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•The gauge-string correspondence is a pro-
found hypothesis and a promising approach
to important long-standing problems in QCD
(such as quark confinement), relating the ob-
servables (physical vertex operators) in string
theory to local gauge invariant operators in
QCD. In particular, such a correspondence
identifies open strings with thin tubes of gluon
field lines, connecting hadrons, so the Wilson
loop’s expectation value < W (C) > on the
QCD side is identified with the partition func-
tion Z(C):

Z(C) ↔ < W (C) > (1)

of the open string with the ends attached to
the same contour C.
• Once such an isomorphism holds, one

could expect that correlation functions
of massless vertex operators in open string

theory are to reproduce QCD dynamics. Such
a string-theoretic framework would be par-
ticularly efficient and natural to address the
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problem of confinement, as well as other non-
perturbative QCD dynamics.
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IN PRACTICE THINGS ARE FAR

MORE COMPLICATED

PROBLEMS WITH “NAIVE” G/S COR-
RESPONDENCE:

• There are 8 coloured gluons in QCD vs 1
colourless massless gauge boson (a photon) in
perturbative spectrum of open string

• There is an infinite tower of massive inter-
mediate states in Veneziano amplitude, absent
in QCD:

< Vph(p1)Vph(p2)Vph(p3)Vph(p4) >∼
Γ(−s

2 − 1)Γ(− t
2 − 1)

Γ(−s
2 − t

2 − 2)

s = −(p1 + p2)
2; t = −(p1 + p3)

2

(2)

- infinite sequence of poles for each integer
non-negative s and t vs. single massless pole
for QCD amplitude
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• The presence of massive intermediate
states in stringy amplitudes (destroying the
G/S correspondence) is related to higher or-
der terms in the OPE of two photon vertex
operators:

Wl(k; z1)Wm(p; z2) ∼
Cn
lm(k, p)Wn(q;

z1+z2
2 )

z1 − z2

+
∞∑
N=0

(z1 − z2)
N+ (~q)2

2 C(N)(k, p)W (N)(q)

(3)
where

Cn
lm(k, p) = i(knηlm − qmη

n
l + plη

n
m)

~k + ~p+ ~q = 0
(4)

and we have skipped BRST trivial tachyonic
term of the order of (z − w)−2. Here W (N)

are the massive operators (intermediate poles)
with the on-shell condition

~q2 = −2N − 2 = −m2 (5)

(m is the mass)
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• There is an underlying geometrical rea-
son for the appearance of massive poles: the
absence of the ZIGZAG SYMMETRY in con-
ventional string-theoretic models (which, how-
ever, is present on the QCD side) - invariance
of < W (C) > under diffeomorphisms chang-
ing the orientation of the Wilson loop. Z(C)
on the string theory side is only invariant un-
der worldsheet reparametrizations preserving
the orientation of the boundary.

Therefore:

• Confining (QCD) string = string with
zigzag symmetry

• Zigzag symmetry = existence of closed
subalgebra of

massless open string operators (gluons)
(no massive terms in their OPE).

• Our goal = to construct vertex operators
of 8 massless aguge bosons in the adjoint of
SU(3), possessing the zigzag symmetry and re-
producing field-theoretic QCD amplitudes (no
massive poles).
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Outline of the construction :

•Special non-linear global space-time sym-
metries (α-symmetries) in RNS model of su-
perstrings

m
• 3 underlying extra dimensions (each asso-

ciated with colour-anticolour pair)

m
• SU(3) subgroup of α-generators (isome-

tries of hidden coloured dimensions)

m
• SU(3) multiplet of gluon vertex ops with

zigzag symmetry and QCD string obtained as
a result of “photon painting” by α-generators
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2. α-Symmetries, Hidden Dimensions

and Ghost Cohomologies

Consider full matter + ghost + Liouville
RNS superstring action given by:

S =
1

2π

∫
d2z{−1

2
∂Xm∂̄X

m

−1

2
ψm∂̄ψ

m − 1

2
ψ̄m∂ψ̄

m} + Sghost + SLiouville

Sghost =
1

2π

∫
d2z{b∂̄c+ b̄∂c̄+ β∂̄γ + β̄∂γ̄}

SLiouville =
1

4π

∫
d2z{∂ϕ∂̄ϕ+ λ∂̄λ+ λ̄∂λ̄

−F 2 + 2µ0be
bϕ(ibλλ̄− F )}

(6)
where ϕ, λ, F are the components of the Li-
ouville superfield, , Xm,m = 0, ..., d − 1 are
the space-time coordinates,ψm, ψ̄m are their
worldsheet superpartners; b, c, β, γ are

the fermionic and bosonic

(super)reparametrization ghosts bosonized
as
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b = e−σ; c = eσ,

β = eχ−φ∂χ ≡ ∂ξe−φ; γ = eφ−χ
(7)

• The RNS action (5) is surprisingly in-
variant (in addition to translations and rota-
tions) under the set of global non-linear space-
time transformations (α-symmetries) mixing
the matter and the ghost degrees of freedom:

δXm = ε{∂(eφψm) + 2eφ∂ψm}
δψm = ε{−eφ∂2Xm − 2∂(eφ∂Xm)}

δγ = εe2φ−χ{ψm∂2Xm − 2∂ψm∂X
m}

δβ = δb = δc = 0

(8)

with the generator of (7) given by

T =

∫
dz

2iπ
eφ(∂2Xmψ

m − 2∂Xm∂ψ
m) (9)

It is straightforward to check that

δSmatter = −δSghost
= − ε

2π

∫
d2z(∂̄eφ)(∂2Xmψ

m − 2∂Xm∂ψ
m)

(10)
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under (7), so the overall action SRNS is invari-
ant.

• Equivalent set of transformations leaving
SRNS invariant can also be obtained from (7),
(8) by replacing

φ↔ −3φ

• Given the Liouville mode, there are (d+1)
additional α-symmetry generators (one scalar
and one d-vector) with the structure similar to
(7), (8):

Lmα =

∮
dz

2iπ
eφ{∂2ϕψm − 2∂ϕ∂ψm

+∂2Xmλ− 2∂Xm∂λ}
(11)

and

Lα− =

∮
dz

2iπ
eφ{∂2ϕλ− 2∂ϕ∂λ} (12)

•
The appropriate space-time transformations

9



are given by

δXm = εmα{∂(eφλ) + 2eφ∂λ}
δλ = −εmα{2∂(eφ∂Xm) + eφ∂2Xm}
δγ = εmαe

2φ−χ{∂2Xmλ− 2∂Xm∂λ}
δβ = δb = δc = δϕ = δψm = 0

(13)

and

δϕ = ε−α{∂(eφλ) + 2eφ∂λ}
δλ = −ε−α{2∂(eφ∂ϕ) + eφ∂2ϕ}
δγ = ε−αe

2φ−χ{λ∂2ϕ− 2∂ϕ∂λ}
δβ = δb = δc = δXm = δψm = 0

(14)

.
(equivalent versions of these generators ob-

tained by φ→ −3φ are also available)

• Combined with (d + 1) translations and
(d+1)(d+2)

2 rotations of Poincare (includng the
Liouville direction), the (d + 2) α-generators
(8), (11), (12) extend the full space-time isom-
etry group

SO(d, 2)⇒SO(d+ 1, 2)
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, unsealing the underlying hidden extra dimen-
sion (with the index α in (8), (11), (12) refer-
ring to this extra dimension)

• The generators (8), (11), (12) of the α-
symmetries are the worldsheet integrals of
dimension 1 primary fields, i.e. are phys-
ical vertex operators (one can prove their
BRST invariance and non-triviality). Their
peculiar property is that they are annihi-
lated by the inverse picture changing oper-
ator Γ−1 ∼ ceχ−2φ∂χ, if taken at picture
+1-representation and by the direct picture-
changing Γ =: eφ(Gmatter+G[1]) :, if taken in an
equivalent picture −3-version. In other words,
they violate the equivalence of superconformal
ghost pictures, existing at pictures 1 and above
and −3 and below, but not in between (includ-
ing picture 0), so their coupling to supercon-
formal ghost d.o.f. is essential, distinguishing
them radically from standard symmetry gen-
erators (such as those of Poincare group).

• The α-generators can be classified in terms
of ghost cohomologies Hn ∼ H−n−2(n =
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1, 2, ...); in particular for the generators (8),
(11) and (12) n = 1.
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Definition and brief description of properties
of ghost cohomologies Hn ∼ H−n−2

• The positive number n ghost cohomology
Hn (n = 1, 2, ...) consists of physical (BRST
invariant and non-trivial) vertex operators vi-
olating the picture equivalence, existing at pic-
ture n and above, that are annihilated at their
minimal positive picture n by the inverse pic-
ture changing operator Γ−1 = c∂ξe−2φ (higher
than n pictures of such operators are related
by the usual picture changing).

• The negative number −n ghost cohomol-
ogy H−n (n ≥ 3) consists of physical (BRST
invariant and nontrivial) operators that ex-
ist at picture −n or below, that are annihi-
lated by the direct picture changing operator
Γ =: eφG : at the minimal negative picture
−n (here G is the full matter + ghost world-
sheet supercurrent). The operators of H−n at
lower than −n pictures are related by the usual
picture-changing.

• There is an isomorphism between positive
and negative ghost cohomologies Hn ∼ H−n−2

13



as any element of H−n−2 (typically having the
form ∼e−(n+2)φFmatter at the minimal negative
picture) has a representation in Hn obtained
by replacing e−(n+2)φ → enφ (with the matter
part unchanged) and adding the b−c ghost de-
pendent counterterms in order to protect their
BRST invariance.

•
The usual picture-independent observables,

existing at all pictures, including picture 0 (at
which the superconformal ghosts decouple) are
by definition the elements of H0. The coho-
mologies H−1 and H−2 are empty.
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• The α-generators (8), (11), (12), unsealing
the first hidden dimension, are thus the ele-
ments of H1 ∼ H−3. It is possible to construct
two higher order classes of the α-generators
inducing space-time symmetries, that are the
elements of Hn ∼ H−n−2 for n = 2 and 3,
with each n opening up an associate hidden
dimension. The overall number of hidden di-
mensions thus turns out to be 3, with each
extra dimension alluding to colour in terms of
G/S correspondence (see below)

•The (d+3) α-generators at the n = 2 level
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are given by

Lβ+ =

∮
dz

2iπ
e−4φF1(X,ψ)F1(ϕ, λ)(z)

Lβ− = −
∮

dz

2iπ
e−4φF1m(X,λ)Fm

1 (ϕ, ψ)(z)

Lβm =

∮
dz

2iπ
e−4φ(Fm

1 (X,λ)F1(ϕ, λ)

−F1(X,ψ)Fm
1 (ϕ, ψ))(z)

Lαβ =

∮
dz

2iπ
e−4φ(

1

2
F2(λ, ϕ)

+L1(X,ψ)∂L1(ϕ, λ) − ∂L1(X,ψ)L1(ϕ, λ))(z)
(15)

with the matter+Liouville structures L and F
(L1, F1 and Fm

1 ) being the primary fields of
dimensions 2 and 5

2:

F1(X,ψ) = ψm∂
2Xm − 2∂ψm∂X

m

F1(ϕ, λ) = λ∂2ϕ− 2∂λ∂ϕ

Fm
1 (X,λ) = λ∂2Xm − 2∂λ∂Xm

Fm
1 (ϕ, ψ) = ψm∂2ϕ− 2∂ψm∂ϕ

L1(X,ψ) = ∂Xm∂X
m − 2∂ψmψ

m

L1(ϕ, λ) = (∂ϕ)2 − 2∂λλ

(16)
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and F2(λ, ϕ) being the primary field of dimen-
sion 5:

F2(ϕ, λ) =
1

4
(∂ϕ)5 − 3

4
∂ϕ(∂2ϕ)2 +

1

4
(∂ϕ)2∂3ϕ

+λ∂λ(∂3ϕ− (∂ϕ)3) − 3

2
λ∂2λ∂2ϕ

+3∂λ∂2λ∂ϕ} ≡ i : (

∮
e−iϕλ)3e3iϕλ :

(17)

• Combined with the matter + Liouville
Poincare generators of SO(2, d) and the α-

generators (8),(11),(12) of H1 ∼ H−3, the α-
generators () of H2 ∼ H−4 enhance the space-
time symmetry group to SO(2, d+ 2) launch-
ing the second hidden space-time dimension
(labelled by the index β in ())
• The n = 3 level α-generators ofH3 ∼ H−5,

opening up the third extra dimension (labelled
by the space-time index γ) , are constructed
as
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Lγ+ =

∮
dz

2iπ
e−5φ{2F2(ϕ, λ)∂F1(X,ψ)

−F1(X,ψ)∂F2(ϕ, λ)}
Lγm =

∮
dz

2iπ
e−5φ{2Fm

2 (ψ, λ, ϕ)∂F1(X,ψ)

−∂F2(ψ, λ, ϕ)F1(X,ψ)

+2F2(ϕ, λ)∂Fm
1 (X,λ) − ∂F2(ϕ, λ)Fm

1 (X,λ)}
Lγ− =

∮
dz

2iπ
e−5φ{2G2(ψ, λ, ϕ)∂F1(X,ψ)

−∂G2(ψ, λ, ϕ)F1(X,ψ)

+3F2m(ψ, λ, ϕ)∂Fm
1 (X,λ)

−2∂F2m(ψ, λ, ϕ)Fm
1 (X,λ)

−∂F2(λ, ϕ)F1(X,ψ)}
Lγβ =

∮
dz

2iπ
e−5φ{F3(ϕ, λ)

+∂L1(X,ψ)L2(ϕ, λ)

− 4

11
L1(X,ψ)∂L2(ϕ, λ)}

Lγα =

∮
dz

2iπ
e−5φL2m(ϕ, ψ)Lm1 (X,λ)

(18)
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with the additional matter+Liouville blocks
given by:

Fm
2 (ψ, λ, ϕ) = ∂2ψmλ∂2ϕ− ψm∂2λ∂2ϕ

+3∂2ψm∂λ∂ϕ− 3∂ψm∂2λ∂ϕ

G2(ψ, λ, ϕ) = 4∂ψm∂
2ψm∂ϕ− 2ψm∂

3ψm∂ϕ

+(2d− 4)(λ∂3λ∂ϕ− 2∂λ∂2λ∂ϕ)

L2(ϕ, λ) = −5

4
(∂ϕ)4∂λ+

3

4
(∂2ϕ)2∂λ

+
3

2
∂ϕ∂2ϕ∂2λ− 5

2
∂ϕ∂3ϕ∂λ

−1

4
(∂ϕ)2∂3λ− 4∂ϕ∂2ϕ∂2λ+ ∂2ϕ∂3ϕλ

Lm2 (ϕ, ψ) = −5

4
(∂ϕ)4∂ψm +

3

4
(∂2ϕ)2∂ψm

+
3

2
∂ϕ∂2ϕ∂2ψm − 5

2
∂ϕ∂3ϕ∂ψm

−1

4
(∂ϕ)2∂3ψm − 4∂ϕ∂2ϕ∂2ψm + ∂2ϕ∂3ϕψm

Lm1 (X,λ) = ∂2λψm + λ∂2ψm

F3(ϕ, λ) =: (

∮
e−iϕλ)4e−5φ+4iϕλ :

(19)
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• Combined with the space-time Poincare
generators (9) and with the α-generators of
two lower ghost cohomologies,

the α-generators (14),(15) of H−3 ∼ H−5 ex-
tend the space-time isometry group to
SO(2, d+ 3), giving rise
to the third hidden dimension.

Construction of the octet of gluon vertices

• Consider the subset of the α-generators
corresponding to isometries of 3 hidden di-
mensions (those not mixing with the visible
d-dimensional space-time, i.e. without the
space-time index m) There are altogether 9
generators:

Lα±, Lβ±, Lγ±, Lαβ, Lαγ, Lβγ

• The gluons are constructed by acting with
this extra-dimensional subset of 9 α-isometries
() on a photon vertex operator:

Vph(~p) = Am(~p)

∮
dz(∂Xm + i(~k ~ψ)ψm)ei~p

~X

(20)
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• Remarkably, one of 9 α-generators, Lα−,
drops out as it turns out to commute with the
photon:

[Lα−, Vph(~p)] = 0 (21)

producing no new state.

• The remaining 8 operators, however, do
not commute with Vph, their commutators pro-
ducing 8 new physical states (massless gauge
bosons), each inheriting the ghost cohomology
of the appropriate α-generator.

• Because of () each of these 8 operators
can be shifted by any operator proportional
to Lα− ≈ 0

• The SU(3) group is then induced by the
following 8 linear combinations of the extra-
dimensional α-generators: vfill
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F+ = − 1√
2
(Lγ+ + Lγ−) − i√

2
(Lβ+ + Lβ−)

+Lαβ − iLαγ − i√
2
(Lα+ − Lα−)

F− = − 1√
2
(Lγ+ + Lγ−) − i√

2
(Lβ+ + Lβ−)

−Lαβ + iLαγ − i√
2
(Lα+ − Lα−)

F3 = − 1√
2
(Lγ+ − Lγ−) − i√

2
(Lβ+ − Lβ−)

L1 =
i

2
Lβγ

L2 =
i√
2
(Lα+ + Lα−)

G+ = − 1√
2
(Lγ+ + Lγ−) +

i√
2
(Lβ+ + Lβ−)

+Lαβ + iLαγ +
i√
2
(Lα+ − Lα−)

G− = − 1√
2
(Lγ+ + Lγ−) +

i√
2
(Lβ+ + Lβ−)

−Lαβ − iLαγ +
i√
2
(Lα+ − Lα−)

G3 = − 1√
2
(Lγ+ − Lγ−) +

i√
2
(Lβ+ − Lβ−)

(22)
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L1,2 are in Cartan subalgebra;

G±, G3 - raising subalgebra

F±, F3 - lowering subalgebra.

Gluons are constructed as

V i = [T i, Vph]

T i ≡ {F±, F3, L1, L2, G±, G3}
i = 1, ..., 8

[T i, T j] = D
ij
k T

k

(23)

(Dij
k are the SU(3) structure constants)

Zigzag Invariance of Gluon Vertex Operators

Using W i
m(z,~k) = [T i,Wm(z,~k)], the OPE

of two gluon integrands is given by
23



W i
m(z1, ~k)W

j
n(z2, ~p)r =

∮
z1

dw1

2iπ

∮
z2

dw2

2iπ

{T i(w1)T
j(w2)Wm(z1, ~k)Wn(z2, ~p)}

∼ D
ij
k C

p
mn(

~k, ~p)

z1 − z2
Wp(

z1 + z2

2
; ~q)

+
∞∑
N=0

(z1 − z2)
N+ (~q)2

2 C(N)(~k, ~p)Dij
kW

i
N(~q)

(24)
where

W k
N(~q) = [T k,WN(~q)] (25)

is the α-transform of massive operators of
q2 = −2N−2 of the photon OPE. vskip 0.2in
• Remarkably, it turns out that the α-

transform of any massive physical oper-

ator is BRST-trivial

Namely, defining

WN(q) =def UN(q)ei~q
~X

[T k, UN(q)] =def Uk
N

[T k, ei~q
~X =def Zk(q)ei~q

~X

(26)
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one can show

W k
N(q) =

2

(~q)2
[Qbrst, b0cUNZ

kei~q
~X ] (27)

• This ensures the zigzag symmetry of the
gluon OPE () and allows to use itto calcu-
late scattering amplitudes reproducing SU(3)
QCD dynamics (including the absence of mas-
sive poles)

6. Computation of the 4-point Amplitude

• The simple pole in the gluon OPE pro-
duces the 3-gluon vertex given by

< V i
m(~k)V j

n (~p)V k
p (~q)

= DijkCmnp(~k, ~p)δ(k + p+ q)
(28)

Using the zigzag invariance of (24) one can
apply the bootstrap expansion to calculate
QCD scattering amplitudes of higher points.
E.g. the 4-point scattering amplitude

Ai1...i4(~p1, ~p2, ~p3, ~p4)

=< V i
1 (~p1)V

i2(~p2)V
i3(~p3)V

i4(~p4) >
(29)
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is computed to give

Ai1...i4(~p1, ~p2, ~p3, ~p4) =
4∏
j=1

Amj(~pj)

×{Di1i2
j Dji3i4 +Di1i3

j Di2ji4 +Di2i4
j Di2i3j}

×{C
n
m1m2

(~p1, ~p2)Cm3m4n(~p3, ~p4)

(~p1~p2)(~p3~p4)

+
Cn
m1m3

(~p1, ~p3)Cm2m4n(~p2, ~p4)

(~p1~p3)(~p2~p4)

+
Cn
m1m4

(~p1, ~p4)Cm2m3n(~p2, ~p3)

(~p1~p4)(~p2~p3)
}δ(

4∑
a=1

~pa)

(30)

• The group-theoretic factor is easily rec-
ognized as ∼ Tr(ti1...ti4) (with tik being the
SU(3) generators), as one would expect for
QCD amplitudes; the amplitude is manifestly
cross-symmetric and the factor in numera-
tor (quadratic in structure constants and mo-
menta) protects it from double poles. The cal-
culation can be extended to higher number of
points showing the constructed gluon opera-
tors to reproduce perturbative QCD dynamics
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Conclusions

•QCD string turns out to be a special sector
of RNS string theory, related to conventional
RNS superstring by the α-transform.

•α-isometries of 3 hidden dimensions are-
translated into SU(3) colour group

• Schematically:
ghost cohomology

m
hidden space-time dimension

m
associated colour-anticolour pair

Future directions:

• Higher cohomologies/dimensions?

• Closed string extension/strongly coupled
QCD limit

• Ghost number selection rules vs. conser-
vation laws in QCD?
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