Approaches to QCD phase diagram; effective models, strong coupling lattice QCD, and compact stars Akira Ohnishi (YITP, Kyoto U.)

"Dense Matter 2015", JINR, Jun.29-Jul.11, 2015. Helmholtz, Int. Summer School & Dubna Int. Adv. School on Theor. Phys. / DIAS-TH, Bogoliubov Lab. of Theor. Phys., Joint Inst. for Nucl. Research, Russia.

HELMHOLTZ INTERNATIONAL SUMMER SCHOOL Dubna International Advanced School of Theoretical Physics / DIAS-TH DENSE MATTER 2015 Bogoliubov Laboratory of Theoretical Physics,

Joint Institute for Nuclear Research, 29 June - 11 July

QCD Phase Diagram

Introduction – QCD phase diagrams

by M. Hempel

- fundamental question: phase diagram of strongly interacting matter
- typical examples in T-μ, first order phase transitions (PT) as lines:

QCD phase diagram (Exp. & Theor. Studies)

Hempel, Cleymans, Castorina, Randrup, and many others

QCD phase transition is not only an academic problem, but also a subject which would be measured in HIC or Compact Stars

<u>AO, PTPS 193('12)1</u>

Net-Proton Number Moments & Directed Flow

Non-monotonic behavior of \kappa \sigma^2 and dv_1/dy. CP signal ?

ΛΛ interaction from ΛΛ correlation at RHIC

 $\Lambda\Lambda$ correlation with long. and transverse flow effects, Σ^0 feed down, and unknown long tail effects

 \rightarrow Constraints on $\Lambda\Lambda$ interaction

K.Morita, T.Furumoto, AO, PRC91('15)024916 [arXiv:1408.6682] Data: Adamczyk et al. (STAR Collaboration), PRL 114 ('15) 022301.

Physics of Dense Matter

- **•** "Dense Matter" ($\rho_B > \rho_0$) and QCD phase diagram would be probed in heavy-ion collisions and compact star phenomena.
- Theoretical approaches to QCD phase diagram
 - Lattice QCD Monte-Carlo simulations (Sign problem)
 - Effective models (Lec.1, prediction is model dependent)
 - Approximation in LQCD, e.g. Strong-coupling lattice QCD
- Dense matter in compact star phenomena
 - Neutron Stars, Supernova, Black Hole formation, Binary Neutron Star Merger,
 - Key variable = $Y_Q = Q(of hadrons) / B$ (Nuclear matter $Y_Q = Y_e$)

 \rightarrow Phase diagram of isospin-asymmetric matter

Contents

- Lecture 1
 - Introduction to physics of QCD phase diagram
 - Spontaneous Chiral Symmetry Breaking in NJL
 - Restoration of Chiral Symmetry in NJL
 - Summary
- Lecture 2
 - Introduction
 - QCD Phase Diagram in Strong-Coupling Lattice QCD
 - Dense Matter in Compact Star Phenomena
 - Summary

Lattice QCD

- Space-time discretization of fields
- Quarks = Grassmann number on sites $\chi_i \chi_j = -\chi_j \chi_i, \quad \int d\chi 1 = 0, \quad \int d\chi \chi = 1$ $\rightarrow \int d\chi_1 d\chi_2 \cdots d\overline{\chi}_1 d\overline{\chi}_2 \cdots \exp(\overline{\chi} D\chi) = det(D)$

Gluons
$$\rightarrow$$
 Link variable
 $U_{\mu}(x) = \exp\left[ig \int_{x}^{x+\hat{\mu}} dx A(x)\right] \sim \exp(ig A_{\mu})$
 $\int dU U_{ab} = 0, \int dU U_{ab} U_{cd}^{+} = \delta_{ad} \delta_{bc} / N_{c}, \int dU U_{ab} U_{cd} U_{ef} = \varepsilon_{ace} \varepsilon_{bdf} / N_{c}!$

Gauge transf.

$$\chi(x) \rightarrow V(x)\chi(x), \ \overline{\chi}(x) \rightarrow \overline{\chi}(x)V^{+}(x), U_{\mu}(x) \rightarrow V(x)U_{\mu}(x)V(x+\hat{\mu})$$
Lattice spacing = a
$$\overline{\chi}(x)U_{\mu}(x)\chi(x+\hat{\mu}) = \text{invariant} \rightarrow \text{Lattice unit: a=1}$$

A. Ohnishi @ Dense Matter School, Dubna, June 29 & July 6, 2015 10

[]+

χ

χ

Lattice QCD action

Lattice QCD action (unrooted staggered fermion)

$$L = \frac{1}{2} \sum_{x} \left[\overline{\chi_{x}} U_{0}(x) e^{\mu} \chi_{x+0} - \chi_{x+0}^{-} U_{0}^{+}(x) e^{-\mu} \chi_{x} \right]$$

$$+ \frac{1}{2} \sum_{x, j} \eta_{j}(x) \left[\overline{\chi_{x}} U_{j}(x) \chi_{x+j} - \chi_{x+j}^{-} U_{j}^{+}(x) \chi_{x} \right]$$

$$+ m_{0} \sum_{x} \overline{\chi_{x}} \chi_{x} \longrightarrow \chi (\partial + \mathbf{i} \mathbf{gA}) \chi$$

$$+ \frac{2N_{c}}{g^{2}} \sum_{plaq.} \left[1 - \frac{1}{N_{c}} \operatorname{Retr} U_{\mu\nu}(x) \right] \operatorname{Stokes}_{\text{theorem}}$$

$$\rightarrow \text{rotation}$$

$$\int \mathbf{x}_{y} (\mathbf{x}) = (-1)^{**} (\mathbf{x}_{0} + ... + \mathbf{x}_{j-1})$$

$$\sum_{x} (\mathbf{x}_{0} + ... + \mathbf{x}_{j-1}) = C \text{hiral transf.}$$

$$\chi_{x} \rightarrow \exp[\mathbf{i} \theta_{\mathbf{x}}(x)] \chi_{x}, \quad \varepsilon(\mathbf{x}) = (-1)^{**} (\mathbf{x}_{0} + \mathbf{x}_{1} + \mathbf{x}_{2} + \mathbf{x}_{3})$$

Sign problem in lattice QCD

Fermion determinant (= stat. weight of MC integral) becomes complex at finite μ in LQCD.

$$Z = \int D[U, q, \overline{q}] \exp(-\overline{q} D(\mu, U) q - S_G(U))$$

=
$$\int D[U] \operatorname{Det}(D(\mu, U)) \exp(-S_G(U))$$

$$\begin{bmatrix} \gamma_5 D(\mu) \gamma_5 \end{bmatrix}^* = D(-\mu^*) \rightarrow \begin{bmatrix} \text{Det}(D(\mu)) \end{bmatrix}^* = \text{Det}(D(-\mu^*)) \\ (\gamma_5 \text{ hermiticity}) \end{bmatrix}$$

- Note: Euclidean $D = \gamma_{\mu} D_{\mu} + m \mu \gamma_0$ ($\gamma =$ Hermite, $D_{\mu} =$ anti-Hermite)
- Fermion det. (Det D) is real for zero μ (and pure imag. μ)
- Fermion det. is complex for finite real μ.
- Approximate methods:
 - Taylor expansion, Imag. μ, Canonical, Re-weighting, Fugacity expansion, Histogram method, Complex Langevin, Strong-coupling lattice QCD

Sign Problem

Monte-Carlo integral of oscillating function

$$Z = \int dx \exp(-x^2 + 2iax) = \sqrt{\pi} \exp(-a^2)$$
$$\langle O \rangle = \frac{1}{Z} \int dx O(x) e^{-x^2 + 2iax} \qquad 1$$

Easy problem for human is not necessarily easy for computers.

 Complex phase appears from fluctuations of H and N.
 de Forcrand

 $Z = \sum \langle \psi | \exp[-(H - \mu N)/T] | \psi \rangle = \sum \prod \langle \psi_{\tau} | \exp[-(H - \mu N)/(N_{\tau}T)] | \psi_{\tau+1} \rangle$

- → Description based on "Hadronic" (color singlet) action would be helpful to reduce fluctuations.
- \rightarrow Strong coupling lattice QCD

Strong Coupling Lattice QCD

Wilson ('74), Creutz ('80), Munster ('80, '81), Lottini, Philipsen, Langelage's ('11)

Kawamoto ('80), Kawamoto, Smit ('81),
Damagaard, Hochberg, Kawamoto ('85),
Ilgenfritz, Kripfganz ('85), Bilic,
Karsch, Redlich ('92), Fukushima ('03);
Karsch, Redlich ('92), Fukushima ('03);
de Forcrand, Unger ('11),
AO, Ichihara, Nakano, AO,
Kawamoto ('07). Miura, Nakano, AO,
Kawamoto ('09), Nakano, Miura,
AO ('10)Mutter, Karsch ('89),
de Forcrand, Fromm ('10),
de Forcrand, Unger ('11),
AO, Ichihara, Nakano, ('12),
Ichihara, Nakano, AO ('14),
de Forcrand, Langelage,
Philipsen, Unger ('14)

Area Law

Wilson ('74), Creutz ('80), Munster ('80, '81)

Wilson loop in pure Yang-Mills theory $\langle W(C=L\times N_{\tau}) \rangle$

$$= \frac{1}{Z} \int DUW(C) \exp\left[\frac{1}{g^2} \sum_{P} \operatorname{tr}(U_P + U_P^*)\right] \mathbf{N}$$
$$= \exp(-V(L)N_{\tau}) \quad \mathbf{V(L)} = \text{heavy-qq pot.}$$

One-link integral

$$\int dU U_{ab} U_{cd}^{+} = \frac{1}{N_{c}} \delta_{ad} \delta_{bc}$$

In the strong coupling limit

$$\langle W(C) \rangle = N\left(\frac{1}{g^2 N}\right)^{L N_{\tau}} \rightarrow V(L) = L \log(g^2 N)$$

Linear potential between heavy-quarks → *Confinement (Wilson, 1974)*

 $= 1/N_{c} g^{2}$

Area Law

Strong Coupling Lattice QCD

Strong coupling limit

Damgaard, Kawamoto, Shigemoto ('84)

$$S_{\text{SCL}} = S_F^{(t)} - \frac{1}{4N_c} \sum_{x,j} M_x M_{x+\hat{j}} + m_0 \sum_x M_x$$
$$(M_x = \overline{\chi}_x \chi_x)$$

Integrate out spatial links using one-link formula, and pick up diagrams with min. quark numbers.

$$\int dU U_{ab} U_{cd}^{+} = \delta_{ad} \delta_{bc} / N_{c}$$

Lattice QCD in SCL → Fermion action with nearest neighbor four Fermi interaction

Finite Coupling Effects

Effective Action with finite coupling corrections Integral of exp(-S_C) over spatial links with exp(-S_F) weight \rightarrow S_{eff}

$$S_{\text{eff}} = S_{\text{SCL}} - \log \langle \exp(-S_G) \rangle = S_{\text{SCL}} - \sum_{n=1}^{\infty} \frac{(-1)^n}{n!} \langle S_G^n \rangle_{\mathcal{C}}$$

<S_cⁿ>_c=Cumulant (connected diagram contr.) *c.f. R.Kubo('62)*

$$S_{\text{eff}} = \frac{1}{2} \sum_{x} (V_{x}^{+} - V_{x}^{-}) - \frac{b_{\sigma}}{2d} \sum_{x,j>0} [MM]_{j,x} \qquad SCL \ (Kawamoto-Smit, \ '81) \\ + \frac{1}{2} \frac{\beta_{\tau}}{2d} \sum_{x,j>0} [V^{+}V^{-} + V^{-}V^{+}]_{j,x} - \frac{1}{2} \frac{\beta_{s}}{d(d-1)} \sum_{x,j>0,k>0,k\neq j} [MMMM]_{jk,x} \qquad NLO \ (Faldt-Petersson, \ '86) \\ - \frac{\beta_{\tau\tau}}{2d} \sum_{x,j>0} [W^{+}W^{-} + W^{-}W^{+}]_{j,x} - \frac{\beta_{ss}}{4d(d-1)(d-2)} \sum_{\substack{x,j>0,|k|>0,|l|>0\\|k|\neq j,|l|\neq j,|l|\neq |k|}} [MMMM]_{jk,x} [MM]_{j,x+\hat{l}} \\ + \frac{\beta_{\tau s}}{8d(d-1)} \sum_{x,j>0,|k|\neq j} [V^{+}V^{-} + V^{-}V^{+}]_{j,x} \left([MM]_{j,x+\hat{k}} + [MM]_{j,x+\hat{k}+0} \right) \qquad NNLO \ (Nakano, Miura, AO, \ '09) \\ - \left(\frac{1}{g^{2}N_{c}} \right)^{N_{\tau}} N_{c}^{2} \sum_{x,j>0} \left(\bar{P}_{x}P_{x+\hat{j}} + h.c. \right) \qquad Polyakov \ loop \ (Gocksch, Ogilvie \ ('85), Fukushima \ ('04) \\ Nakano, Miua, AO \ ('11)) \end{cases}$$

 $\left(g^2 N_c\right)$

A. Ohnishi @ Dense Matter School, Dubna, June 29 & July 6, 2015 18

Nakano, Miua, AO ('11))

Phase diagram in SC-LQCD (mean field)

- Standard" simple procedure in Fermion many-body problem
 - Bosonize interaction term (Hubbard-Stratonovich transformation)
 - Mean field approximation (constant auxiliary field)
 - Fermion & temporal link integral

Damgaard, Kawamoto, Shigemoto ('84); Ilgenfritz, Kripfganz ('85); Faldt, Petersson ('86); Bilic, Karsch, Redlich ('92); Fukushima ('04); Nishida ('04); Miura, Nakano, AO, Kawamoto ('09); Nakano, Miura, AO ('10, '11)

SC-LQCD with Fluctuations

- Monomer-Dimer-Polymer (MDP) simulation Mutter, Karsch ('89), de Forcrand, Fromm ('10), de Forcrand, Unger ('11)
 - Integrating out all links
 → Z= weight sumof monomer,
 dimer, polymer configurations

 $Z(m,\mu) = \sum_{\{n_x,n_b,C_B\}} \prod_b \frac{(N_c - n_b)!}{N_c! n_b!} \prod_x \frac{N_c!}{n_x!} (2m)^{n_x} \prod_{C_B} w(C_B) \quad w(C_B,\pm) = \varepsilon(C_B) \exp(\pm 3\ell L_t \mu)$

- Auxiliary Field Monte-Carlo (AFMC) method Ichihara, AO, Nakano ('14)
 - Bosonize the effective action, and MC integral over aux. field.

$$S_{\text{eff}} = S_F^{(t)} + \sum_{x} m_x M_x + \frac{L^3}{4N_c} \sum_{k,\tau} f(k) \Big[|\sigma_{k,\tau}|^2 + |\pi_{k,\tau}|^2 \Big]$$
$$m_x = m_0 + \frac{1}{4N_c} \sum_{j} (\sigma + i\varepsilon \pi)_{x\pm \hat{j}}, \quad f(k) = \sum_{j} \cos k_j, \quad \varepsilon = (-1)^{x_0 + x_1 + x_2 + x_3}$$

Phase diagram

■ Phase diagrams in two independent methods (MDP & AFMC) agree with each other in the strong coupling limit.
→ SCL phase diagram is determined !

Cumulant Ratio: Phase transition signal ?

Cumulants c.f. Kaczmarek $\chi^{(n)} = \frac{\partial^n (P/T^4)}{\partial \hat{\mu}^n}, \quad \hat{\mu} = \mu_B/T$ $\chi^{(4)}/\chi^{(2)} = \kappa \sigma^2 \quad (\kappa: kurtosis)$

• κσ² shows DOF at μ=0, and criticality at μ>0.

Lattice MC at µ=0

Bazarov, .., Kaczmarek, et al.('14), Bellwied et al.('13), Gavai, Gupta ('05), Allton et al. ('05),

Lattice MC at μ>0 but large m_q Jin, Kuramashi, Nakamura, Takeda, Ukawa ('15)

Scaling function analysis Friman, Karsch, Redlich, Skokov ('11)

Susceptibilities, Skewness, Kurtosis, ...

- Chiral susceptibility \rightarrow Divergent at V $\rightarrow \infty$
- Net baryon skewness $S\sigma \rightarrow +\infty \text{ from below}$ $-\infty \text{ from above}$
- Net baryon kurtosis $\kappa\sigma^2 \rightarrow +-+$ structure

Ichihara. AO, Nakano ('14)

Caveats

- One species of unrooted staggered fermion corresponds to Nf=4 in the continuum limit, and should show the first order phase transition at µ=0. Second order transition shown here comes from O(2) chiral symmetry remaining also at coarse lattice spacing.
- We have worked in the leading order of 1/d expansion, where the MM term is assumed to remain finite at large spatial dim., d. Under this assumption, we quark field scales as χ ∝ d^{-1/4}, then terms with larger number of quarks such as spatial baryon hopping are suppressed. (MDP includes those terms.)
- Positive slope of the first order phase boundary comes from the saturated quark matter at high density, ρ ~ Nc. In this case, entropy is carried by the holes rather than particles, and can be smaller in the high density phase. Thus the Clausius-Clapeyron relation is not violated.

$$P_H = P_Q \rightarrow \rho_H d\mu + s_H dT = \rho_Q d\mu + s_Q dT$$

■ The sign problem exists in SC-LQCD when fluctuations are included, but it is not very severe and V → ∞ limit may be obtained.

Average Phase Factor

Average phase factor
 Weight cancellation

$$\langle e^{i\theta} \rangle = Z_{\text{phase quenched}} / Z_{\text{full}}$$

- AFMC results
 - $< e^{i\theta} > > 0.9$ on 4^4 lattice
 - $< e^{i\theta} > > 0.1$ on 8^4 lattice

Gravitational Collapse of Massive Star

Binary Neutron Star Merger

T ~ 40 MeV, $\rho_B \sim 10^{15}$ g/cm³ ~ 4 ρ_0 ($\rho_0 \sim 2.5 \text{ x } 10^{14}$ g/cm³), Ye ~ 0.1

Courtesy of K. Kiuchi Data are from Y. Sekiguchi, K. Kiuchi, K. Kyotoku, M. Shibata, PRD91('15)064059.

Quark Matter in Compact Stars

Neutron Star

E.g. N. Glendenning, "Compact Stars"; F. Weber, Prog.Part.Nucl.Phys.54('05)193

- Cold (T~0), Dense ($\rho_B \sim 5 \rho_0$), Highly Asymmetric ($Y_p \sim (0.1-0.2)$)
- Supernova T. Hatsuda, MPLA2('87)805; I. Sagert et al., PRL102 ('09) 081101.
 - Warm (T~20 MeV), Dense (ρ_{B} ~1.8 ρ_{0}), mildly asym. (Y_{p} ~ (0.3-0.4))
- Binary Neutron Star Merger

Sekiguchi, Kiuchi, Kyotoku, Shibata, PRD91('15)064059.

- Hot (T~30-40 MeV), Dense ($\rho_{\rm B}$ ~(4-5) $\rho_{\rm 0}$), Highly Asymmetric ($Y_{\rm p}$ ~ (0.1-0.2))
- Dynamical black hole formation

K. Sumiyoshi, et al., PRL97('06) 091101;K.Sumiyoshi, C.Ishizuka, AO, S.Yamada, H.Suzuki, ApJL690('09),L43; Nakazato et al. ('10); Hempel et al. ('12); ...

• Hot (T~(70-90)MeV), Dense($\rho_{\rm B}$ ~(4-5) $\rho_{\rm 0}$), and Asymmetric (Y_p ~ (0.1-0.3))

Comparison of conditions in NS, SN, and HIC

M. Hempel

	neutron stars	supernovae	heavy ion collisions
dynamic timescales	(d - yrs)	ms	fm/c
equilibrium	full	weak eq. only partly	only strong eq.
temperatures	0	0 - 100 MeV	10 - 200 MeV
charge neutrality	yes	yes	no
asymmetry	high	moderate	low
highest densities	< 9 p ₀	< 2-4 p ₀	< 4-5 ρ ₀

weak equilibrium µi = Biµ_B + Qiµq + Liµ∟; µs=0

charge neutrality: Y_Q = Y_e+Y_μ ⇔ n_Q = n_e+n_μ

matter in SN: no weak equilibrium, finite temperature

→ somewhere between cold neutron stars and heavy-ion collisions

Dynamical Black Hole Formation

- Gravitational collapse of heavy (e.g. 40 M_{\odot}) progenitor would lead to BH formation.
 - Shock stalls, and heating by v is not enough to take over strong accretion. → failed supernova
 - v emission time ~ (1-2) sec w/o exotic matter.
 - emission time is shortened by exotic dof (quarks, hyperons, pions). Collapse Luminosity **Re-Collapse & Bounce** $\langle E_v \rangle = [MeV]$ & BH formation 10^{3} 30 20 **Nucleons** radius [km] with Hyperons 10^{2} Shen **EOS** (Ishizuka EOS) 2x10⁵³ 10¹ Lv [erg/s] time 10^{0} 0.5 0.01.0 1.5 time Sumiyoshi, Yamada, Suzuki, 10 Chiba, PRL 97('06)091101. Sumiyoshi, Ishizuka, AO, Yamada, A. Ohnishi @ Dense McSuzuki, ApJL 690('09)43. 31

Thermal Condition during BH formation

- Quark-hadron and nuclear physicists are interested in (T, μ) !
 - Maximum T ~ 90 MeV (off-center) (Heated by shock propagation)
 - Maximum $\mu_{\rm B} \sim 1300$ MeV (center)
 - Maximum $\delta \mu = (\mu_n \mu_p)/2 \sim 130$ MeV (center)

Can we reach CP? What is the effects of $\delta \mu$?

Nucleon+leptons+photon (Shen EOS), 40 Msun AO, Ueda, Nakano, Ruggieri, Sumiyoshi, PLB704('11),284

Thermal Condition during BH formation

Ishizuka, AO, Tsubakihara, Sumiyoshi, Yamada, JPG 35('08) 085201; AO et al., NPA 835('10) 374.

Chiral Effective Models

Chiral Effective models: NJL, PNJL, PQM NJL=Nambu-Jona-Lasinio model, PNJL=Polyakov loop extended NJL, PQM=Pol. loop ext. Quark Meson model

Nambu, Jona-Lasinio ('61), Fukushima('03), Ratti, Thaler, Weise ('06), B.J.Schafer, Pawlowski, Wambach ('07); Skokov, Friman, E.Nakano, Redlich('10)

- Spontaneous breaking & restoration of chiral symmetry

Chiral Effective Models ($N_f=2$)

Lagrangian (PQM, as an example)

 $L = \overline{q} \Big[i \gamma^{\mu} \underline{D}_{\mu} - g_{\sigma} (\sigma + i \gamma_{5} \tau \cdot \pi) \Big] q + \frac{1}{2} \partial^{\mu} \sigma \partial_{\mu} \sigma + \frac{1}{2} \partial^{\mu} \pi \cdot \partial_{\mu} \pi$ $q-Pol. \quad quark-meson$ $-U_{\sigma} (\sigma, \pi) - U_{\Phi} (\Phi, \overline{\Phi})$ $chiral \quad Polyakov$ $F_{eff} \equiv \Omega / V = U_{\sigma} (\sigma, \pi = 0) + U_{\Phi} (\Phi, \overline{\Phi}) + F_{therm} + U_{vac} (\sigma, \Phi, \overline{\Phi})$ $particle exc. \quad q zero point$ Polyakov loop effective potential from Haar measure

Polyakov loop effective potential from Haar measure U_Φ ~ -log (Haar Measure) (Fit lattice data to fix parameters).

Vector coupling is not known well → Comparison of g_v/g_s=0, 0.2
L_v=-g_v q̄ γ_µ(ω^µ + τ· R^µ)q-1/4 ω_{µv}ω^{µv}-1/4 R_{µv}· R^{µv} + 1/2 m_ω² ω_µω^µ + 1/2 m_ρ² R_µ R^µ
8 Fermi interaction

T. Sasaki, Y. Sakai, H. Kouno, M. Yahiro ('10)

$$G_{\sigma 8}\left[(\bar{q}q)^2+(\bar{q}i\gamma_5\boldsymbol{\tau}q)^2\right]^2$$

Model Details

BH formation calculation

Sumiyoshi, Yamada, Suzuki, Chiba, PRL 97('06)091101.

- v radiation 1D (spherical) Hydrodynamics
- v transport is calculated exactly by solving the Boltzmann eq.
- Gravitational collapse of 40 M_{\odot} star
- Initial condition: WW95 S.E.Woosley, T.A.Weaver, ApJS 101 ('95) 181
- Shen EOS (npeµ)
- QCD effective models
 - NJL, PNJL, PNJL with 8 quark int., PQM
 - $N_f = 2$
 - Vector coupling $\rightarrow G_v/G_s$ (g_v/g_s in PQM)=0, 0.2

Isospin chemical potential

Isospin chemical potential $\delta\mu$ $\delta\mu = (\mu_d - \mu_u)/2 = (\mu_n - \mu_p)/2 \rightarrow \mu_d = \mu_q + \delta\mu, \ \mu_u = \mu_q - \delta\mu$

AO, Ueda, Nakano, Ruggieri, Sumiyoshi, PLB704('11),284 H. Ueda, T. Z. Nakano, AO, M. Ruggieri, K. Sumiyoshi, PRD88('13),074006

How is quark matter formed during BH formation ?

- Highest μ_B just before horizon formation ~ 1300 MeV
 > QCD transition μ (1000-1100 MeV)
 → Quark matter is formed before BH formation
- Core evolves below CP, Off-center goes above CP → CP sweep

How is quark matter formed during BH formation ?

Model dependence to form quark matter \rightarrow Three ways

Probed Region of Phase Diagram during BH formation

- CP location in Symmetric Matter
 - Lattice QCD μ_{CP}=(400-900) MeV
 - Effecitve models
 μ_{CP}=(700-1050) MeV
- CP in Asymmetric Matter (E.g. δμ=50 MeV)
 - T_{CP} decreases at finite $\delta\mu$.
 - \rightarrow Accessible (T, μ_B) region during BH formation

M.A.Stephanov, Prog.Theor.Phys.Suppl.153 ('04)139; FK02:Z. Fodor, S.D.Katz, JHEP 0203 (2002) 014 LTE:S. Ejiri et al., Prog.Theor.Phys.Suppl. 153 (2004) 118; Can: S. Ejiri, PRD78 (2008) 074507 Stat.:A. Andronic et al., NPA 772('06)167

How about Neutron Stars ?

- Contraction of Proto-Neutron Star
 - (T, μ_B) are not enough at 1 sec after bounce of 15 M_{\odot} star collapse
 - Larger (T, μ_B) is expected in long time evolution (~20 sec) or heavier proto-neutron stars.
 K. Sumiyoshi et al. ApJ 629 ('05) 922; *J. A. Pons et al., ApJ* 513 ('99)780; *J. A. Pons et al., ApJ* 553 ('01) 382.
- Cold Neutron Star
 - max. δ μ~ 100 MeV
 - Possibility of cross over in NS

Discussion

- How can we observe the phase transition signal ?
 - v spectrum ? Gravitational waves ? Supernova: Second peak in v & v emission *Hatsuda('87), Sagert et al.('09)*
- How frequent do dynamical BH formation take place ?
 - Less frequent than SN (< 20 M_{\odot}), but should be in collapse of heavy stars (>40 M_{\odot}).

C.L.Fryer, ApJ 522('99)413; E.O'Connor, C.D.Ott, ApJ 730('11)70

- Strangeness may reduce δμ in hadronic / quark matter
 - No s-wave π cond. in NS
 AO, D. Jido, T. Sekihara,
 K. Tsubakihara, PRC80('09)038202.
- Hadron-Quark EOS is necessary

E.g. Steinheimer, Schramm, Stocker('11)

Summary of Lecture 2

- While we have the sign problem in lattice QCD at finite µ, the phase diagram study is on going using various ideas. I have shown recent results based on the strong-coupling lattice QCD.
 - Smaller weight cancellation allow us to study phase transition at high density.
 - Phase diagram in the strong coupling limit has been confirmed. (Results from MDP and AFMC methods agree.)
 - Cumulant ratio would be interesting !
- Compact stars are also good laboratories of dense matter.
 - Solution Soluti Solution Solution Solution Solution Solution Solution S
 - With the first order boundary (and CP) and isospin chem. pot, there are many ways of realizing phase transition in compact star phenomena.

- Dense matter is "terra incognita", and there are many unsolved problems.
- In heavy-ion collisions at √s = 5-10 A GeV, we expect formation of highest baryon density matter, whose density exceeds 5 ρ₀.
 In equilibrium, this would be above the transition density.
- In compact star phenomena, hydro simulations with hadronic matter EOS suggest the formation of dense matter (4-5 ρ₀, μ_B ~ 1300 MeV), which is above the transition density in many effective models.
- We need more experimental, observational, and theoretical works to explore dense matter.

