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The space-time of non-rotating black holes in D-space-time
dimensions are described by the Reissner-Nordstrom-de Sitter
metric,

ds2 = −f (r)dt2 + f −1(r)dr2 + r2dΩ2

D−2, (1)

f (r) = 1 − 2M

rD−3
+

Q2

r2D−6
− 2Λr2

(D − 2)(D − 1)
, (2)

Λ > 0 − de Sitter , Λ < 0 − anti − de Sitter

dΩ2

D−2 = dχ2

2 + sin2 χ2

2dχ
2

3 + ...+
D−2
∏

i=2

sin2

i dχ2

D−1

F. R. Tangherlini, Nuovo Cim. 27, 636 (1963).
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Why D-dimensional black holes are interesting:

♦ They appear in brane world theories, where quantum gravity
shows itself at Tev energies (RS or ADD models), so that
according to those theories with extra dimensions mini black
holes might be produced at particle collisions in Large Hadron
Collider (LHC).
♦ Asymptotically AdS black holes appear in the well-known
AdS/CFT correspondence: a large AdS black hole in
D-dimensional gravity corresponds to an approximately
thermal state in the dual conformal field theory in D-1
dimensions at strong coupling.
P. Kanti, “Black holes in theories with large extra dimensions:
A review,” Int. J. Mod. Phys. A19, 4899 (2004)
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The scalar field equation in curved space-time with the metric
gµν ,

�Φ ≡ 1√−g

(

gµν√−gΦ,µ
)

,ν = 0 (3)

After separation of angular and time variables

Ψ = e−iωtR(r)Pℓm({χi}),
perturbations of a scalar field of the D-dimensional spherically
symmetric solutions of the electro-vacuum Einstein equations
with a cosmological constant can be reduced to a single
wave-like equations of the form,

d2Ψ

dr2
∗

+ (ω2 − V (r∗))Ψ(r∗) = 0, (4)

dr∗ =
dr

f (r)
, r = (rh,+∞), r∗ = (−∞,+∞) (5)

r∗ is a "tortoise coordinate".
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The gravitational perturbations of the "background"gµν :

g ′

µν = gµν + δgµν (6)

δgµν are small perturbations. The perturbed Einstein equation
has the form,

δRµν = kδTµν . (7)

For gravitational perturbations all the perturbed Einstein
equations can be split into the three types of perturbations
which can be treated independently of each other.
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In the end we have a few equations for unknown δgµν where
one can distinguish

4 scalar components - s (called "polar"when D = 4),

4(D − 2) vector components - v (called "axial"when D = 4)

(D − 2)2 tensor components - t (coincide with perturbations
of test scalar field)

δgµν =





















s s v v v v v
s s v v v v v
v v t t t t t
v v t . . . t
v v t . . . t
v v t . . . t
v v t t t t t





















(8)
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Using the decomposition into scalar, vector and tensor
spherical harmonics, and eliminating non-physical degrees of
freedom with the help of the gauge transformations

xµ → xµ + ξµ, =⇒ δgµν = −∇µξν −∇νξµ, (9)

A. Ishibashi and H. Kodama (Prog. Theor. Phys. 110, 701
(2003)) reduced the perturbation equations for the D ≥ 4
Reissner-Nordstrom-de Sitter background to a set of
independent wave-like equations

d2Ψi

dr2
∗

+ (ω2 − V (r∗)i )Ψ(r∗)i = 0, (10)

i = s for scalar i = +,− for vector, and i = t for tensor
perturbations. For D = 4 case decoupling of the perturbed
equations was done by T. Regge and J. Wheeler (Phys. Rev.
108, 1063 (1957)).
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The effective potential V has the following form for the test
scalar field (and for the tensor type of gravitational
perturbations for D > 4) is

Vtestscalar (r) =

f (r)

(

ℓ(ℓ+ D − 3)

r2
+ f ′(r)

D − 2

2r
+

f (r)(D − 4)(D − 2)

4r2

)

(11)

For other types of gravitational perturbations the effective
potentials have the form,

V (r) = f (r)

(

ℓ(ℓ+ D − 3)

r2
+ something

)

(12)

ℓ is the multi-pole number that runs the valus ℓ = 2, 3, ... for
gravitational perturbations of the Schwarzschild black hole,
while ℓ = 0(monopole), 1(dipole) perturbations are not
dynamical and obey the Birkgoeff theorem.
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Figura: Effective potentials for gravitational perturbations of scalar type,
D = 5 (blue). . .D = 11 (red) (l = 2, Q = 0, Λ = 0). For higher D both
the peak and the negative gap of the potential increase.
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Figura: Effective potentials for gravitational perturbations of scalar type,
Q = 0 (blue), Q = 0.2 (light blue), Q = 0.4 (green), Q = 0.6 (light
green), Q = 0.8 (yellow), Q = 0.98 (red) (l = 2, D = 10, Λ = 0).
Increasing of the charge Q cause the negative gap to move upwards. For
some Q the minimum of the potential becomes positive.
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Figura: Effective potentials for gravitational perturbations of scalar type,
l = 2, 3, 4, 5 (blue, green, yellow, red) (D = 11, Q = 0, Λ = 0). For high
multipole numbers the potential minimum disappears. Thus for
8 ≤ D ≤ 10 the negative gap exists only for the lowest multipole number
l = 2.
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Definition of quasinormal modes for asymptotically flat

or asymptotically de Sitter space-times.

Quasinormal modes are solutions of the wave equations
(Ψ ∼ e−iωt)

d2Ψ

dr2
∗

+ (ω2 − V (r∗))Ψ(r∗) = 0, (13)

which satisfy the following boundary conditions

Ψ ∼ e±iωr∗ , r∗ → ±∞ (14)

ω = ωRe − iωIm.

These are pure out-going (spherical plane) waves at spatial
infinity and pure in-going waves at the event horizon.
Therefore no waves come from the infinity or from the event
horizon. For asymptotically de Sitter black holes we just
replace infinity by a de Sitter horizon; ωRe defines the real
oscillation frequency, ωIm defines the damping rate of a mode.
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Definition of quasinormal modes for asymptotically

anti-de Sitter space-times.
Quasinormal modes are solutions of the wave equations
(Ψ ∼ e−iωt)

d2Ψ

dr2
∗

+ (ω2 − V (r∗))Ψ(r∗) = 0, (15)

which satisfy the following boundary conditions

Ψ ∼ e−iωr∗ , r∗ → −∞ (16)

Ψ(r = +∞) = 0, r∗ ∈ (−∞, 0) (17)

These are pure in-going waves at the event horizon and
Dirichlet boundary condition at spatial infinity. The Dirichlet
boundary condition is natural because the effective potential
diverges at the infinity, creating an effective confining box
there.
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Motivations to study quasinormal modes

♦ Possible observation of gravitational waves from colliding
black holes or neutron stars with the help of a new generation
of gravitational antennas.
♦ AdS/CFT interpretation: quasinormal modes of large
asymptotically AdS black holes coincide with poles of the
temperature Green function in the dual conformal field theory.
Hawking temperature of a black hole is the temperature in the
dual thermal field theory.
♦ Too optimistic Loop Quantum Gravity interpretation: Some
people believe that Re(ω) in the limit n → ∞ is connected
somehow with the so-called Barbero-Immirzi parameter, which
is connected somehow, according to other people’s belief, with
the reproducing in LQG correct formula for the entropy.
♦ Test of stability of a metric: in many cases to prove that
the space-time is stable (or unstable) is much more difficult
than to check that all quasinormal modes are damping (or to
find a growing one in case of instability).
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Main properties of quasinormal modes for asymptotically

flat or de-Sitter space-times:

♦ QNMs do not depend on a way of perturbations but only on
black hole parameters, thereby they are "characteristic
sound"of black holes.
♦ QNMs, although are analogues of normal modes in a closed
system, are complex, i.e. decaying and radiating away energy.
♦ The full spectrum of the QNMs do not form the complete
set, so that solution of the wave equation can be expanded in
a set of quasinormal modes only during some intermediate late
time period, called quasinormal ringing, which follows the
initial outburst of perturbation. At t →, these quasinormal
modes are usually suppressed by the exponential or power-low
tails.
♦ The full non-linear solution of the perturbed Einstein
equation (beyond approximation of small perturbations) gives
basically the same QN frequencies, what confirms the validity
of the linear approximation.
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Brief review of methods for calculations of the

quasinormal modes:

♦ the Poschl-Teller method
Because of "symmetric"boundary conditions on +∞ and −∞
one can "put upside down"the Poshl-Teller potential

VPT (r∗) = V0cosh−2(r∗/b), (18)

for which the Schrodinger equation () can be solved exactly.
Then one fits the height and the curvature of the potential at
its maximum to get QNMs:

ω =
1

b

(

√

V0b2 − 1

4
−
(

n +
1

2

)

i

)

. (19)

H-J. Blome, R. Mashhoon, Phys. Lett. A, 231 (1984)
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♦ Chandrasekhar-Detweiler method
By the substitution

Ψ = exp

(

i

∫

r∗

Φdr∗

)

, (20)

the wave equation reduces to the Riccati equation

idΦ/dr∗ + ω2 − Φ2 − V (r∗). (21)

Then one need perform numerical integration of the Riccati
equation in order to obtain the QNMs.
S.Chandrasekhar, S. Detweiler, Proc. R. Soc. Lond. A 344, 441
(1975)
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♦ WKB approach
Based on the expansion into the Taylor series between the turning
points of the effective potential Q(r∗) = ω2 − V = 0 and matching
the solution between the turning points with WKB solutions in the
far regions on the left and on the right of the maximum of the
effective potential. The final formula reads

ı
ω2 − V0
√

−2V ′′
0

− Λ2 − Λ3 − Λ4 − Λ5 − Λ6 = n +
1

2
, (22)

where the correction terms Λ2, ...Λ6 depend on the value of the
effective potential and its derivatives in the maximum respectively
r∗ coordinate, n is the overtone number.
B. Schutz, C. Will, Astrophys. J. Lett. 291, L33 (1985) - first
order.
S.Iyer and C.M.Will, Phys. Rev. D35 3621 (1987) - Λ2, Λ3.
R. Konoplya, Phys. Rev. D68, 024018 (2003) - Λ4, Λ5, Λ6.
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♦ Frobenius method
One can separate the singular factor of the solution that satisfies
the QNMs boundary conditions, and expand the remaining part into
the Frobenius series that are convergent in the R-region (between
the event horizon and the infinity). The appropriate series, for
example, for the D = 4 Schwarzschild black hole are:

Ψ(r) = e iωr r (2iMω)

(

1 − 2M

r

)−2iMω
∑

n

an

(

1 − 2M

r

)n

, (23)

Substituting the 23 into the wave equation, we obtain a three-term
recurrence relation for the coefficients an:

a0a1 + b0a0 = 0; anan+1 + bnan + γnan−1 = 0, n > 0, (24)
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The above three-term recurrence relation can be treated with the
so-called continued fractions in order to get the coefficients an.
Thus we have equation with respect to the eigenvalue ω:

bn −
an−1γn

bn−1 − an−2γn−1

bn−2−an−3γn−2/...

=
anγn+1

bn+1 − an+1γn+2

bn+2−an+2γn+3/...

, (25)

that can be solved numerically.
E. Leaver, Proc. Roy. Soc. Lond. A402, 285 (1985) - Frobenius
method for not very high overtones (n . 50)
H. Nollert, Phys. Rev. D47, 5253 (1993) - improvement of the
numerical scheme of Leaver for very high overtones
L. Motl, Adv. Theor. Math. Phys. 6, 1135 (2003) - analytical tool
to analyze limit n → ∞
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♦ Numerical integration in time domain
One can reduce the wave equation to the following form

4
∂2Ψ(u, v)

∂u∂v
+ V (r(u, v))Ψ(u, v) = 0 (26)

where u = t − r⋆, v = t + r⋆. We can discretize the equation (26),
and then implement a finite differencing scheme to solve it
numerically. There are two popular schemes

Ψℓ(N) = Ψℓ(W ) + Ψℓ(E ) − Ψℓ(S)

− ∆2V (S)
Ψℓ(W ) + Ψℓ(E )

8
, (27)

where N = (u + ∆, v + ∆), W = (u + ∆, v), E = (u, v + ∆) and
S = (u, v). Another possible scheme is

[

1 − ∆2

16
V (S)

]

Ψℓ(N) = Ψℓ(E ) + Ψℓ(W ) − Ψℓ(S)

−∆2

16
[V (S)Ψℓ(S) + V (E )Ψℓ(E ) + V (W )Ψℓ(W )] . (28)
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Although the discretization (28) is more time consuming than (27),
(28) is more stable for asymptotically AdS geometries. Using either
(27) or (28), the algorithm will cover the region of interest in the
u − v plane, using the value of the field at three points in order to
calculate it at a forth one.

Figura: Time-domain profiles for gravitational perturbations of scalar
type (Q = 0, Λ = 0) for D = 5 (blue). . .D = 11 (red) at the same point
r = 2. Profile for higher D decays quicker.

C. Gundlach, R. H. Price and J. Pullin, Phys. Rev. D49, 883
(1994).
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♦ Fit/interpolation method for potentials unknown in analytic form
The basic idea is that the low laying QNMs are determined mainly
by the behavior of the effective potential near its peak, while the
behavior of the potential far from black hole is insignificant. Then
fit or interpolation of the numerically given effective potential in
some region near a black hole allows to use further WKB or
time-domain methods.
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Figura: On the figure below we see the potential for s = 1 perturbations
near the SBH (ℓ = 2), and the same potential interpolated numerically
near its maximum. Despite the behavior of the two potentials are very
different in the full region of r , except for a small region near a black
hole, the low-laying QNMs for both potentials are almost the same.

2 3 4 5 6
r

0.05

0.1

0.15

0.2

VHrL

R. Konoplya, A. Zhidenko, Phys. Lett. B644, 186 (2007); Phys.
Lett. B648, 236 (2007).
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♦ Horowitz-Hubeny method for AdS black holes
The Schwarzschild-anti-de Sitter metric has the form

ds2 = −f (r)dt2 + f −1(r)dr2 + r2dΩ2, (29)

f (r) = 1 − r+
r

− r3
+

rR2
+

r2

R2
, (30)

r+ is the black hole event horizon. The wave equation can be
transformed to the form

f (r)
d2ψ(r)

dr2
+ (f ′(r) − 2iω)

dψ(r)

dr
− V (r)ψ(r) = 0. (31)

By re-scaling of r we can put R = 1. R is the anti-de Sitter radius.
The potential V diverges at the infinity r = ∞.
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The main point of the approach is to expand the solution to the
wave equation (31) around x+ = 1

r+
(x = 1/r):

ψ(x) =
∞
∑

n=0

an(ω)(x − x+)n (32)

and to find the roots of the equation ψ(x = 0) = 0 following from
the Dirichlet boundary condition at infinity (ψ(r = ∞) = 0). One
has to truncate the sum (32) at some large n = N and check that
for greater n the roots converge.
G. T. Horowitz and V. E. Hubeny, Phys. Rev. D62, 024027 (2000).
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Methods in the order of growing accuracy for the

low-laying modes: Poschl-Teller → Chandrasekhar-Detweiler
→ WKB → time domain → Fit/interpolation → Frobenius
(Horowitz-Hubeny for AdS)
Below are the values of 2Mω found by different methods:
0.756 − 0.182i - Poschl-Teller
0.74734 − 0.17792i - Chandrasekhar-Detweiler
0.7464 − 0.1784i - 3th order WKB
0.7472 − 0.1780i - 6th order WKB
0.74735 − 0.17792i - time domain
0.747343 − 0.177925i - accurate Frobenius method
The frequencies are given in geometrical units. For conversion
into kHz multiply by 2π(5142HzM⊙/M). The fundamental
mode is approximately 1.2kHz and 0.55ms for a black hole of
10 solar masses.
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Stability of the higher dimensional black holes

If the effective potential V is positive definite, the differential
operator

A = − ∂2

∂r2
∗

+ V (33)

is a positive self-adjoint operator in L2(r∗, dr∗). Then there are
no negative (growing) mode solutions that are normalisable,
i.e. for a well-behaved initial data (smooth data of compact
support), all solutions are bounded at all time.
With the help of the so-called Friedrich extension, the operator
A can be extended to a self-adjoint operator with the same
lower bound of the spectrum of ω (A. Ishibashi, H. Kodama
gr-qc/0312012). After excluding of all cases which can be
proved to be stable with the Friedrich extension, A. Ishibashi
and H. Kodama obtained the following table:
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Tabela: Stability of static black holes.

Tensor Vector Scalar
Q = 0 Q 6= 0 Q = 0 Q 6= 0 Q = 0 Q 6= 0

K = 1 λ = 0 OK OK OK OK OK
D = 4, 5 OK
D ≥ 6 ?

λ > 0 OK OK OK OK
D ≤ 6 OK
D ≥ 7 ?

D = 4, 5 OK
D ≥ 6 ?

λ < 0 OK OK OK OK
D = 4 OK
D ≥ 5 ?

D = 4 OK
D ≥ 5 ?
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By an extensive search of quasinormal modes, both in time and
frequency domains, we have shown that spherically symmetric
static black holes with arbitrary charge and positive (de Sitter)
lambda-term are stable for D = 5, 6, > ...11.
R.A. Konoplya, A. Zhidenko, Nucl. Phys. B777, 182 (2007).
Now the table looks in a different way

Tabela: Stability of static black holes.

Tensor Vector Scalar
Q = 0 Q 6= 0 Q = 0 Q 6= 0 Q = 0 Q 6= 0

K = 1 λ = 0 OK OK OK OK OK D ≤ 11 OK

λ > 0 OK OK OK OK D ≤ 11 OK D ≤ 11 OK

λ < 0 OK OK OK OK
D = 4 OK
D ≥ 5 ?

D = 4 OK
D ≥ 5 ?

And what about AdS cases?
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According to S. Gubser, I. Mitra, JHEP 08, 018 (2001) we should
suspect instability there. Indeed there was considered the D = 5
RNAdS black hole and it was found that AdS black holes which
lack local thermodynamic stability often also lack stability against
small perturbations.
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Reviews on quasinormal modes of black holes:
"Quasinormal modes of stars and black holes", Kostas D.
Kokkotas, Bernd G. Schmidt, Living Rev. Rel. 2,2 (1999). e-Print:
gr-qc/9909058
"Quasinormal modes: the characteristic ‘sound’ of black holes and
neutron stars"Hans-Peter Nollert, Class. Quant. Grav. 16 R159
(1999).
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