Neutrino Processes in Neutron Stars

2. Inclusion of strong interactions

Ren Lugere

Green's functions

N-body system: wave function of the whole system $\Psi(x_1, x_2, ..., x_N)$ encodes the dynamics of all particles and is very complicated

Introduce the object which describes the dynamics of the reduced number of particles of interest

Amplitude of particle transition from a point (x,t) to a point (x',t')

$$\Psi(\boldsymbol{x}',t') = \int d\boldsymbol{x} \, G^{(+)}(\boldsymbol{x}',t';\boldsymbol{x},t) \Psi(\boldsymbol{x},t) \quad t' > t$$

Green's function of non-interacting fermions

$$\begin{split} i G(\boldsymbol{x}, t; \boldsymbol{x}', t') = &< N |T\{\hat{\Psi}(\boldsymbol{x}, t) \, \hat{\Psi}^{\dagger}(\boldsymbol{x}', t')\} |N > \\ = &< N |\hat{\Psi}(\boldsymbol{x}, t) \, \hat{\Psi}^{\dagger}(\boldsymbol{x}', t')| N > \theta_{t-t'} - < N |\hat{\Psi}^{\dagger}(\boldsymbol{x}', t') \, \hat{\Psi}(\boldsymbol{x}, t)| N > \theta_{t'-t} \end{split}$$

$$G(\epsilon, p) = \frac{1 - \mathbf{n}_{\mathbf{p}}}{\epsilon - \epsilon_p + i \, 0} + \frac{\mathbf{n}_{\mathbf{p}}}{\epsilon + \epsilon_p^h - i \, 0}$$

T = 0

$$G(\epsilon, \mathbf{p}) = \frac{1}{\epsilon - \epsilon_p + i \operatorname{sign}(\epsilon)}$$

$$n_p = \theta(p_{\rm F} - p)$$

$$\epsilon_p^h = -\epsilon_p$$

$$\epsilon_p = \frac{p^2 - p_{\rm F}^2}{2m}$$

Diagram technique

Ground state:

$$iG(x,y) = =$$

in interaction picture: $iG = \langle N | \widehat{T} \{ \widehat{\Psi}_I(x) \widehat{\Psi}_I^{\dagger}(y) \} \widehat{S} | N \rangle \langle \widehat{S}^{-1} \rangle$

transition from the ground state to the ground state under action of evolution operator

$$\widehat{S} = \widehat{T} \exp \left\{ -i \int_{-\infty}^{\infty} \widehat{V}_{I}(t) dt \right\}$$

$$\widehat{V}_{I}(t) = e^{i \widehat{H}_{0}(\mu)} t \widehat{V} e^{-i \widehat{H}_{0}(\mu)} t$$

$$\widehat{H}_{0}(\mu) = H_{0} - \sum_{a} \mu_{a} \widehat{N}_{a}$$
time ordering

Only one type of Green's functions

Full Green's function

particle-line

analogously for the hole-line

Particle-particle interaction

two-particle irreducible interaction

 $\widehat{T}_{\rm pp}(p,p',q) = \widehat{V}(p,p',q) + \int \frac{\mathrm{d}^4 p''}{(2\pi)^4 \, i} \widehat{V}(p,p'',q) \,\widehat{G}(q/2+p'') \,\widehat{G}(q/2-p'') \,\widehat{T}_{\rm pp}(p'',p',q)$

Particle-particle interaction

 $-i\,T_{\rm ph}(p,p';q) =$ U

$$\widehat{T}_{\rm ph}(p,p',q) = \widehat{U}(p,p',q) + \int \frac{\mathrm{d}^4 p''}{(2\pi)^4 \, i} \widehat{U}(p,p'',q) \, \widehat{G}(q/2+p'') \, \widehat{G}^h(q/2-p'') \, \widehat{T}_{\rm ph}(p'',p',q)$$

[Wambach, Ainsworth, Pines NPA555]

Jackson, Lande, Smith PR86

$$\frac{\delta E}{\delta n(p)} = \varepsilon(p)$$

$$\varepsilon(p) = \varepsilon^{(0)}(p) + \sum_{p'} f(p, p') \,\delta n(p')$$

NUCLEAR FERMI LIQUID

$$G(\epsilon, \mathbf{p}) = \frac{a}{\epsilon - \epsilon_p + i \gamma \epsilon^2 \operatorname{sign} \epsilon} + G_{\operatorname{reg}}(\epsilon, \mathbf{p})$$

Fermi liquid approximation

particle-hole propagator for $q \rightarrow 0$

n = p/p

$$-iT_{\rm ph}(p,p';q) =$$

for $|\boldsymbol{p}| \simeq p_{\mathrm{F}} \simeq |\boldsymbol{p}'|$ and $|\boldsymbol{q}\boldsymbol{p}| << \omega << \epsilon_{\mathrm{F}}$

$$\widehat{T}_{\rm ph}(\boldsymbol{n},\boldsymbol{n}\,',q) = \widehat{\Gamma}^{\omega}(\boldsymbol{n},\boldsymbol{n}\,') - \int \frac{d\Omega_{p''}}{4\,\pi} \widehat{\Gamma}^{\omega}(\boldsymbol{n},\boldsymbol{n}\,') \,\boldsymbol{A}(\boldsymbol{n},\boldsymbol{q}) \,\widehat{T}_{\rm ph}(\boldsymbol{n},\boldsymbol{n}\,',q)$$

$$A(\boldsymbol{n},\boldsymbol{q}) = a^2 \frac{m^* \, p_{\rm F}}{\pi^2} \frac{v_{\rm F} \, \boldsymbol{q} \boldsymbol{n}}{\omega - v_{\rm F} \boldsymbol{q} \boldsymbol{n} + i\,0}$$

complicated dynamics is here:

$$\widehat{\Gamma}_{\mathrm{ph}}^{\omega}(\boldsymbol{n},\boldsymbol{n}\,') = \widehat{U}(\boldsymbol{n},\boldsymbol{n}\,') - \int \frac{d^4 p''}{(2\pi)^4 \, i} \widehat{U}(\boldsymbol{n},\boldsymbol{n}\,') \, \boldsymbol{B}(\boldsymbol{p},\boldsymbol{q}=\boldsymbol{0}) \, \widehat{\Gamma}_{\mathrm{ph}}^{\omega}(\boldsymbol{n},\boldsymbol{n}\,')$$
parameterize
Landau-Migdal parameters
$$1 \, \mathbf{2} = f_{12}(\boldsymbol{n},\boldsymbol{n}\,') + g_{12}(\boldsymbol{n},\boldsymbol{n}\,') \, \boldsymbol{\sigma}_1 \boldsymbol{\sigma}_2$$
extracted from experiment

$$= C_0 \left(f + f' \, \boldsymbol{\tau}_1 \boldsymbol{\tau}_2 + g \, \boldsymbol{\sigma}_1 \boldsymbol{\sigma}_2 + g' \, \boldsymbol{\sigma}_1 \boldsymbol{\sigma}_2 \, \boldsymbol{\tau}_1 \boldsymbol{\tau}_2 \right)$$

 $C_0 = \frac{\pi^2}{m_N p_{FN}(n_0)} \simeq 300 \text{ MeV fm}^3 \simeq 0.77 m_\pi^{-2} \text{ introduced for convenience}$

$$f(\cos \theta_{pp'}) = \sum_{l} f_l P_l(\cos \theta_{pp'}) \qquad g(\cos \theta_{pp'}) = \sum_{l} g_l P_l(\cos \theta_{pp'}) \qquad \dots$$

to be fitted to empirical information (nucleus properties)

effective mass
$$m^* = m \left(1 + \frac{2}{3} f_1\right)$$

compressibility
$$K = 6 \, \frac{p_{
m F}^2}{m^*} \, (1+2 \, f_0)$$

symmetry energy
$$E_{
m sym}=rac{1}{3}rac{p_{
m F}^2}{2\,m^*}\left(1+2\,f_0'
ight)$$

[Saperstein, Fayans, et al. 1995, 1998] $f \simeq 0, f' \simeq 0.5 - 0.6, g \simeq 0.05 \pm 0.1, g' \simeq 1.1 \pm 0.1$

Fermi liquid approximation

Coupling of the external field to a particle

Vector current conservation

bare vertex full of
$$U^{\mu\nu} q_{\nu} = 0$$

 $V^{\mu} full G V^{\nu} - \int d^4 p \operatorname{Tr} \left\{ \gamma^{\mu} G(p + q/2) V^{\nu}(p, -q) G(p - q/2) \right\}$

If the relation

$$q_{\mu} V^{\mu}(p,q) = G^{-1}(p+q/2) - G^{-1}(p-q/2)$$
 Is fulfilled

$$\Pi^{\mu\nu}q^{\nu} \propto \int d^4p \,\mathrm{Tr}\left\{\gamma^{\mu} \left[G(p-q/2) - G(p+q/2)\right]\right\} = 0$$

The Ward identities impose non-trivial relations between vertex functions and Green's functions, which synchronize any modification of the Green's function with a corresponding change in the vertex function.

in non-relativistic limit for free G and vertices: $au_0^\mu = (1, m{v}) \quad G(p) = (\epsilon - p^2/2m)^{-1}$

$$q \cdot \tau_0 = \omega - vq \equiv G_0^{-1}(p + q/2) - G_0^{-1}(p - q/2)$$

The Ward identity is fulfilled and the current is conserved

• "Bare" vertices

"bare" vertex after the Fermi-liquid renormalization $\tau_{a}^{\omega} = \left[1 + \Gamma_{0}^{\omega} \left(G_{+}G_{-}\right)^{\omega}\right] \tau_{a}^{0}$ $V_{\mu}^{nn} \approx g_{V} \chi_{p}^{\dagger}(p') \left(1, \boldsymbol{v}\right) \chi_{n}(p)$ $B = \left(G_{+}G_{-}\right)^{\omega} = \lim_{\boldsymbol{q} \to 0} \int \frac{2 \, \mathrm{d}^{4} p}{(2 \, \pi)^{4} \, i} \, G_{+}G_{-}$ $\tau_{V}^{0} - \tau_{A}^{0} = \left(V_{\mu} - A_{\mu}\right) l^{\mu} \qquad \text{weak interactions}$

$$\hat{ au}_V^\omega = g_V \left(au_{V,0}^\omega l_0 - oldsymbol{ au}_{V,1}^\omega oldsymbol{l}
ight) \qquad au_{V,0}^\omega = rac{e_V}{a} \,, \quad oldsymbol{ au}_{V,1}^\omega = rac{e_V}{a} \,oldsymbol{v} \ \hat{ au}_A^\omega = -g_A \left(oldsymbol{ au}_{A,1}^\omega oldsymbol{\sigma} oldsymbol{l}
ight) = au_{A,0}^\omega oldsymbol{\sigma} oldsymbol{l}
ight) \qquad au_{A,0}^\omega = rac{e_V}{a} \,, \quad oldsymbol{ au}_{A,1}^\omega = rac{e_V}{a} \,oldsymbol{v} \ oldsymbol{ au}_{A,0}^\omega = rac{e_V}{a} \,, \quad oldsymbol{ au}_{A,1}^\omega = rac{e_V}{a} \,oldsymbol{v} \ oldsymbol{ au}_{A,0}^\omega = rac{e_V}{a} \,, \quad oldsymbol{ au}_{A,1}^\omega = rac{e_V}{a} \,oldsymbol{v} \ oldsymbol{ au}_{A,1}^\omega = rac{e_V}{a} \,oldsymbol{v} \,.$$

 $e_A e_V$ effective charges

$$e_V = 1$$
 $\omega \tau_{V,0}^{\omega} - \boldsymbol{q} \tau_{V,1}^{\omega} = G_{\cdot}^{(\text{pole}),-1}(p+q/2) - G^{(\text{pole}),-1}(p-q/2)$

 $e_A = 0.8 - 0.95$ experiment: Gamov-Teller transitions in nuclei $g_A^* \simeq 1$

Fermi-liquid with pions

• explicit pionic degrees of freedom

pion with residual (irreducible in NN⁻¹ and Δ N⁻¹) s-wave π N interaction and $\pi\pi$ scattering``

• explicit Δ degrees of freedom

Part of the interaction involving Δ isobar is analogously constructed:

Resummed NN interaction

Graphically, the resummation is straightforward and yields:

Pion modes in nuclear medium

quasi-particle modes

$$\begin{split} A_{\pi}(\omega, \boldsymbol{k}) &\approx \sum_{i=\pi, \Delta} \frac{2 \pi \, \delta(\omega - \omega_i(\boldsymbol{k}))}{\left(2\omega - \frac{\partial \Pi^R}{\partial \omega}\right) \Big|_{\omega = \omega_i(\boldsymbol{k})}} \\ &+ \frac{2 \, \beta \, k \, \omega}{\widetilde{\omega}^4(k) + \beta^2 \, k^2 \, \omega^2} \, \theta(\omega < v_F \, k) \end{split}$$

[A.B.Migdal et al, Phys. Rept. 192 (1990) 179]

• pion softenning

pion propagator for $\omega \ll k_0 v_F$ $k \sim k_0 \simeq p_F$ $D_{\pi}^R(\omega, k) \simeq \frac{1}{-\tilde{\omega}^2 - \gamma (k - k_0)^2 + i\beta(k) \omega}$

• pion softenning in neutrino production

enhancement factors w.r.t. MU emissivity

n/n

Basic reactions of neutron star cooling

medium Modified Urca (MMU)

(depends strongly on the NN interaction)

pair formation-breaking process (PFB) (operating at T<T_c \sim 0.1 MeV)

These processes can describe all three groups of the cooling data.

Direct Urca (DU) much more efficient than MMU

allowed only if the proton concentration is >11%, for our EoS it corresponds to M>1.8 M_{sol}

Processes of meson condensate (PU) allowed only for M>1.3 M_{sol} for our Eos **much more efficient than MMU**

Neutron star cooling

[Blaschke, Grigorian, Voskresensky PRC88 (2013)065805]

Neutrino Processes in Neutron Stars

3. Viscosity of neutron star matter and r-mode stability

Lepton shear viscosity

Lepton shear viscosity = electron + muon contribution $\eta_{e/\mu} = \eta_e + \eta_\mu$ low *T*, *Fermi liquid results* $\eta_l = \frac{1}{5} n_l p_{\mathrm{F},l} \tau_l$

Lepton collision time τ_l is determine by lepton-lepton and lepton-proton collisions

$$\frac{\text{Flowers and Itoh:}}{\text{Flowers and Itoh:}} \quad \eta_{e/\mu}^{(\text{FI})} \approx \eta_e^{(\text{FI})} = 4.2 \cdot 10^{17} \Big[\frac{\text{g}}{\text{cm} \cdot \text{s}}\Big] \Big(\frac{\rho}{\rho_0}\Big)^2 T_9^{-2}$$

Important role of the phonon modification (plasmon exchange)

for QCD plasma [Heiselberg, Pethick Phys. Rev. D 48 (1993) 2916] [Shternin, Yakovlev, Phys. Rev. D 78 (2008) 063006]

leading terms for small T

$$\widetilde{\eta}_{e} = 1.82 \cdot 10^{19} \left[\frac{g}{cm \cdot s} \right] \left(\frac{n_{p}}{n_{0}} \right)^{\frac{14}{9}} \left(\frac{n_{e}}{n_{p}} \right)^{2} \frac{T_{9}^{-\frac{5}{3}}}{(1+r)^{\frac{2}{3}}}$$

$$r = (p_{F,e}^{2} + p_{F,\mu}^{2})/p_{F,p}^{2} \qquad \widetilde{\eta}_{\mu} = \left(\frac{n_{\mu}}{n_{e}} \right)^{\frac{5}{3}} \widetilde{\eta}_{e}$$
muon contributions are important

Lepton shear viscosity vs. neutron star mass

Effects of proton pairing on lepton shear viscosity

[Shternin, Yakovlev, Phys. Rev. D 78 (2008) 063006]

Nucleon shear viscosity

 $\eta_n = \frac{3n_n p_{\mathrm{F},n}^2 m_N^2}{80m_n^{*\,4} T^2 S_{nn}}$ Fermi liquid [Shternin, Yakovlev, Phys. Rev. D 78 (2008) 063006] result $S_{nn} = rac{m_N^2}{16\pi^2} \int dx' \int dx' rac{\sqrt{1-x'\,^2}}{\int} dx rac{12\,x^2\,x^{'\,2}Q_{nn}(q,q')}{\sqrt{1-x^2-x'\,^2}} \qquad Q_{nn} = rac{1}{4}\sum_{
m spin} |M_{nn}|^2$ effective NN cross section $S_{nn}^{\text{FOPE}} \simeq \frac{3 m_n^2 f_{\pi NN}^4}{40\pi} \simeq \frac{1.1}{m^2}$ 10¹⁷ T=10⁹ K FOPE: $[(s u)^{10} d^{16}] = 10^{16} d^{15}$ $S_{nn}^{
m MOPE} = K S_{nn}^{
m FOPE}$ MOPE: Flowers-Itoh $K = \frac{30\pi\Gamma^4 p_{\mathrm{F},n}^3}{128\gamma\,\widetilde{\omega}^3} \left[1 + \frac{2}{3} \frac{\widetilde{\omega}}{\gamma\,p_{\mathrm{F},n}} \right]$ FOPE MOPE *modification factor* - w.o. π cond. (1a+1b) w.o π cond. (1a+1c) $K(n = n_0) \simeq 0.3 \iff$ [Bacca et al, PRC80] — · – w. π cond. (1a+2) 10¹⁴ $K(n=2.6n_0)\simeq 1$ 1.2 1.0 1.4 1.6 1.8 2.0 $K(n \ge 3n_0) \simeq 2$ M/M_o

Phonon shear viscosity

A shear viscosity induced by **phonon-phonon** interactions was discussed by Manuel and Tolos in [PRD84 (2011) 123007; PRD88 (2013) 043001].

These interactions may give a contribution to the resulting shear viscosity if $T_{cn} > T \gtrsim 10^9 {
m K}$ However, at such temperatures the bulk viscosity is dominant.

We consider the interaction of the phonon (Anderson-Bogoliubov) mode with neutrons

$$\eta_{\rm ph} = \int \frac{\mathrm{d}^3 q}{(2\pi)^3} \frac{\tau_{\rm ph}}{15T} \frac{(sv_{\mathrm{F},n})^2 q^2}{(e^{sv_{\mathrm{F},n}q/T} - 1)(1 - e^{-sv_{\mathrm{F},n}q/T})} = \frac{2\pi^2}{25} \frac{T^4}{v_{\mathrm{F},n}^3} \bar{\tau}_{\rm ph} \qquad s = 1/\sqrt{3}$$

From the Larkin-Migdal equation for anomalous vertex [E.K. Voskresensky, PRC77, PRC81]

$$\tilde{\tau}_{V,0} = \frac{-2\Delta\omega}{\omega^2 - \frac{1}{3}v_{\mathrm{F},n}^2 q^2 - i\omega\gamma_{\mathrm{ph}}(\omega,q)} \tau_{V,0}^{\omega}$$

$$\gamma_{\mathrm{ph}}(q) = 1/\tau_{\mathrm{ph}} \approx \frac{2\pi}{3}v_{\mathrm{F},n}qe^{-\sqrt{\frac{3}{2}}\frac{\Delta}{T}}$$
The phonon lifetime $\bar{\tau}_{\mathrm{ph}} \simeq 5.9 \cdot 10^{-22} \frac{e^{\sqrt{\frac{3}{2}}\frac{\Delta}{T}}}{T_9} \,\mathrm{s}$ must be smaller than the balistic time

$$\tau_{\rm bal} \sim \frac{1 \text{ km}}{s v_{\rm F}} \simeq 1.6 \cdot 10^{-5} \text{ s} \left(\frac{n_0}{n}\right)^{\frac{1}{3}} \frac{m_n^*}{m_N}$$
size of the region of the neutron pairing

Neutrino shear viscosity

With the temperature increase the neutrino mean free path decreases and for sufficiently high temperatures neutrinos become trapped inside the neutron star interior.

$$\eta_{\nu} = 2 \int \frac{2\mathrm{d}^3 q}{(2\pi)^3} \frac{\tau_{\nu}}{15T} \frac{v_{\nu}^2 q^2}{(e^{v_{\nu}q/T} + 1)(1 + e^{-v_{\nu}q/T})} = \frac{7 \pi^2}{225 v_{\nu}^3} T^4 \bar{\tau}_{\nu} \qquad \qquad v_{\nu} = c$$

Neutrino mean free path is determined by inverse MMU and PU processes

$$\bar{\tau}_{\nu} \simeq \frac{8.7 \text{ s}}{T_{9}^{4} F_{\text{MMU}}(n)} \left(\frac{m_{N}}{m_{N}^{*}}\right)^{4} \frac{(n_{0}/n_{e})^{\frac{1}{3}}}{1 + \chi_{\text{PU}}(n, T)} \left[\eta_{\nu} \simeq \frac{3.08 \cdot 10^{22}}{1 + \chi_{\text{PU}}(n, T)} \left[\frac{g}{\text{cm} \cdot \text{s}}\right] \left(\frac{n_{0}}{n_{p}}\right)^{\frac{1}{3}} \frac{(m_{N}/m_{N}^{*})^{4}}{F_{\text{MMU}}(n)}$$

$$\frac{1.0}{0.8} \frac{weak T dependence}{0.8} \frac{0.6}{0.4} \frac{0.6}{0.4} \frac{1.0}{0.4} \frac{1.0}{10} \frac{1.0}{10} \frac{1.0}{10^{4}} \frac{MM_{\bullet}}{1.0} \frac{1.0}{10^{4}} \frac{1.0}{10^{4}}$$

Lepton shear viscosity

Bulk viscosity

collisional
$$\zeta_{coll} = \frac{m_N^{*3}/n_0}{162\pi^2} \tau T^4 \left[\frac{n_0}{n}\right]^{1/3} F_0^2$$

[Sykes, Brooker, Ann. Phys. 56(1970) 1]

 F_0 is the zeroth harmonics of the dimensionless scalar Landau-Migdal parameter, $F_0 \sim 1$

 $au \sim m_\pi^2/(m_N^* T^2)$ nucleon relaxation time;

$$\zeta_{\rm coll} \sim 90 \left[\frac{{\rm g}}{{\rm cm}\cdot{\rm s}}\right] T_9^2 \left[\frac{n_0}{n}\right]^{1/3} F_0^2$$

small contribution

Bulk viscosity

Energy dissipation of the mode: $\dot{E}_{mode} = P\dot{V} - \epsilon_{\nu}$ is neutrino emissivity

Energy of the mode decreases if the pressure depends on an order parameter, which variation is delayed with respect to the variation of the density [Mandelstam, Leontovich, ZhETF 7(1937)438]

soft mode

[Sawyer PRD39, Haensel, Levenfish, Yakovlev A&A357, A&A372]

order parameter is $X_l = n_l/n$ lepton concentration $\delta \mu_l = \mu_n - \mu_p - \mu_l \neq 0$

$$\delta \dot{X}_{l} = -\frac{\delta X_{l}}{\tau_{X,l}} + n \frac{\partial \delta \mu_{l}}{\partial n} \delta n(t) \qquad \zeta_{\text{s.m.}} = n \frac{\langle P(n + \delta n(t), X_{l} + \delta X_{l}(t)) \delta \dot{n}(t) \rangle_{\mathcal{P}}}{\langle \left(\delta \dot{n}(t)\right)^{2} \rangle_{\mathcal{P}}}$$

$$\zeta_{\text{s.m.}} \approx -\frac{\partial P}{\partial X_{l}} \frac{\mathrm{d}X_{l}}{\mathrm{d}n} \frac{n \tau_{X,l}}{1 + \omega^{2} \tau_{X,l}^{2}} \qquad \langle \dots \rangle_{\mathcal{P}} \text{ average over the perturbation period}$$

Energy dissipation of the mode: $\dot{E}_{mode} = P\dot{V} - \epsilon_{\nu}$ is neutrino emissivity

Meltzer, Thorne ApJ145(66)514; Hansen, Tsuruta, Can.J.Phys. 45 (67)2823; Sa'd, Schaffner-Bielich 0908.4190

Pairing effects on bulk viscosity

pairing suppression
factor for nucleon i=n,p

 $\xi_i = \exp(-\Delta_i/T)$

 $T \ll \Delta_i$

$$\zeta_{\text{s.m.},l}^{(\text{DU/PU})(\text{s})} = \zeta_{\text{s.m.},l}^{(\text{DU/PU})} \min[\xi_n, \xi_p],$$

$$\zeta_{\text{s.m.},l}^{(\text{MU/MMU})i(\text{s})} = \zeta_{\text{s.m.},l}^{(\text{MU/MMU})i} \xi_p \xi_i$$

Shear and bulk viscosities. Results

R-mode stability window

$$\tau_G^{-1}(\nu_c) = \tau_\eta^{-1}(\nu_c) + \tau_\zeta^{-1}(\nu_c) \quad \longrightarrow \quad \nu_c = \nu_c(T)$$

$$\tau_{G}^{-1}(\nu_{c,\eta}) = \tau_{\eta}^{-1}(\nu_{c,\eta}) \longrightarrow \nu_{c}^{6} = \nu_{c,\eta}^{6} + \nu_{c}^{2} \nu_{c,\zeta}^{4} \longleftarrow \tau_{G}^{-1}(\nu_{c,\zeta}) = \tau_{\zeta}^{-1}(\nu_{c,\zeta})$$

 $\nu = \Omega/2\pi$

Young pulsars

star is born hot and rapidly rotating (point A)
 cooling time (heat transport!) >> spin-down time

 t_{spin-down} ~ 100s/a²_{max} ν⁶₃
 for max. r-mode amplitude a_{max} ~ 1

 star moves along line AB because of r-modes
 line BC, cooling and magnetic breaking

Minimum point B must be above 62 Hz (PSRJ0537-6910)

Minimum of the stability window

LMXB recycled pulsars

Rotation of LMXB pulsars cannot be explained. Shear viscosity is too small.

Alternative mechanisms

-differential drift in magnetic field [Rezzolla, Lamb, Shapiro] -weak reactions with hyperons +hyperon pairing [Jones; Nayyar Owen] -core-crust coupling [Bildsten, Ushomirsky, Levin] -saturation of r-mode amplitude at small values [Arras, Bondaresku, Wasserman] -non-linear decay of r-modes [Kastaun] - coupling to more stable modes [Gusakov, Chugunov, Kantor] -vortex flux-tube interactions [Haskell, Glampedakis, Andersson]