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WMAP-COBE experimental data with satisfactory precision predicts
that the sufficient model of our Universe is an exact solution of
the Einstein field equations of General Relativity - the Friedmann-
Lemaître-Robertson-Walker flat Spacetime. In frames of this model
we can explain physics of the Cosmic Microwave Background Radi-
ation, but still is not clear the Nature of the CMBR anisotropies.

We try give scenario for the CMBR anisotropies based on application of
Quantum Field Theory and Quantum Information Theory language to the
classical Friedmann-Lemaître-Robertson-Walker Universe.
In this lecture I present introduction to the strict method for obtain of

thermodynamics of the Universe. We will study the cosmological constant
approximation - the model of Quintessence.
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Classical Friedmann Universe

The Universe is homogenous, flat and isotropic expanding Spacetime founded
by A.A. Friedmann, G.-H. Lemaître, H.P. Robertson and A.G. Walker

ds2 = dtdt− a2(t)dxidxi, (1)
where a(t) is cosmological scale factor. Friedmann introduced change of dif-
feoinvariants t→ η

dη = dt/a(t) . (2)
With this the interval (1) takes the pseudo-euclidean form

ds2 = a2(η)
(
dηdη − dxidxi

)
. (3)

In 1958 P.A.M. Dirac proposed change the Friedmann integral measure (2) by

dη = Nd(x
0)dx0, (4)

where Nd(x
0) is the lapse function, x0 is object of diffeomorphisms

x0 → x̃0 = x̃(x0), (5)
introduced by Albert Einstein.
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The Dirac approach to General Relativity

The General Relativity with Matter fields is described by the Hilbert action

A =

∫
d4x
√
−g
{
−1

6
R + LM

}
, (6)

where g = det gµν, gµν is the metric tensor of the Space-time, LM is the Matter
fields Lagrangian and R is the Ricci scalar.
The Hilbert action (6) calculated for the Universe (1) is

A[a] = −V
∫
dx0

{
1

Nd

(
da

dx0

)2

+ Nda
4〈H(x0)〉

}
, (7)

where

〈H(x0)〉 =
1

V

∫
d3x HM(xi, x0), (8)

V =

∫
d3x <∞, (9)

are the zeroth Fourier harmonic of the Matter Hamiltonian and spatial volume,
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respectively. We calculate the canonical conjugate momentum of the theory

pa = −2V

Nd

da

dx0
, (10)

and using this momentum the Friedmann Universe action (7) becomes

A[a] = −V
∫
dx0

{
p2
a

4V 2
+ a4〈H(x0)〉

}
. (11)

From the Hamiltonian reduction viewpoint reduced action has a form

A[a] =

∫
dx0

{
pa
da

dx0
− H(pa, a)

}
, (12)

where H(pa, a) is a fuction on phase space of the system. We obtain

H(pa, a) = Nd

[
− p

2
a

4V
+ V 〈H(x0)〉a4

]
(13)

Dirac said that action principle with respect to Nd applied to the action (12)
produce Hamiltonian constraint equation, which in our case is

δA[a]

δNd
= 0 = − p

2
a

4V
+ V 〈H(x0)〉a4. (14)
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If we resolve this constraints equation we obtain

a(t)

a(t0)
= exp

{
sgn(t− t0)

∫ t

t0

dx0
√
〈H(x0)〉

}
, (15)

and it is the Hubble law.
The Hamilton constraints expressed by conformal time are

pa = −2V
da

dη
= ±ωa, (16)

where ωa = 2V
√
〈H(η)〉a2(η). By this we have ODE on a(η)

−da
dη

= ±
√
〈H(η)〉a2(η). (17)

In this equation variables can be separated and elementary integration gives

a(η) =
a(η0)

1 + z(η0; η)
, (18)
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and it is the Hubble law too. We have defined the quantity

z(η0; η) = a(η0)sgn(η − η0)

∫ η

η0

dη′
√
〈H(η′)〉 =

= H0|η − η0| +
(

1 +
q0

2

)
H2

0(η − η0)2 + . . . , (19)

that is called redshift. Constants H0 and q0 are called the Hubble parameter
and the deceleration parameter

H0 =
√
〈H(η0)〉a(η0), (20)

q0 =
2

H0

〈Ḣ(η0)〉
〈H(η0)〉

− 2. (21)
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Quintessence model

We understand the Quintessence as a kind of Matter characterized by constant
energy Λ

〈H(η)〉 = 〈H(η0)〉 = Λ, (22)
〈Ḣ(η)〉 = 〈Ḣ(η0)〉 = 0. (23)

For this model we have
H0 = Λ1/2a(η0), (24)
q0 = −2, (25)

z(η0; η) = H0|η − η0|. (26)
Solution of Hamilton constraints for the Quintessence is

pa = ±ωa(η) = ±2V Λ1/2a2(η) = ±ωa(η0)

(
a(η)

a(η0)

)2

, (27)

where
ωa(η0) = 2V Λ1/2a2(η0) = 2V

H2
0√
Λ
. (28)

8



Quantization Procedure of the Universe

For quantization of the Universe with Quintessence we use a set of steps

1. First quantization of the classical constraints by Dirac recept. Equation on
the wave function Ψ of the Universe,

2. Classical Hamilton equation of motion for field Ψ and their conjugate mo-
mentum field ΠΨ,

3. Quantization of the Hamilton equations by nonfockian distributions in the
Fock space of annihilation and creation operators,

4. The Bogoliubov transformation. Diagonalization of quantum Hamilton
equations,
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Quantum Mechanics of the Universe

Dirac proposed applying of the first quantization to the constraints equation.
The Hamiltonian constraint equation for the Universe is

p2
a − ω2

a = 0, (29)

with ωa = ±2V Λ1/2a2. Classical solution of this constraints is given by the
Hubble law

a(η) =
a(η0)

1 + Λ1/2(η − η0)a(η0)
. (30)

The first quantization is given by CCR

i [p̂a, a] = 1, (31)

where p̂a = −i ∂
∂a

. We assume that the wave function Ψ(a) exist. The final
result is the Wheeler-DeWitt equation(

∂2
aa + ω2

a

)
Ψ(a) = 0, (32)

that describes Quantum Mechanics of the Friedmann-Lemaître Spacetime.
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Classical field theory of the Universe

The Wheeler-DeWitt equation looks like the Klein-Gordon equation for the bo-
son with mass ωa. Let’s consider the Wheeler-DeWitt equation as an equation
of motion for the classical field Ψ.
By heuristic analogy with Klein-Gordon mass field we construct the action

S [Ψ] =
1

2

∫
da
{

(∂aΨ)2 − ω2
aΨ

2
}
. (33)

It is not difficult to check that this action is correct. Recall that by the
Hamilton action principle we have generally

δS [Ψ] ≡ 0 =

{
δS [Ψ]

δΨ
− ∂a

δS [Ψ]

δ∂aΨ

}
δΨ + ∂a

{
δS [Ψ]

δ∂aΨ
δΨ

}
. (34)

The second term vanishes on boundaries and by this we obtain
δS [Ψ]

δΨ
− ∂a

δS [Ψ]

δ∂aΨ
= 0→

∫
da
{
ω2
aΨ + ∂a∂aΨ

}
= 0⇒

(
∂a∂a + ω2

a

)
Ψ = 0,

what is exactly the Wheeler-DeWitt equation.
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The conjugate momentum field corresponds with the action is

ΠΨ =
δS [Ψ]

δ (∂aΨ)
= ∂aΨ, (35)

With this momentum the action (33) reduces into the form

S [Ψ] =

∫
da

ΠΨ∂aΨ−
1

2

(
Π2

Ψ + ω2
aΨ

2
)︸ ︷︷ ︸

H(ΠΨ,Ψ)

 , (36)

where H(ΠΨ,Ψ) is the Hamiltonian. The Hamilton equations of motion are

∂H(ΠΨ,Ψ)

∂ΠΨ
= ∂aΨ

∂H(ΠΨ,Ψ)

∂Ψ
= −∂aΠΨ

 =⇒ ∂a

[
Ψ

ΠΨ

]
=

[
0 1
−ω2

a 0

] [
Ψ

ΠΨ

]
.

We will base Quantum Gravity on the Hamilton equations of motion
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Quantization of the Hamilton equations of motion

Analogy presented in previous section products conclusion
QFT of the Universe should be build in language of boson Fock space

The boson Fock space of creation G† and annihilation G operators is construct
by CCRs [

G(a(η)),G†(a(η′))
]

= δ(a(η)− a(η′)),

[G(a(η)),G(a(η′))] = 0. (37)

Analogy with the Klein-Gordon case gives the 2nd quantization in the form

[
Ψ(a)

ΠΨ(a)

]
−→

[
Ψ(a)

ΠΨ(a)

]
=


1√
2ωa

1√
2ωa

−i
√
ωa
2
i

√
ωa
2

[ G(a)
G†(a)

]
. (38)

The matrix depend on a and by this we have nonfockian representation in the
Fock space, but correct CCR for Ψ and ΠΨ is preserved

[ΠΨ(a(η)),Ψ(a(η′))] = −iδ(a(η)− a(η′)). (39)
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We can translate the Wheeler-DeWitt action into the Fock space

S(G,G†) =

∫
Da
{
i
G†∂aG − G∂aG†

2
−H

}
, (40)

where the effective Hamiltonian H is

H =

(
G†G +

1

2

)
ωa +

i

2

(
G†G† − GG

)
∆, (41)

where ∆ =
∂aωa
2ωa

has sense of coupling. The Hamiltonian (41) is well known
from the Many Particle Physics as the Hamiltonian of the boson superfluidity.
Quantization of the Hamilton equations of motion gives

∂a

[
Ψ

ΠΨ

]
=

[
0 1
−ω2

a 0

] [
Ψ

ΠΨ

]
=⇒ i∂a

[
G
G†
]

=

[
−ωa 2i∆
2i∆ ωa

] [
G
G†
]

(42)

These equations are understood as the Heisenberg equations for G and G† with
nonlinearity in form of nondiagonal elements in the evolution matrix (42). We
see that the quantum evolution (42) is not diagonal.
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Diagonalization of equations of motion

Now we diagonalize this evolution. Firstly we use

The boson Bogoliubov transformation We change the basis (G†,G) on
the other basis (W†,W) in the Fock space by general transformation[

W(a)
W†(a)

]
=

[
u(a) v(a)
v∗(a) u∗(a)

] [
G(a)
G†(a)

]
. (43)

If we want to preserve CCRs[
W(a(η)),W†(a(η′))

]
= δ(a(η)− a(η′)) (44)

[W(a(η)),W(a(η′))] = 0, (45)

we obtain the rotation condition

|u(a)|2 − |v(a)|2 = 1. (46)
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After this we apply

Diagonalization of the quantum Hamilton equations of motion Evo-
lution in the basis (W†,W) has a form

i∂a

[
W
W†

]
=

[
ω1 0
0 ω2

] [
W
W†

]
, (47)

with some diagonalization energies ω1 and ω2.
This procedure gives equations for u and v

i∂a

[
v
u

]
=

[
−ωa −2i∆
−2i∆ ωa

] [
v
u

]
. (48)

and values of the diagonalization energies ω1 and ω2 are trivial

ω1 = ω2 = 0. (49)

By this we have solution of the equations (47)

W(a) = W(a0), (50)
W†(a) = W†(a0), (51)
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and the operator NW =W†W =W†(a0)W(a0) is an integral of motion
∂aNW = 0. (52)

By this exist the stable Bogoliubov vacuum state |0〉
W|0〉 = 0, 〈0|W† = 0. (53)

Since hyperbolic property of the Bogoliubov coefficients we parameterize
v(a) = eiθ(a) sinhφ(a), (54)
u(a) = eiθ(a) coshφ(a), (55)

and by this way the equations (48) are equivalent to
∂aθ(a) = ±ωa = pa, (56)

∂aφ(a) = −2∆ = −∂aω
ω

= −∂a ln |ωa| , (57)

with obvious solutions

θ(a) =

∫ a

a0

pada, (58)

φ(a) = − ln

∣∣∣∣ ωa(η)

ωa(η0)

∣∣∣∣. (59)
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By this we have

v(a) =
1

2
exp

{
i

∫ a

a0

pada

}(
ωa(η0)

ωa(η)
− ωa(η)

ωa(η0)

)
, (60)

u(a) =
1

2
exp

{
i

∫ a

a0

pada

}(
ωa(η0)

ωa(η)
+
ωa(η)

ωa(η0)

)
. (61)

In the Einstein-Hilbert General Relativity the Space-time creates
Gravity, and Gravity creates the Space-time.

Presented formalism describes the Space-time in language of Collective Phe-
nomena. These phenomena have place in gas, which is mixture of quanta of
Gravity and the Quintessence, that is approximation of bosons and fermions
fields. Our proposition for Quantum Gravity is applying of the Graviton-
Matter gas approach. In this language formulation of physics is clear.
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Thermodynamics of the Universe

The Graviton-Matter gas is the system in thermodynamical nonequilibrium,
particles of the gas go out from the system. As a recept we diagonalized
the quantum Hamilton equations of motion, and we have found basis in the
Fock space where particle number operator is integral of motion. By this
thermodynamical equilibrium of the gas is present.

Density matrix and entropy

Graviton-Matter gas is open quantum system and should be describe by nonequi-
librium quantum statistical mechanics methods. In standard approach the
oneparticle density operator is particle number operator

%G = G†G, (62)

and if we rewrite this operator in (W ,W†) basis we have

%G = W†ρW, (63)
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where W =

[
W
W†

]
and

ρ =

[
|u|2 −uv
−u∗v∗ |v|2

]
, (64)

is the density matrix for Graviton-Matter gas in thermodynamical equilibrium.
Physical entropy is defined by the Quantum Information Theory

S = −tr(ρ ln ρ)

tr(ρ)
≡ ln Ω, (65)

where Ω is the partition function that for the Graviton-Quintessence gas is
equal to

Ω =
1

2|u|2 − 1
. (66)
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Temperature

If we identify Ω for the gas (66) with the Bose-Einstein type partition function
we obtain

Ω =
1

2|u|2 − 1
≡ 1

exp
E

T
− 1

=⇒ T =
E

ln 2|u|2
, (67)

where we used the Gibbs state type. This type of identification has a sense if
and only if we identify

E ≡ U− µN, (68)
where U is internal energy, µ is chemical potential and N is number of particles
of the Graviton-Matter gas, respectively.
We have seen that the effective Hamiltonian (41) is

H =

(
G†G +

1

2

)
ωa +

i

2

(
G†G† − GG

)
∆. (69)

In thermodynamical equilibrium this effective Hamiltonian has a form

H = W†HW, (70)
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where

H =

 |u|
2 + |v|2

2
ωa + i

u∗v − uv∗

2
∆ −uvωa + i

uu− vv
2

∆

−u∗v∗ωa − i
u∗u∗ − v∗v∗

2
∆
|u|2 + |v|2

2
ωa + i

u∗v − uv∗

2
∆

 , (71)

is matrix of the effective Hamiltonian.
In Quantum Statistical Mechanics internal energy U is defined by quantum

average of the effective Hamiltonian

U = 〈H〉 =
tr(ρH)

trρ
. (72)

After averaging we obtain

U =

(
1

2
+ 2N +

N

2N + 1

)(√
N + 1−

√
N
)
ωa(η0), (73)

where N is a number of particles of the gas

N = |v|2. (74)
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By this the chemical potential for the gas is

µ =

2 +
1

(2N + 1)2
−

1

2
+ 2N +

N

2N + 1

2
√

N(N + 1)

(√N + 1−
√

N
)
ωa(η0), (75)

and temperature T is equal to

T[N]

T[0]
=

√
N+1−

√
N

ln(2N+2)/ ln 4

[(
1

2
+2N+

N

2N+1

)(
1+

1

2

√
N

N+1

)
−2N− N

(2N+1)2

]
,

(76)

where T[0] =
ωa(η0)

ln 4
is today contribution from the gas temperature. The

equation of state for the Graviton-Quintessence gas has a form
U

T
=

ln(2N + 2)

1 +
1

2

√
N

N + 1
− N

2N + 1

1 + 2(2N + 1)2

N− 1 + 3(2N + 1)2

. (77)
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Graviton-Matter gas as solution for Quantum Gravity

Physical sense of the Graviton-Matter approach to the Cosmic Microwave
Background radiation temperature anisotropies arises from the following sce-
nario. From physical viewpoint we can think about our Universe as a gas
of gravitons, gauge bosons, and material particles as electrons, quarks, Higgs
particles etc. If in our thinking huge volume of the Universe is respected, the
conclusion is that during our all observations and measurements of the Universe
physical properties, we are on the position of an element of the gas - an ob-
server in the Universe is an element of the Universe. By this way observations
of the temperature anisotropies of the CMB radiation, which we understand
as an effect of condensation of all particles and fields in the Universe, are nat-
ural conceptual consequence of this approach. From the Graviton-Matter gas
viewpoint the Quantum Gravity has a sense of effective theory and collective
phenomena language seems adequate to description of the Universe physics.
For this reason, in our opinion the Graviton-Matter gas approach is interesting
for further researches in Quantum Cosmology.
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