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Classical force and quantum fluctuationsClassical force and quantum fluctuations

During one Hubble time
the inflaton decreases by

However, during the same time the 
fluctuations of the inflaton are 
generated with charact. wavelength 

and typical amplitude 

It looks like in different Hubble patches the EVs of the inflaton measured by 
local observers are different. In some Hubble patches, due to the stochastic 
kicks produced by generated fluctuations, the EV of the inflaton may grow. Let’s 
prove it.

Note: (presently unknown) What if the energy density inside a particular Hubble patch reaches
Planckian values?



Random walk of inflaton and the Langevin equations 1Random walk of inflaton and the Langevin equations 1

EOM for the inflaton (*):

Let’s subtract the IR mode (super-Hubble scale which is indistinguishible from
the background mode from the point of view of an observer):

such that

,

Fourier modes are defined as

EOM for them is

Substituting IR decomposition into (*), one has EOM for the IR mode 

where



Random walk of inflaton and the Langevin equations 2Random walk of inflaton and the Langevin equations 2

For                                     the quantum nature of noises becomes negligible 

(effectively they commute!), dependence on ε also disappears in the leading order. 

, so one has

In addition, effectively we have

Commutation relations for noises can be derived taking the initial condition
as the Bunch-Davies vacuum:

and the final result is



FokkerFokker--Planck equation for inflationary spacetimePlanck equation for inflationary spacetime

In what follows, we will use the model with scalar field potential of the form

where

The EV of the inflaton in a given Hubble patch satisfies the Langevin equation

where the stochastic force f is distributed according to 
the gaussian law, i.e., has the correlation properties

The corresp. Fokker-Planck equation

defines the probability distribution to have a given value of the inflaton within a 
given Hubble patch (to measure a given value of the cosmological constant). 
How to derive it?



FokkerFokker--Planck equation: derivationPlanck equation: derivation

Suppose you have a stochastic process described by the Langevin equation

, where                    and 

The quantity                                satisfies the equation

where

Representing this equation as integro-differential, averaging and differentiating
back, we will have 

or

Where                                                        - the distribution function





Solution of the FokkerSolution of the Fokker--Planck equationPlanck equation

where ψ’s are eigenfunctions of the following Schrödinger equation:

and

is the ”superpotential”.

1. The eigenvalues E are all positive definite (supersymmetric form of the 
Hamiltonian). If the wavefunctions are normalizable, then the ground state 
corresponds to zero energy, i.e., is time-independent.

2. Steady state: contributions from higher eigenstates become negligible 
exponentially quickly. However, if the spectrum of the Hamiltonian is very 
dense, then higher eigenstates are also important at finite time scales. For 
example n first states are important for dynamics at            . 



The FokkerThe Fokker--Planck equation for chaotic inflation;Planck equation for chaotic inflation;
the Hawkingthe Hawking--Moss instantonMoss instanton

In the general case (potential of arbitrary form ) it is convenient to 
derive the Fokker-Planck equation in the reference frame with time 
measured in the units of inverse H. One finds

Its solution also exponentially rapidly approaches the steady state 
which is often denoted as the Hawking-Moss instanton 

(was first derived by Hawking and Moss in the context of euclidean 
quantum gravity):

Note: the steady state which is achieved rapidly means very weak dependence 
on initial conditions! It look like we loose information about what happens near 
the singularity during eternal inflation (eternal inflation gives a kind of ”solution”
to the singularity problem)



Some problems with our approachSome problems with our approach

Note that the steady state distribution function is not normalizable 
(normalization integral diverges at both large and small values of 
the inflaton):

The issue of small values is solved by taking volumes of different
Hubble patches into account, i.e., by changing the FP equation in 

the following way:

,

At large values of the inflaton energy density grows and can 
become Plankian (mentioned earlier). The boundary conditions are
unknown.
The problem of measuring eternal inflation is currently under 
debates.



Fractal structure of eternally inflating spacetimeFractal structure of eternally inflating spacetime

Scales are l >> e   x 3000 MPc = 3 x 10   GPc
60 26



A bit about string theory landscapeA bit about string theory landscape

• Metastable vacua with positive 
effective cosmological constant (dS)
• True vacua with vanishing (Dine-
Seiberg-Minkowski) or negative 
cosmological constant (AdS)
• The overall number is huge:

• Possibility to tunnel from one 
vacuum to another
• AdS vacua are ”sinks” – the 
bubbles of collapsing spacetime 

Already the statistical problem of counting vacua on the landscape (or 
calculating distribution functions of vacua) is very complicated (NP hard). 
However, we want more than that - to understand the dynamics of fields on the 
landscape, and in particular  - how eternal inflation is realized in this setup.



Tunneling between vacua on the landscape 1 Tunneling between vacua on the landscape 1 

Classifying vacua:

1) Inside each throat: could be different 
number of fluxes; effective cosmological 
constant is related to the number of fluxes 
by

Polchinski-Bousso transitions between 
them: Coleman - di Luccia instantons, 
bubbles of new vacua (old inflation)

One relatively simple geometric realization of 
the landscape: mutithroat scenario (warped AdS 
geometry inside each KS throat). Main players 
are D3- and anti D3-branes, fluxes.



(Question: why this (Question: why this ””old inflationold inflation”” can be eternal?)can be eternal?)

1. False vacua are metastable and exponetially decay
2. Volumes of Hubble patches with false vacua expand exponentially rapidly
3. Rate of expansion >> rate of decay → volumes of false vacua increase 

with time



Tunneling between vacua on the landscape 2Tunneling between vacua on the landscape 2

2) Tunneling between different throats. 
Model it by a single inflaton field. The 
tunneling rate between two ajacent vacua is 
defined by the action on the corresponding 
Hawking-Moss instanton: 

Both tunnelings 1→2 and 2→1 are possible;
for the system of two minima one has

For an arbitrary number of dS vacua (and AdS sinks) one has the ”vacuum 
dynamics” equations:



Tunneling between vacua on the landscape 3Tunneling between vacua on the landscape 3

Classifying parts of the landscape according to 
Hausdorff dimension of the corresponding tunneling 
graph: quasi 1 dim, quasi 2 dim, etc.

 

But the number of equations is 
If we are interested in time scales t such that

then physical answers are given by the average over 
disorder on the landscape.

!

Quasi-one-dimensional: two nearest neigbors (neglecting AdS sinks)

Let us supply this system of equations with delta-function-like initial conditions:
Then, old result from the theory of diffusion
on random lattices says that

the probability distribution spreads out with time much slower then diffusively:



Localization in disordered quantum systems 1Localization in disordered quantum systems 1

The motion of carriers (electrons) in random potential of impurities is governed by 
Schrödinger equation with the potential

. Mean free time:



Localization in disordered quantum systems 2Localization in disordered quantum systems 2

If wave package of electron in ultra-pure metallic wire is located near the origin
in the initial moment of time, then the probability density will spread out as

(usual diffusive behavior of the width of the probability density)

In the case of Anderson localization (metal with impurities) one has
where L is the localization length (the same order of 
magnitude as the mean free path)

This happens in 1 dimension for arbitrarily weak disorder.

The reason for anomalous diffusion of the distribution function for eternal inflation
is Anderson localization in the dual quantum problem: wave functions ψ behave as



Anderson localization on the landscapeAnderson localization on the landscape

1. Quasi-one-dimensional islands: Strong dependence of eternal inflation 
history on initial conditions due to the effect analogous to the Anderson 
localization. Weak logarithmic spreading of the distribution function:

2. Quasi-two-dimensional islands: all states are localized but the 
localization length grows exponentially with energy leading to 
subdominant log corrections to the linear diffusion law:

Recalling initial conditions at later times.
3. Quasi-higher-dimensional islands: edge of mobility. Recalling initial 

conditions at later times:
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