Clusters and phase transitions in supernova equations of state — part II

Matthias Hempel, Basel University HISS Dubna "Dense Matter", 30.6.2015

Fonds national suisse Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation

Outline

Monday	 brief astrophysical introduction matter in supernovae, comparison with HICs QCD phase transition in supernovae
Tuesday	 comparison liquid-gas with QCD phase transition, non- congruence cluster in supernovae cluster formation in nuclear matter, experimental probes

Non-congruence of the nuclear liquid-gas and QCD phase transition

[MH, V. Dexheimer, S. Schramm, I. Iosilevskiy, PRC 88 (2013)]

Introduction – QCD phase diagrams

- fundamental question: phase diagram of strongly interacting matter
- typical examples in T- μ , first order phase transitions (PT) as lines:

Basics of phase transitions

Introduction – QCD phase diagrams

• two-dimensional area in T-ρ:

 additional axis: asymmetry, strangeness, lepton fraction, magnetic fields,...:

- the phase diagrams of the previous slide correspond to "congruent" first order PTs
- for asymmetric systems the PTs are typically "non-congruent" and manifest themselves in principally different forms

Non-congruence

- first order PTs with more than one globally conserved charge: non-congruent PTs
- only one globally conserved charge: congruent
- fundamental differences, because the concentrations of the charges can be exchanged between the two phases, "distillation"
- term "non-congruent" is commonly used for PTs in terrestrial applications with chemically reacting plasmas [losilevskiy, Acta Phys. Polon. B (2010)]
- term introduced in astro and nuclear physics by I. Iosilevskiy
- known in heavy-ion collisions (HICs), nuclear physics and astrophysics under the terms "Maxwell" and "Gibbs" [C. Greiner, Koch, and Stöcker, PRL (1987)] [Glendenning, PRD (1992)]

Setup

- liquid-gas phase transition of nuclear matter: non-linear relativistic mean-field model FSUgold [Todd-Rutel and Piekarewicz, PRL (2005)]
- QCD phase transition: Chiral SU(3) model [Dexheimer and Schramm, PRC81 (2010)]
- in all calculations: neglect of all Coulomb interactions, "Coulomb-less" approximation (cf. works by Gulminelli, Raduta, Typel, ...)
- solve for thermal, mechanical, and chemical equilibrium

Chiral SU(3) model

- meson-exchange based effective relativistic mean-field model
- coupling constants are fitted to vacuum masses of baryons and mesons, nuclear matter properties, hyperon optical potentials, and lattice data
- quarks (u,d,s) and hadrons (baryon octet) are included as a chemical mixture of quasi-particle degrees of freedom

populated degrees of freedom regulated by "Polyakov" potential U

$$U = (a_0 T^4 + a_1 \mu_B^4 + a_2 T^2 \mu_B^2) \Phi^2 + a_3 T_0^4 \ln(1 - 6\Phi^2 + 8\Phi^3 - 3\Phi^4).$$

• via contribution of Φ to masses of particles:

$$M_B^* = g_{B\sigma}\sigma + g_{B\delta}\tau_3\delta + g_{B\zeta}\zeta + M_{0_B} + g_{B\Phi}\Phi^2,$$

$$M_q^* = g_{q\sigma}\sigma + g_{q\delta}\tau_3\delta + g_{q\zeta}\zeta + M_{0_q} + g_{q\Phi}(1-\Phi),$$

 zero Temperature: baryons at low densities, quarks at high densities, first order PT in-between

Conditions in heavy-ion collisions

- at least two conserved charges: (net) baryon number B and (net) isospin or equivalently the charge to baryon ratio $Y_Q=Z/A$
- \rightarrow one can expect that PTs in HICs are generally non-congurent • ²⁰⁸Pb + ²⁰⁸Pb: Y_O=0.39
- ¹⁹⁷Au + ¹⁹⁷Au: Y_Q=0.40
- additional conserved charge: (net) strangeness S=0

Scenarios

- liquid-gas symmetric (LGS)
- liquid-gas asymmetric (LGAS)
- heavy-ion symmetric (HIS)
- heavy-ion asymmetric (HIAS)
- symmetric: Y_Q =0.5, asymmetric: Y_Q =0.3
- zero strangeness locally

Case		Constraints		Considered particles
LGS	B = const.	$S^{\mathrm{I}} = S^{\mathrm{II}} = 0$	$Y_Q = 0.5$	Neutrons, protons
LGAS	B = const.	$S^{I} = S^{II} = 0$	$Y_Q = 0.3$	Neutrons, protons
HIS	B = const.	$S^{I} = S^{II} = 0$	$Y_Q = 0.5$	Baryon octet, quarks
HIAS	B = const.	$S^{\mathrm{I}} = S^{\mathrm{II}} = 0$	$Y_Q = 0.3$	Baryon octet, quarks

nuclear liquid-gas PT

LGS – phase diagrams

first order phase transition line terminates at critical end point (CEP)

LGAS – phase diagrams

- phase transition lines turn to two-dimensional phase coexistence regions
- saturation and boiling curves do not coincide

Non-congruence

T = const., EOS of single phases

μ

Matthias Hempel Dubna, 30.6.2015

Non-congruence

T = const., EOS of single phases

- charge fraction and density different in two phases
- fixing of the total charge fraction \rightarrow variation of the intensive variables (e.g., μ_i) along the PT
- projection onto P-T, P-µi planes: two-dimensional region instead of line

M. Hanauske, Ph.D. thesis

Matthias Hempel Dubna, 30.6.2015

LGAS – phase diagrams

- phase transition lines turn to two-dimensional phase coexistence regions
- saturation and boiling curves do not coincide
- temperature endpoint (TEP), pressure endpoint (PEP) and critical point (CP) do not coincide

Why is LGS congruent?

- first order phase transition line terminates at critical end point (CEP)
- binary system: isospin and baryon number
- despite this the phase transition behaves congruent
- both phases stay symmetric
- symmetric nuclear matter is an "azeotrope", due to isospin symmetry

QCD PT

HIS – phase diagrams

• again "azeotrope", due to isospin symmetry

HIAS – phase diagrams

- phase transition lines turn to two-dimensional phase coexistence regions
- deconfinement and confinement curves do not coincide
- distinction between CP, TEP, and PEP not achieved, but expected
- reason: non-congruent features vanishingly small around the CP, difference compared to LG

comparison – is the QCD PT of liquid-gas type?

Comparison of LG and QCD PT

- opposite slope as fundamental difference
- due to lower/higher entropy of the more dense phase, Clapeyron equation:

$$\frac{dP}{dT} = \frac{s^{\mathrm{I}} - s^{\mathrm{II}}}{1/\rho_B^{\mathrm{I}} - 1/\rho_B^{\mathrm{II}}}$$

[losilevskiy, arXiv:1403.8053]

Matthias Hempel Dubna, 30.6.2015

chiral/deconfinement phase transition

SC: saturation curve BC: boiling curve DC: deconfinement curve CC: confinement curve

Phase diagrams

"Realistic" supernova EOS — cluster formation

"Realistic" supernova EOS

- until now: phase diagrams for "infinite" thermodynamic phases, despite net electric charges, "Coulomb-less approach of bulk matter"
- Coulomb and surface energies crucial for realistic description, correlations \rightarrow clusterization
- nuclear matter in the liquid phase \rightarrow nucleons bound in nuclei
- nuclear matter in the gas phase \rightarrow unbound nucleons
- the formation of clusters replaces/quenches the first-order phase transition of bulk matter
- connected to "pasta phases"

EOS model: excluded volume NSE with interactions

- chemical mixture of nuclei and interacting nucleons in nuclear statistical equilibrium (NSE)
- nucleon interactions: relativistic mean-field (RMF)
- phenomenological medium modifications of nuclei/nuclear clusters

MH, J. Schaffner-Bielich; NPA 837 (2010) (HS)

Nuclei in supernova matter

Matthias Hempel Matthias Hempel Sasel, December 16, 2010 Dubna, 30.6.2015

Constraining supernova EOS with equilibrium constants from heavy-ion collisions

Phys. Rev. C 91, 045805 (2015)

in collaboration with: Gerd Röpke, Stefan Typel, Joe Natowitz, Kris Hagel, Kohsuke Sumiyoshi, Shun Furusawa

Light cluster in supernova matter

- can be more abundant than protons (cf. Sumiyoshi & Röpke 2008)
- modify cooling of proto-neutron star
- relevant for nucleosynthesis in neutrino-driven winds (Arcones et al. 2008)
- supernova dynamics (?)
- see: O'Connor et al. 2007, Sumiyoshi and Röpke 2008, Arcones et al. 2008, Hempel et al. 2012, Furusawa et a. 2013, ...
- EOS: various different theoretical approaches

cluster formation can be probed in the lab, "femtonova"

PRL 108, 172701 (2012) PHYSICAL REVIEW LETTERS

week ending 27 APRIL 2012

Laboratory Tests of Low Density Astrophysical Nuclear Equations of State

L. Qin,¹ K. Hagel,¹ R. Wada,^{2,1} J. B. Natowitz,¹ S. Shlomo,¹ A. Bonasera,^{1,3} G. Röpke,⁴ S. Typel,⁵ Z. Chen,⁶ M. Huang,⁶ J. Wang,⁶ H. Zheng,¹ S. Kowalski,⁷ M. Barbui,¹ M. R. D. Rodrigues,¹ K. Schmidt,¹ D. Fabris,⁸ M. Lunardon,⁸ S. Moretto,⁸ G. Nebbia,⁸ S. Pesente,⁸ V. Rizzi,⁸ G. Viesti,⁸ M. Cinausero,⁹ G. Prete,⁹ T. Keutgen,¹⁰ Y. El Masri,¹⁰ Z. Majka,¹¹ and Y. G. Ma¹²

Original work of Qin et al.

 Qin et al. PRL108 (2012): measured charged particle and neutron yields at Texas A&M with low-energy heavy ion collisions

Akira Ono An event of central collision of Xe + Sn at 50 MeV/nucleon (AMD calculation)

An event of central collision of Xe + Sn at 50 MeV/nucleon (A

(AMD calculation)

- density extraction: thermal coalescence model of Mekjian
- temperature: double isotope yield ratios
- conditions similar as in corecollapse supernovae

Basic aspects of equilibrium constants

primary observable used by Qin et al.: equilibrium constant

defined by particle yields or number densities

$$K_c[i] = \frac{n_i}{n_n^{N_i} n_p^{Z_i}}$$

• ideal gas:

$$n_i^{\rm id}(T,\mu_i) = g_i \left(\frac{M_i T}{2\pi}\right)^{3/2} \exp\left(\frac{1}{T}(\mu_i - M_i)\right)$$

using nuclear statistical equilibrium

$$\mu_i = N_i \mu_n + Z_i \mu_p$$

• K_c^{id} only a function of temperature, e.g.: $K_c^{id}[\alpha] = \frac{1}{2} \left(\frac{2\pi}{mT}\right)^{9/2} \exp\left(\frac{B_{\alpha}}{T}\right)$

- thus also "composition independent" (Qin et al. 2012)
- not true for an non-ideal (i.e. interacting) system

Matthias Hempel Dubna, 30.6.2015

Comparison of conditions in SN and HIC

	supernovae	heavy ion collisions
dynamic timescales	ms	fm/c
equilibrium	weak eq. only partly	only strong eq.
temperatures	0 - 100 MeV	10 - 200 MeV
charge neutrality	yes	no
asymmetry	moderate	low
highest densities	< 2-4 ρ ₀	< 4-5 ρ ₀

relevant systematic differences between matter in heavy-ion collisions and supernovae

- isospin asymmetry; in the experiment: $Y_Q \sim 0.41$
- Coulomb interactions/charge neutrality
- limited number of participating nucleons

Constraining cluster formation in SN EOS [MH, Hagel, Natowitz, Röpke, Typel, PRC 91, 045805 (2015)]

- comparison with various theoretical approaches, all modified to account for differences SN ↔ HIC
- ideal gas behavior ruled out, nuclear clusters encounter medium modification (Pauli blocking)
- see also: Natowitz et al. PRL 2010, Typel et al. PRC 2010

Maumas nemper Dubna, 30.6.2015

Conclusions

- phase transitions with more than one globally conserved charge are generally non-congruent
- \rightarrow different dimensionality of phase coexistence regions (e.g. T-P or T- μ)
- principle difference between liquid-gas and QCD PT: enthalpic vs. entropic
- in supernova matter phase transitions are "quenched"/replaced by cluster formation; partly due to charge neutrality and Coulomb interactions
- cluster formation in the supernova EOS can be constrained with low-energy heavy-ion collisions
- systematic differences of matter in heavy-ion collisions and supernovae are important, but can be taken into account