Electron-positron annihilation emission from the Galaxy

E.Churazov, R.Sunyaev, S.Sazonov, M.Revnivtsev, D.Varshalovich

INTEGRAL Observatory

Energy range : 20 keV - 8 MeV Angular resolution: 10'-1° Energy resolution: E/∆E~600 @ 1 MeV

Ge, 85°

Energy resolution ~2 keV @ 511 keV

e^+e^- Line @ 511 keV from Galactic Center region

 Discovered in 1972 as a ~ 476 keV feature (Rice U, Nal) Johnson, Harden & Haymes, 1972; Johnson & Haymes, 1973
 Identified with a narrow 511 keV line in 1978 (Bell-Sandia, Ge) Leventhal, MacCallum & Stang, 1978
 Observed by e.g. SMM, OSSE, TGRS ...

Spatial distribution is uncertain Spectral properties are uncertain Origin of positrons is uncertain

(Many) Potential sources of positrons:

```
astrophysics
```

```
Nucleosynthesis:
Massive stars (SN II, WR: e.g. <sup>26</sup>Al) 
Low mass stars (SNIa - <sup>56</sup>Co, Novae - <sup>13</sup>N)
```

Cosmic ray protons interactions with ISM (π^+)

Microquasars (jets), pulsars

Supermassive black hole Sgr A*

(Light) Dark matter annihilation ◀

This school

$$\frac{E}{m_e c^2} = 1.00002 \pm 7 \, 10^{-5}$$
(±3.510⁻⁵)

Velocity < 30 km/s

$FWHM = 2.47 \pm 0.11 \,\mathrm{keV}$

Spread of velocities < 800 km/s => Positrons are cold

Total flux ~ 10^{-3} phot/cm²/s = $10^{43} \beta^{+}/s = 10^{37} \text{ erg/s}$ Processes in hydrogen plasma (dust free)

Positrons born hot - at least few hundred keV

Direct annihilation $\sigma V \approx \pi \sigma_T C$ Bound electrons, free electrons => 2 photons

Deceleration of positrons: Ionization, Excitation, Coulomb losses

- Radiative recombination (if ionized, T low)
- Charge exchange (if neutral, E>6.8 eV) Positronium formation => 2 or 3 photons

Bussard, Ramaty & Drachman 1979

$$DA = 2\gamma$$

$$CE + RR = \begin{cases} Para - positronium & 0.25 & 2\gamma \\ Ortho - positronium & 0.75 & 3\gamma \end{cases}$$

Fraction of positrons forming positronium

F_{PS}**=98**±0.04%

F_{PS} + FWHM →

Annihilation in plasma with T~ 8000-10000 K And ionization degree ~ few %

Upper limit on the hot medium ~ few %

Phase	$T_e K$	n , cm ⁻³	χ	T_s , years	T_a , years
Cold	80	30	0	10^{3}	10^{4}
WN	8000	0.3	0.1	10 ⁵	710^4
WI	8000	0.3	0.5	10 ⁵	710^4
Hot	810⁵	0.003	1	10^{7}	310⁸

Transport of positrons through ISM

Free migration between phases?

- Positrons locked to phase?
- Life time of hot phase?

INTEGRAL ALL-SKY SURVEY (17-60 keV)

ISGRI/INTEGRAL

Krivonos et al., 2007

SPI/INTEGRAL

Not a point source!

Size ~ 6° Flux ~ 10^{-3} ph/s/cm²

- Total flux ~ 10⁻³ phot/cm²/s = 10⁴³ β⁺/s = 10³⁷ erg/s
- Total initial luminosity γ10³⁷ erg/s
- Not a compact source
- Strong bulge
- "Weak" disk B/D= 3 9 [in luminosity 0.3-0.5]

Potential sources of positrons:

```
Nucleosynthesis:
Massive stars (SN II, WR: e.g. <sup>26</sup>Al) 
Low mass stars (SNIa – <sup>56</sup>Ni, Novae - <sup>13</sup>N)
```

Cosmic ray protons interactions with ISM (π^+)

Microquasars (jets), pulsars, GRBs

Supermassive black hole Sgr A*

(Light) Dark matter annihilation ◀

astrophysics

This school

Supernovae

Clayton et al., 70's

SNII (core collapse of massive stars)

$^{56}Ni \rightarrow ^{56}Co \rightarrow ^{56}Fe$, 80 days, $\beta^+ = 19\%$, 0.07 M ×

Positrons are born too early and can not escape

$$^{26}\text{Al} \rightarrow ^{26}\text{Mg}, 7 \ 10^5 \text{ yr}, \beta^+ = 82\%, 0.016 \text{ M}$$

SNII (core collapse) e⁺ - 81.7%

- Ideal channel for enriching ISM with positrons (long life time)
- 1809 MeV line is the tracer for this channel
- Follows the distribution of massive/young stars in the Galaxy

²⁶Al map of the Galaxy

Comptel/GRO

Too few ²⁶Al in the bulge => another channel

p://adc.gstc.nasa.gov/n

Massive stars - are present only in the disk

511кэВ

Positrons are not due to massive stars!

Cosmic Rays: N+p $\rightarrow \pi^+ \rightarrow e^+$

511кэВ

>100 MeV

Whole Galaxy ~ 2.5 10^{42} phot/s (~100 MeV) : $2x\pi^{0}$ $\pi^{+} \sim 10^{42}$ e⁺/s, but we need 10^{43} e⁺/s

Positrons are not due to Cosmic Rays!

Low mass (old) stars – Disk + Bulge

511кэВ

The best match among obvious tracers

Comparison with tracer maps

Knoedlsered et al.

Bulge/Halo + Disk models

SPI flux (imaging) $(1.6-2.4) \times 10^{-3}$ ph cm⁻² s⁻¹

Knoedlsered et al.

Flux ratios for different components

	Bulge	Halo	Disk
Flux (10 ⁻³ ph cm ⁻² s ⁻¹)	1.05 ± 0.07	1.6 ± 0.5	0.7 ± 0.5
L ₅₁₁ (10 ⁴³ ph s ⁻¹)	0.90 ± 0.06	1.2 ± 0.3	0.2 ± 0.1
L _p (10 ⁴³ s ⁻¹)*	1.50 ± 0.10	2.0 ± 0.5	0.3 ± 0.2

* assuming $f_p = 0.93$

The 511 keV line emission is bulge dominated :B/D flux ratio: 1 - 3B/D luminosity ratio: 3 - 9

B/D=0.5 is expected!

Knoedlsered et al.

SNIa (thermonuclear explosion of WD)

Mass ~1.4 M Ni mass ~0.5 M ${}^{56}Ni \rightarrow {}^{56}Co \rightarrow {}^{56}Fe$ 80 days, $\beta^+ = 19\%$

Escape fraction~ few% Enough positrons, but..

Bulge/disk ratio?

Potential sources of positrons:

Nucleosynthesis: <u>Massive stars (SN II, WR: e.g. ²⁶Al)</u> Low mass stars (SNIa - ⁵⁶Co, Novae - ¹³N) ◀ (B/D ratio problem!)

Cosmic ray protons interactions with ISM (π^+)

```
Microquasars (jets), pulsars ?????
```

Supermassive black hole Sgr A* ?????

(Light) Dark matter annihilation ◀

Dark matter and positrons in the GC

Density
$$\rho_{DM} \propto r^{-0.5} - r^{-1.5}$$

Central zone $\rightarrow \rho^2 DM$

Immediately solves Bulge/Disk problem!

Boehm, Silk, Hooper, Ascasibar, Beacom, Pospelov $\rho_{DM} \propto r^{-1}$

M_{DM}<100 MeV (constraints on gamma-rays) If initial energy of positrons is high => difficult to hide Cross section depends on velocity (cosmology)

Direct annihilation of relativistic positrons

E < 30 MeV now E < X MeV (by the end of 2007)

4 Msec (2007)

Conclusions

Two most popular explanations:

A. SNIa +/- Low mass systems but Bulge/Disk ratio!

B. Light dark matter annihilation

"The most famous use of the positron in fiction was Isaac Asimov's use in his robots' positronic brains." (Wikipedia)

2007 = slicing the disk of the Galaxy (B/D)