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These Exercises accompany the lectures given at the HISS “Dense Matter 2015”.

This first set of exercises deals with the computation of hydrodynamic retarded

Green’s functions in field theory on one hand, and with the computation of tensor

(spin 2) quasi-normal modes of the (asymptotically AdS5) Reissner-Nordström black

brane on the other hand.



2

Overview Quasinormal modes (QNM) of black hole and black brane spacetimes can

serve as a model for late-time behavior of heavy-ion-collisions or cold atomic gas cloud

collisions. On a more technical level, QNMs should match the late-time behavior of fully

time depedent holographic thermalization codes in the spirit of Chesler/Yaffe [8], for more

detail see [9]. (Note that working out the fully time-dependent solution to a given system

would be the natural continuation of the present QNM project.)

Heavy ion collisions are believed to produce a charged plasma in presence of magnetic

fields. Off-center heavy ion collisions also have a nonzero angular momentum. When holo-

graphically modeling heavy ion collisions by off-center collisions of gravitational shocks, those

setups should approach a late time state which has nonzero angular momentum. Some of

those holographic thermalization codes (depending on the details of the model) should ap-

proach the Kerr black brane or black hole spacetime. But for simplicity, we will consider

only a charged (non-rotating, non-magnetic) plasma here.

The goal here is the computation of the quasinormal modes of a charged in asymptotically

AdS5 spacetime. We are first interested in the case of vanishing spatial momentum ~k = 0.

Metric perturbations hµν around the black brane metric can be classified into scalars, vectors,

and tensors under the SO(3) rotation group in the x, y, and z directions. For this exercise

we focus on the tensor fluctuation hxy, which is associated with the shear viscosity within

the field theory dual to this gravitational theory. The field theory state we are examining

here is a thermal plasma that is electrically charged.

In order to get an intuition for poles in Green’s functions and their physical interpretation,

we first work in the hydrodynamic approximation, using only field theory (no gravitational

model, no holography), in exercise I.1.

References A good but slightly outdated general introduction to holography applied to

QCD is given in [4]. Thermalization and far-from-equilibrium dynamics is also an important

topic in condensed matter physics. Relations between holographic models and condensed

matter physics are nicely worked out in this set of lectures: [5] (which is also a great general

introduction), [7], [6]. Very good lectures on hydrodynamics as an effective field theory

from a modern perspective are provided in [2], a more involved example (including chiral

transport) is considered in [10], and the holographically dual description is discussed in [3].

In exercise I.2, we then compute the higher poles, lying deeper in the complex frequency

plane than the hydrodynamic ones.
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Exercise I. 1. Hydrodynamic Green’s functions Compute the two-point corre-

lation function 〈jx jx〉 from the hydrodynamic constitutive equation (for simplicity in 2+1

dimensions)

〈jµ〉 = nuµ − σ T
[
(gµν + uµuν)∂ν

(µ
T

)
− Eµ

T

]
, (1)

where Eµ = uνF
µν , by varying with respect to the appropriate source (Ax(t, x, y)). Assume

that only the chemical potential µ (or eqivalently the charge density n) is allowed to fluctuate,

i.e. we keep the temperature T and fluid velocity uµ fixed. Further, we pick a frame where

the fluid velocity is given by uµ = (1, 0, 0). Note that the susceptibility χ = ∂n/∂µ can be

used to translate a gradient in chemical potential to a gradient in charge density. Without

restricting the generality, we also rotate to a coordinate system in which the momentum of

our fluctuations points along the z-direction. The fluctuations of the charge density can be

expanded in Fourier modes.

Exercise I. 2) Compute the tensor metric fluctuations hxy ∝ e−iωt+i
~k·~x φ(u) (u is the

radial AdS coordinate) at vanishing spatial momentum ~k = 0 around asymptotically AdS5

charged black brane, i.e. Reissner-Nordström black branes. The equation of motion for the

fluctuations φ = hx
y is given by

0 = φ′′(u)− f(u)− uf ′(u)

uf(u)
φ′(u) +

ω̃2 − f(u)k̃2

4uf(u)2
φ(u) , (2)

where the blackening factor f(u) = 1− (1 + q̃2)u2 + q̃2u3 stems from the black brane metric

background shown during the lecture, the dimensionless momentum k̃ = k/rH and frequency

ω̃ = ω/rH . Quasinormal modes are the frequencies for which two boundary conditions are

satisfied: (i) at the horizon, u = 1, the field φ behaves like φ = (1 − u)α(φ(0) + φ(1)(1 −

u) + φ(2)(1 − u)2 + . . . ); and (ii) vanishes at the AdS boundary, limu→0 φ(u;ω) = 0. First,

compute α using the equation of motion, then use the equation of motion in order to relate

the coefficients φ(1), φ(2) to φ(0). Then pick a φ(0) = 1 and find a solution that satisfies

condition (ii). A very useful reference may be [1].
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