u2) +
∑∞

r=1
t2r

(2r+1)!
P2r+1(u1, u2)

We recognize formulas for deformations of algebras.

Deformation quantization: forget the correspondence
principle Ω and work in an autonomous manner with
“functions” on phase spaces.

Daniel Sternheimer Dubna ASMP, 8 September 2008
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Some other mathematicians’ approaches

Geometric quantization (Kostant, Souriau). [1970’s. Mimic
correspondence principle for general phase spaces M. Look for generalized
Weyl map from functions on M:] Start with “prequantization” on L2(M) and
tries to halve the number of degrees of freedom using (complex, in general)
polarizations to get Lagrangian submanifold L of dimension half of that of M
and quantized observables as operators in L2(L). Fine for representation
theory (M coadjoint orbit, e.g. solvable group) but few observables can be
quantized (linear or maybe quadratic, preferred observables in def.q.).
Berezin quantization. (ca.1975). Quantization is an algorithm by which a
quantum system corresponds to a classical dynamical one, i.e. (roughly) is a
functor between a category of algebras of classical observables (on phase
space) and a category of algebras of operators (in Hilbert space).
Examples: Euclidean and Lobatchevsky planes, cylinder, torus and sphere,
Kähler manifolds and duals of Lie algebras. [Only (M, π), no H here.]

Daniel Sternheimer Dubna ASMP, 8 September 2008
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The framework

Poisson manifold (M, π), deformations of product of functions.
Inspired by deformation philosophy, based on Gerstenhaber’s deformation theory

[Flato, Lichnerowicz, Sternheimer; and Vey; mid 70’s] [Bayen, Flato, Fronsdal,

Lichnerowicz, Sternheimer, LMP ’77 & Ann. Phys. ’78]

• At = C∞(M)[[t ]], formal series in t with coefficients in C∞(M) = A.
Elements: f0 + tf1 + t2f2 + · · · (t formal parameter, not fixed scalar.)
• Star product ?t : At ×At → At ; f ?t g = fg +

∑
r≥1 t r Cr (f ,g)

- Cr are bidifferential operators null on constants: (1 ?t f = f ?t 1 = f ).
- ?t is associative and C1(f ,g)− C1(g, f ) = 2{f ,g}, so that
[f ,g]t ≡ 1

2t (f ?t g − g ?t f ) = {f ,g}+ O(t) is Lie algebra deformation.

Basic paradigm. Moyal product on R2n with the canonical Poisson bracket P:

F ?M G = exp
( i~

2 P
)
(f , g) ≡ FG +

∑
k≥1

1
k!

( i~
2

)k Pk (F ,G).

Daniel Sternheimer Dubna ASMP, 8 September 2008
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Applications and Equivalence

Equation of motion (time τ ): dF
dτ = [H,F ]M ≡ 1

i~ (H ?M F − F ?M H)
Link with Weyl’s rule of quantization: Ω1(F ?M G) = Ω1(F )Ω1(G)

Equivalence of two star-products ?1 and ?2.
• Formal series of differential operators T (f ) = f +

∑
r≥1 t r Tr (f ).

• T (f ?1 g) = T (f ) ?2 T (g).

For symplectic manifolds, equivalence classes of star-products are parametrized by the

2nd de Rham cohomology space H2
dR(M): {?t}/ ∼ = H2

dR(M)[[t]] (Nest-Tsygan [1995]

and others). In particular, H2
dR(R2n) is trivial, all deformations are equivalent.

Kontsevich: {Equivalence classes of star-products} ≡ {equivalence
classes of formal Poisson tensors πt = π + tπ1 + · · · }.
Remarks: - The choice of a star-product fixes a quantization rule.
- Operator orderings can be implemented by good choices of T (or $).

- On R2n, all star-products are equivalent to Moyal product (cf. von Neumann uniqueness

theorem on projective UIR of CCR).

Daniel Sternheimer Dubna ASMP, 8 September 2008
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Existence and Classification

Let (M, π) be a Poisson manifold. f ?̃g = fg + t{f ,g} does not define
an associative product. But (f ?̃g)?̃h − f ?̃(g?̃h) = O(t2).
Is it always possible to modify ?̃ in order to get an associative product?

Existence, symplectic case:
– DeWilde-Lecomte [1982]: Glue local Moyal products.
– Omori-Maeda-Yoshioka [1991]: Weyl bundle and glueing.
– Fedosov [1985,1994]: Construct a flat abelian connection on the
Weyl bundle over the symplectic manifold.
General Poisson manifold M with Poisson bracket P:
Solved by Kontsevich [1997, LMP 2003]. “Explicit” local formula:
(f ,g) 7→ f ? g =

∑
n≥0 tn∑

Γ∈Gn,2
w(Γ)BΓ(f ,g), defines a differential

star-product on (Rd ,P); globalizable to M. Here Gn,2 is a set of graphs Γ,

w(Γ) some weight defined by Γ and BΓ(f , g) some bidifferential operators.

Particular case of Formality Theorem. Operadic approach
Daniel Sternheimer Dubna ASMP, 8 September 2008
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This is Quantization

A star-product provides an autonomous quantization of a manifold M.
BFFLS ’78: Quantization is a deformation of the composition law of
observables of a classical system: (A, ·)→ (A[[t ]], ?t ), A = C∞(M).

Star-product ? (t = i
2~) on Poisson manifold M and Hamiltonian H;

introduce the star-exponential: Exp?( τH
i~ ) =

∑
r≥0

1
r ! ( τi~ )r H?r .

Corresponds to the unitary evolution operator, is a singular object i.e. belongs not to

the quantized algebra (A[[t]], ?) but to (A[[t , t−1]], ?). Singularity at origin of its trace,

Harish Chandra character for UIR of semi-simple Lie groups.

Spectrum and states are given by a spectral (Fourier-Stieltjes in the
time τ ) decomposition of the star-exponential.

Paradigm: Harmonic oscillator H = 1
2 (p2 + q2), Moyal product on R2`.

Exp?
(
τH
i~
)

=
(

cos( τ2 )
)−1 exp

( 2H
i~ tan( τ2 )

)
=
∑∞

n=0 exp
(
− i(n + `

2 )τ
)
π`n.

Here (` = 1 but similar formulas for ` ≥ 1, Ln is Laguerre polynomial of degree n)

π1
n(q, p) = 2 exp

(−2H(q,p)
~

)
(−1)nLn

( 4H(q,p)
~

)
.

Daniel Sternheimer Dubna ASMP, 8 September 2008
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Complements

The Gaussian function π0(q,p) = 2 exp
(−2H(q,p)

~
)

describes the
vacuum state. As expected the energy levels of H are En = ~(n + `

2 ):
H ? πn = Enπn; πm ? πn = δmnπn;

∑
n πn = 1. With normal ordering,

En = n~: E0 −→∞ for ` −→∞ in Moyal ordering but E0 ≡ 0 in normal
ordering, preferred in Field Theory.
• Other standard examples of QM can be quantized in an
autonomous manner by choosing adapted star-products: angular
momentum with spectrum n(n + (`− 2))~2 for the Casimir element of
so(`); hydrogen atom with H = 1

2 p2 − |q|−1 on M = T ∗S3,
E = 1

2 (n + 1)−2~−2 for the discrete spectrum, and E ∈ R+ for the
continuous spectrum; etc.
• Feynman Path Integral (PI) is, for Moyal, Fourier transform in p of
star-exponential; equal to it (up to multiplicative factor) for normal ordering) [Dito’90].
Cattaneo-Felder [2k]: Kontsevich star product as PI.

Cohomological renormalization (see below; “Subtract infinite cocycle.”)
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Conventional vs. deformation quantization

• It is a matter of practical feasibility of calculations, when there are
Weyl and Wigner maps to intertwine between both formalisms, to
choose to work with operators in Hilbert spaces or with functional
analysis methods (distributions etc.) Dealing e.g. with spectroscopy (where it

all started; cf. also Connes) and finite dimensional Hilbert spaces where operators are

matrices, the operatorial formulation is easier.

• When there are no precise Weyl and Wigner maps (e.g. very general

phase spaces, maybe infinite dimensional) one does not have much choice
but to work (maybe “at the physical level of rigor”) with functional analysis.
Contrarily to what Gukov and Witten assert (arXiv:0809.0305v1 p.10) deformation

quantization is quantization: it permits (in concrete cases) to take for ~ its value, when there are Weyl and

Wigner maps one can translate its results in Hilbert space, and e.g. for the 2-sphere there is a special behavior

when the radius of the sphere has quantized values related to the Casimir values of SO(3).
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Some avatars
(Topological) Quantum Groups. Deform Hopf algebras of functions
(differentiable vectors) on Poisson-Lie group, and/or their topological
duals (as nuclear t.v.s., Fréchet or dual thereof).
Preferred deformations (deform either product or coproduct) e.g. G
semi-simple compact: A = C∞(G) (gets differential star product) or
its dual (compactly supported distributions on G, completion of Ug,
deform coproduct with Drinfeld twist); or A = H(G), coefficient
functions of finite dimensional representations of G, or its dual.
“Noncommutative Gelfand duality theorem.” Commutative topological
algebra A ' “functions on its spectrum.” What about (A[[t ]], ?t )?
Woronowicz’s matrix C∗ pseudogroups. Gelfand’s NC polynomials.

Noncommutative geometry vs. deformation quantization.
Strategy: formulate usual differential geometry in an unusual manner,
using in particular algebras and related concepts, so as to be able to
“plug in” noncommutativity in a natural way (cf. Dirac quote).

Daniel Sternheimer Dubna ASMP, 8 September 2008
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Overview

The deformation quantization of a given classical field theory consists in
giving a proper definition for a star-product on the infinite-dimensional
manifold of initial data for the classical field equation and constructing with it,
as rigorously as possible, whatever physical expressions are needed.
As in other approaches to field theory, here also one faces serious
divergence difficulties as soon as one is considering interacting fields theory,
and even at the free field level if one wants a mathematically rigorous theory.
But the philosophy in dealing with the divergences is significantly different
and one is in position to take advantage of the cohomological features of
deformation theory to perform what can be called cohomological
renormalization.

In the same way as we quantize by deforming the (commutative) product of
observables to an ~-dependent star product, keeping the classical
observables unchanged, the idea is to renormalize by deforming the normal
star-product to another, coupling constant dependent, quantization.

Daniel Sternheimer Dubna ASMP, 8 September 2008
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Poisson structure and field equations

Poisson structures are known on infinite-dimensional manifolds since a long time; there
is an extensive literature on this subject. A typical structure, for our purpose, is a weak
symplectic structure such as that defined in 1974 by Segal and by Kostant on the space
of solutions of a classical field equation like �Φ = F (Φ), � = d’Alembertian. Now for
scalar-valued functionals Ψ over such a space, i.e., over the phase space of initial
conditions ϕ(x) = Φ(x , 0) and π(x) = ∂

∂t Φ(x , 0), a Poisson bracket can be defined by

P(Ψ1,Ψ2) =

∫ (
δΨ1

δϕ

δΨ2

δπ
−
δΨ1

δπ

δΨ2

δϕ

)
dx (1)

δ being the functional derivative. But while one can give a precise mathematical
meaning to (1) by specifying an appropriate algebra of functionals, the formal extension
to powers of P, needed to define the Moyal bracket, is highly divergent, already for P2.

This is no surprise to physicists who know that the correct approach to field theory

starts with normal ordering, and that there are infinitely many inequivalent

representations of the canonical commutation relations, even if in recent physical

literature some are working formally with Moyal product.
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The idea of cohomological renormalization in deformation quantization

Starting with some star-product ? (e.g. similar to the normal star-product on a manifold
of initial data), we would like to interpret various divergences appearing in the theory in
terms of coboundaries (or cocycles) for the relevant Hochschild cohomology. If we
suspect that a term in a cochain of the product ? is responsible for the appearance of
divergences, applying an iterative procedure of equivalence, we can try to eliminate it,
or at least get a lesser divergence, by subtracting at the relevant order a divergent
coboundary; we would then get a better theory with a new star-product, “equivalent” to
the original one. Furthermore, since in this case we expect to have at each order an
infinity of non equivalent star-products, we can try to subtract a cocycle and then pass
to a nonequivalent star-product whose lower order cochains are identical to those of
the original one. We would then make an analysis of the divergences up to order ~r ,
identify a divergent cocycle, remove it, and continue the procedure (at the same or
hopefully a higher order). Along the way one should preserve the usual properties of a
quantum field theory (Poincaré covariance, locality, etc.) and the construction of
adapted star-products should be done accordingly. The complete implementation of
this program should lead to a cohomological approach to renormalization theory.

It seems (e.g. looking at the formulas in Connes 2005 lectures at Collège de France)

that the Connes–Kreimer rigorous renormalization procedure could fit in this pattern.
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Normal star-product and quantized fields
Let Φ be a (classical) free massive scalar field with initial data (ϕ, π) in the Schwartz
space S. Replace them by their Fourier modes (ā, a), also in S seen as a real vector
space. After quantization (ā, a) become the usual creation and annihilation operators.

The normal star-product ?N can be written

(F ?N G)(ā, a) =
∫
S′⊕S′ dµ(ξ̄, ξ)F (ā, a + ξ)G(ā + ξ̄, a) where µ is the Gaussian

measure on S′ ⊕ S′ and F ,G are holomorphic functions with semi-regular kernels.

Creation and annihilation operators being operator-valued distributions, we take

(ā, a) ∈ S′ ⊕ S′ (the distribution aspect is present in the definition of the cochains of

the star-product). Fermionic fields can also be cast in that framework.

For the above normal product one can formally consider interacting fields. The

star-exponential of the Hamiltonian turns out to be, up to a multiplicative well-defined

function, equal to Feynman’s path integral. For free fields, we have a mathematically

meaningful equality between the star-exponential and the path integrals as both of

them are defined by a Gaussian measure, hence well-defined. In the interacting fields

case, giving a rigorous meaning to either of them would give a meaning to the other.
Daniel Sternheimer Dubna ASMP, 8 September 2008
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A toy model of cohomological renormalization

Work in that direction (free scalar fields, Klein–Gordon equation etc.) is done by Dito
since the 90’s including an example of cancellation of some infinities in λϕ4

2-theory via
a λ-dependent star-product formally equivalent to normal:
Take a λϕ4

2 interacting Hamiltonian H[ϕ, π] = H0[ϕ, π] + λV [ϕ] with
H0 = 1

2

∫
R(π2(x) + |∇ϕ(x)|2 + m2ϕ2(x))dx , V [ϕ] =

∫
R ϕ

4(x)dx or its equivalent form
with (ā, a). Singular terms appear in the ?N -powers of H, not surprising since
(Glimm–Jaffe) one needs an infinite renormalization of H in order to give a meaning to
the operator expression of H.
We would like to leave H unchanged and define a new ?-product such that no singular
terms occur in the ?-powers of H and, ultimately, that the ?-exponential of H is well
defined. Dito (LMP 1993) constructed a ?-product equivalent to normal which gives a
meaning to H ? F (H), F an arbitrary polynomial function of H. The equivalence
operator T , T (F ? G) = TF ?N TG, is given by an expression

T (F ) = exp ~λ
∫

dkf (k)[ δ2F
δa(k)δa(k)

− δ2F
δā(k)δā(k)

where f is a function adjusted in such a

way to generate a counterterm for C4(H,H), the only singular term in H ?N H leading

to an infinite constant. It however does not give divergenceless expressions for the

?-powers of H with n ≥ 3 because these are not polynomials in H.
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Epistemological remarks

Two quotes by Sir James Hopwood Jeans:

“The Great Architect of the Universe now begins to appear as a pure mathematician.”

“We may as well cut out the group theory. That is a subject that will never be of any use in physics.” [Discussing a

syllabus in 1910.] [Physicists liberty with rigor vs. mathematicians lack of physical touch.]

Spectroscopy. In atomic and molecular physics we know the forces and their

symmetries. Energy levels (spectral lines) classified by UIR (unitary irreducible representations) of SO(3) or

SU(2), and e.g. with crystals that is refined (broken) by a finite subgroup. [Racah school, Flato’s M.Sc.] The

more indirect physical measurements become, the more one has to be careful.
“Curse” of experimental sciences. Mathematical logic: if A and A −→ B, then B. In real
life, imagine model or theory A. If A −→ B and “B is nice” (e.g. verified & more), then A!

[Inspired by Kolmogorov quote.] (It ain’t necessarily so.)
Daniel Sternheimer Dubna ASMP, 8 September 2008
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Poincaré and anti De Sitter “external” symmetries

1930’s: Dirac asks Wigner to study UIRs of Poincaré group. 1939: Wigner
paper in Ann.Math. UIR: particle with positive and zero mass (and
“tachyons”). Seminal for UIRs (Bargmann, Mackey, Harish Chandra etc.)
Deform Minkowski to AdS, and Poincaré to AdS group SO(2,3). UIRs of AdS
studied incompletely around 1950’s. 2 (most degenerate) missing found
(1963) by Dirac, the singletons that we call Rac= D( 1

2 , 0) and Di= D(1, 1
2 )

(massless of Poincaré in 2+1 dimensions). In normal units a singleton with
angular momentum j has energy E = (j + 1

2 )ρ, where ρ is the curvature of the
AdS4 universe (they are naturally confined, fields are determined by their
value on cone at infinity in AdS4 space).
The massless representations of SO(2, 3) are defined (for s ≥ 1

2 ) as
D(s + 1, s) and (for helicity zero) D(1, 0)⊕ D(2, 0). There are many
justifications to this definition. They are kinematically composite:
(Di⊕ Rac)⊗ (Di⊕ Rac) = (D(1, 0)⊕ D(2, 0))⊕ 2

⊕∞
s= 1

2
D(s + 1, s).

Also dynamically (QED with photons composed of 2 Racs, FF88).
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Generations, “internal” symmetries

At first, because of the isospin I, a quantum number separating proton and
neutron introduced (in 1932, after the discovery of the neutron) by
Heisenberg, SU(2) was tried. Then in 1947 a second generation of “strange”
particles started to appear and in 1952 Pais suggested a new quantum
number, the strangeness S. In 1975 a third generation (flavor) was
discovered, associated e.g. with the τ lepton, and its neutrino ντ first
observed in 2000. In the context of what was known in the 1960’s, a rank 2
group was the obvious thing to try and introduce in order to describe these
“internal” properties. That is how in particle physics theory appeared U(2) (or
SU(2)× U(1), now associated with the electroweak interactions) and the
simplest simple group of rank 2, SU(3), which subsists until now in various
forms, mostly as “color” symmetry in QCD theory.

Connection with space-time symmetries? (O’Raifeartaigh no-go “theorem”
and FS counterexamples.) Reality is (much) more complex.
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Composite leptons and flavor symmetry

The electroweak model is based on “the weak group”, SW = SU(2)× U(1),
on the Glashow representation of this group, carried by the triplet (νe, eL; eR)
and by each of the other generations of leptons. Suppose that
(a) There are three bosonic singletons (RNRL; RR) = (RA)A=N,L,R (three
“Rac”s) that carry the Glashow representation of SW ;
(b) There are three spinorial singletons (Dε,Dµ; Dτ ) = (Dα)α=ε,µ,τ (three
“Di”s). They are insensitive to SW but transform as a Glashow triplet with
respect to another group SF (the “flavor group”), isomorphic to SW ;
(c) The vector mesons of the standard model are Rac-Rac composites, the
leptons are Di-Rac composites, and there is a set of vector mesons that are
Di-Di composites and that play exactly the same role for SF as the weak
vector bosons do for SW : W B

A = R̄BRA, LA
β = RADβ , Fαβ = D̄βDα.

These are initially massless, massified by interaction with Higgs.

Daniel Sternheimer Dubna ASMP, 8 September 2008
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Composite leptons massified
Let us concentrate on the leptons (A = N, L,R; β = ε, µ, τ )

(LA
β) =

 νe eL eR

νµ µL µR

ντ τL τR

 . (2)

A factorization LA
β = RADβ is strongly urged upon us by the nature of the

phenomenological summary in (1). Fields in the first two columns couple
horizontally to make the standard electroweak current, those in the last two
pair off to make Dirac mass-terms. Particles in the first two rows combine to
make the (neutral) flavor current and couple to the flavor vector mesons. The
Higgs fields have a Yukawa coupling to lepton currents, LYu = −gYuL̄βALB

αHαA
βB .

The electroweak model was constructed with a single generation in mind,
hence it assumes a single Higgs doublet. We postulate additional Higgs
fields, coupled to leptons in the following way, L′Yu = hYuLA

αLB
βKαβ

AB + h.c..
This model predicts 2 new mesons, parallel to the W and Z of the
electroweak model (Frønsdal, LMP 2000). But too many free parameters.
Do the same for quarks (and gluons), adding color?

Daniel Sternheimer Dubna ASMP, 8 September 2008
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Questions and facts

Even if know “intimate structure” of particles (as composites of quarks
etc. or singletons): How, when and where happened “baryogenesis”?
[Creation of ‘our matter’, now 4% of universe mass, vs. 74% ‘dark energy’ and 22 %

‘dark matter’; and matter–antimatter asymetry, Sakharov 1967.] Everything at “big

bang”?! [Shrapnel of ‘stem cells’ of initial singularity?]
Facts:SOq(3, 2) at even root of unity has finite-dimensional UIRs (“compact”?).

Black holes à la ’t Hooft: can communicate with them, by interaction at surface.

Noncommutative (quantized) manifolds. E.g. quantum 3- and 4-spheres

(Connes with Landi and Dubois-Violette); spectral triples (A,H,D)).

Connes’ Standard Model with neutrino mixing, minimally coupled to gravity.

Space-time is Riemannian compact spin 4-manifold (Barrett has Lorentzian version) ×
finite (32) NCG. More economical than SUSYSM and predicts Higgs mass at upper

limit (SUSYSM gives lower). [Ongoing with Marcolli and Chamseddine.]
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Conjectures and a speculative answer

[Odessa Rabbi anecdote] Space-time could be, at very small distances, not only deformed

(to AdS4 with tiny negative curvature ρ, which does not exclude at cosmological

distances to have a positive curvature or cosmological constant, e.g. due to matter) but

also “quantized” to some qAdS4. Such qAdS4 could be considered, in a sense to make

more precise (e.g. with some measure or trace) as having ”finite” (possibly ”small”)

volume (for q even root of unity). At the “border” of these one would have, for most

practical purposes at “our” scale, the Minkowski space-time, obtained by qρ −→ 0. They

could be considered as some “black holes” from which “q-singletons” would emerge,

create massless particles that would be massified by interaction with dark matter or

dark energy. That could (and should, otherwise there would be manifestations closer to

us, that were not observed) occur mostly at or near the “edge” of our universe in

accelerated expansion. These “qAdS black holes” (“inside” which one might find

compactified extra dimensions) could be a kind of “shrapnel” resulting from the Big

Bang (in addition to background radiation) and provide a clue to baryogenesis.
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A NCG model for qAdS4

To AdSn, n ≥ 3, we associate naturally a symplectic symmetric space (M, ω, s). The
data of any invariant (formal or not) deformation quantization on (M, ω, s) yields
canonically universal deformation formulae (procedures associating to a topological
algebra A having a symmetry G a deformation Aθ in same category) for the actions of
a non-Abelian solvable Lie group R0 (one-dimensional extension of the Heisenberg
group Hn), given by an oscillatory integral kernel.

Using it we (P.Bieliavsky, LC, DS & YV) define a noncommutative Lorentzian spectral

triple (A∞,H,D) where A∞ := (L2
right(R0))∞ is a NC Fréchet algebra modelled on

the space H∞ of smooth vectors of the regular representation on the space H of

square integrable functions on R0, and D a Dirac operator acting as a derivation of the

noncommutative bi-module structure, and for all a ∈ A∞, the commutator [D, a]

extends to H as a bounded operator. The underlying commutative limit is endowed

with a causal black hole structure (for n ≥ 3) encoded in the R0-group action.
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Some open problems and speculations
1. Define within the present Lorentzian context the notion of causality
at the operator algebraic level.
2. Representation theory for SOq(2,n) (e.g. new reps. at root of unity,

analogs of singletons, ‘square root’ of massless reps. of AdS or Poincaré, etc.)
3. Define a kind of trace giving finite “q-volume” for qAdS at even root
of unity (possibly in TVS context).
4. Find analogs of all the ‘good’ properties (e.g. compactness of the

resolvent of D) of Connes’ spectral triples in compact Riemannian case,
possibly with quadruples (A, E,D,G) where A is some topological algebra, E an

appropriate TVS, D some (bounded on E) “Dirac” operator and G some symmetry.
5. Limit ρq −→ 0 (ρ < 0 being AdS curvature)?
6. Unify (groupoid?) Poincaré in Minkowski space (possibly modified
locally by the presence of matter) with these SOq(2,n) in the qAdS
“black holes”.
7. Field theory on such q-deformed spaces, etc.

Daniel Sternheimer Dubna ASMP, 8 September 2008
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