Introduction

Hypernucle

MEMOs

Production estimates

イロト イポト イヨト イヨト

Summary

Hypernuclei and MEMOs Extending the nuclear chart

Jan Steinheimer-Froschauer with J. Schaffner-Bielich, M. Bleicher and H. Stöcker

Goethe Universität Frankfurt Institut für Theoretische Physik Frankfurt Institute for Advanced Studies

12.05.2010

Introduction	Hypernuclei	MEMOs	Production estimates	Summary

Introduction	Hypernuclei	MEMOs	Production estimates	Summary
	т	he nuclear	chart	

Introduction	Hypernuclei	MEMOs	Production estimates	Summary
	The b	aryon mu	ltipletts	

- Lowest baryon multiplets: octet (spin 1/2) and decuplet (spin 3/2)
- For each strange quark baryon masses increases.

Introduction	Hypernuclei	MEMOs	Production estimates	Summary
	Extend	ing the nuc	lear chart	

- Explore Matter- Antimatter symmetry
- Extend in the third (strange) dimension ¹

< □ →

4 A >

ヨト・イヨト

¹W. Greiner, Int. J. Mod. Phys. E 5, 1 (1996).

Introduction	Hypernuclei	MEMOs	Production estimates	Summary
	First	hypernuclea	ar event	

• The first hypernuclear measurement by Danysz and Pniewski from a cosmic ray emulsion event.

<ロ> <四> <四> <三> <三> <三> <三> <三>

6/43

Э

Introduction	Hypernuclei	MEMOs	Production estimates	Summary
	Light hyp	ernuclei bir	nding energy	

- Emulsion data exists up to mass number ${\cal A}=15$
- $\bullet~\Lambda$ binding energies increase linearly with mass number

 $\exists \rightarrow$

Introduction	Hypernuclei	MEMOs	Production estimates	Summary
	Н	eavy hyperni	ıclei	

(Hotchi et al., PRC 61 (2001) 044302)

- spectroscopy of hypernuclei (e.g. $^{89}_{\Lambda}$ Y via: $\pi^+ + n \rightarrow \Lambda + K^+$)
- Hypernuclei measured up to $^{208}_{\Lambda} \text{Pb},$ shells: s, p, d, f, g and h!

Introduction	Hypernuclei	MEMOs	Production estimates	Summary
	$\Lambda sing$	gle particle	energies	

- Spin-orbit splitting smaller than experimental resolution
- Single particle energies: $U_{\Lambda}=-27~{\rm MeV}$ for $A\to\infty$
- Λ : only baryon we know its in-medium properties!

(Rufa, Schaffner, Maruhn, Stöcker, Greiner, Reinhard (1990))

9/43

(日) (同) (日) (日)

Introduction	Hypernuclei	MEMOs	Production estimates	Summary
	The hypern	uclear chart	: (by 1990)	

Introduction	Hypernuclei	MEMOs	Production estimates	Summary
	HypHI program	at GSI (Take Saito et al.)	

- Extending the hypernuclear chart for light systems.
- Extensive program at the planned FAIR facility.
- Note: ⁸Be is unbound but ${}^9_{\Lambda}$ Be is bound!

Introduction	Hypernuclei	MEMOs	Production estimates	Summary
		Ξ hypernuclei		

- First bound Ξ hypernucleus seen in 1959 (Wilkinson, Lorant, Robinson, Lokanathan, PRL 3 (1959) 397)
- $\bullet~{\rm Two}$ hypernuclei emitted: $\Xi+N\to\Lambda+\Lambda$
- ${}^8_{\Xi}\mathsf{B}$ with $B_{\Xi} = 8.1 \pm 1.2$

Hypernucleus	$B_{\Xi^{-}}$ [MeV]	B_{Ξ^0} [MeV]
${}^{8}_{\Xi}$ He	8.1 ± 1.2	14.2 ± 1.8
$^{11}_{\Xi}B$	9.2 ± 2.2	0.4 ± 2.8
$^{13}_{\Xi}C$	18.1 ± 3.2	-4.3 ± 3.8
$^{15}_{\Xi}C$	16.0 ± 4.7	11.1 ± 5.3
$^{17}_{\Xi}O$	16.0 ± 5.5	-4.5 ± 6.1
$\frac{28}{\Xi}$ Al	23.2 ± 6.8	13.3 ± 7.4
		୍କ

Introduction	Hypernuclei	MEMOs	Production estimates	Summary
	1	$\Lambda\Lambda$ hypernu	ıclei	

<ロ> <四> <四> <三> <三> <三> <三> <三>

2

- 1963 Danysz et al.: $^{10}_{\Lambda\Lambda}$ Be, $\Delta B_{\Lambda\Lambda} = 4.3 \pm 0.4$ MeV
- 1966 Prowse: $^6_{\Lambda\Lambda}$ He, $\Delta B_{\Lambda\Lambda} = 4.7 \pm 0.6$ MeV
- 1991 Aoki et al.: $^{13}_{\Lambda\Lambda}$ B, $\Delta B_{\Lambda\Lambda} = 4.8 \pm 0.7$ MeV
- 2001 E373 (KEK): $^6_{\Lambda\Lambda}$ He, $\Delta B_{\Lambda\Lambda} = 1.0 \pm 0.2$ MeV
- 2001 E906 (BNL): $^4_{\Lambda\Lambda}$ H

Introduction	Hypernuclei	MEMOs	Production estimates	Summary		
$\Lambda\Lambda$ hypernuclei						

- 1963 Danysz et al.: $^{10}_{\Lambda\Lambda}$ Be, $\Delta B_{\Lambda\Lambda} = 4.3 \pm 0.4$ MeV
- 1966 Prowse: $^6_{\Lambda\Lambda}$ He, $\Delta B_{\Lambda\Lambda} = 4.7 \pm 0.6$ MeV
- 1991 Aoki et al.: $^{13}_{\Lambda\Lambda}$ B, $\Delta B_{\Lambda\Lambda} = 4.8 \pm 0.7$ MeV
- 2001 E373 (KEK): $^6_{\Lambda\Lambda}$ He, $\Delta B_{\Lambda\Lambda} = 1.0 \pm 0.2$ MeV
- 2001 E906 (BNL): ${}^4_{\Lambda\Lambda}$ H
- $\bullet~\Lambda\Lambda$ interaction only weakly attractive

Introduction	Hypernuclei	MEMOs	Production estimates	Summary
	Mult	ti- Λ hype	muclei	

• Binding energy increases for heavy systems, some magic numbers.

14/43

E

- 4 回 ト - 4 回 ト - 4 回 ト

Introduction	Hypernuclei	MEMOs	Production estimates	Summary
	Hvi	pernuclear	decavs	

- $\bullet\,$ Hyperons decay mainly by weak interactions: e.g. $\Lambda \to p + \pi^-(64\%)$
- Hypernuclear lifetimes close to that of a free $\Lambda,$ saturates around 200 ps.

(Park et al., PRC61 (2000) 054004)

12 1

A (1) > 4

18 A

Introduction	Hypernuclei	MEMOs	Production estimates	Summary
	Hypernuclear	production	mechanisms I	

- Hypernuclei produced by incoming K^- beam
- Feature: no recoil for Λ !

୬ < ୍ 16 / 43

Introduction	Hypernuclei	MEMOs	Production estimates	Summary

Hypernuclear production mechanisms II

- Fireball in a HI-collision is an abundant source of strangeness
- Clusters are formed at or after the hadronic freezeout

17/43

Introduction	Hypernuclei	MEMOs	Production estimates	Summary
	Detec	ting them	in a HIC	

- Decay mode: $^{3}_{\Lambda}\mathrm{H} \rightarrow ^{3}\mathrm{He} + \pi^{-}$
- Seen at the AGS (E864)

<ロト < 部ト < 目ト < 目ト 目 のQC 18/43

Introduction	Hypernuclei	MEMOs	Production estimates	Summary
	Rec	ent (Anti-)Нуре	

• Recent results from the STAR experiment (BNL): First ANTI-Hypernucleus

(The STAR Collaboration, Science 2 April 2010: Vol. 328. no. 5974)

19/43

Introduction	Hypernuclei	MEMOs	Production estimates	Summary
	Summary fo	or hyperni	Iclear systems	

• NA:attractive $U_{\Lambda} = -30 MeV$ at $\rho = \rho_0$

Hypernuclear programs planned: Daphne, Jlab, J-PARC, MAMI and PANDA HYPHI @ FAIR! Possible signals also at HIC from FAIR to LHC.

20/43

Э

Introduction	Hypernuclei	MEMOs	Production estimates	Summary
	Summary f	or hypernu	Iclear systems	

- NA:attractive $U_{\Lambda} = -30 MeV$ at $\rho = \rho_0$
- $N\Sigma:_{\Sigma}^{4}He$ is bound by isospin forces potential is repulsive

20/43

Introduction	Hypernuclei	MEMOs	Production estimates	Summary
	Summary f	or hypernu	Iclear systems	

- NA:attractive $U_{\Lambda} = -30 MeV \text{ at } \rho = \rho_0$
- $N\Sigma:_{\Sigma}^{4}He$ is bound by isospin forces potential is repulsive
- N Ξ : attractive $U_{\Xi} = -28 MeV$ at $\rho = \rho_0$

20/43

Introduction	Hypernuclei	MEMOs	Production estimates	Summary
	Summary f	or hypernu	Iclear systems	

- NA:attractive $U_{\Lambda} = -30 MeV$ at $\rho = \rho_0$
- $N\Sigma:_{\Sigma}^{4}He$ is bound by isospin forces potential is repulsive
- N Ξ : attractive $U_{\Xi} = -28 MeV$ at $\rho = \rho_0$
- $\Lambda\Lambda$:attractive

20/43

Introduction	Hypernuclei	MEMOs	Production estimates	Summary
	Summary f	or hypernu	Iclear systems	

- NA:attractive $U_{\Lambda} = -30 MeV$ at $\rho = \rho_0$
- $N\Sigma:_{\Sigma}^{4}He$ is bound by isospin forces potential is repulsive
- N Ξ : attractive $U_{\Xi} = -28 MeV$ at $\rho = \rho_0$
- $\Lambda\Lambda$:attractive
- YY: unknown

20/43

Introduction	Hypernuclei	MEMOs	Production estimates	Summary
		Historical no	otes	

- Exotic forms of bound objects with strangeness have been proposed long ago.¹
- H di-baron by Jaffe.²
- Strangelets (Multistrange Quark bags).
- MEMO's ³
- Purely Hyperonic states ⁴

¹A. R. Bodmer, Phys. Rev. D 4 (1971) 1601.

²R. L. Jaffe, Phys. Rev. Lett. **38** (1977) 195 [Erratum-ibid. **38** (1977) 617].

³J. Schaffner, H. Stoecker and C. Greiner, Phys. Rev. C 46 (1992) 322.

⁴ J. Schaffner, C. B. Dover, A. Gal, C. Greiner and H. Stoecker, Phys. Rev. Lett. 71 (1993) 1328. ≣ ►

Introduction	Hypernuclei	MEMOs	Production estimates	Summary
	W	/hat's a ME	MO?	

- Metastable Exotic Multihypernuclear Object.
- Consist of nucleons, $\Lambda 's$ and $\Xi 's.$
- Are stabilized due to Pauli blocking.
- Lifetimes: $10^{-10} 10^{-5}s$

イロト イヨト イヨト イヨト

Introduction	Hypernuclei	MEMOs	Production estimates	Summary
	W	/hat's a ME	MO?	

- Metastable Exotic Multihypernuclear Object.
- Consist of nucleons, $\Lambda 's$ and $\Xi 's.$
- Are stabilized due to Pauli blocking.
- Lifetimes: $10^{-10} 10^{-5}s$
- First try: di-baryons

イロト イポト イヨト イヨト

Introduction	Hypernuclei	MEMOs	Production estimates	Summary

Baryon-baryon potentials from symmetry

- Couple two $SU(3)_f$ baryon octets: $8 \times 8 = 1 + 8 + 8 + 10 + 10^* + 27$
- NN (deuteron) bound state in $\{10^*\}$
- SU(3)_f symmetry: all {10^{*}} are bound states.
- Broken SU(3)_f symmetry: quasi-bound states become bound as hyperons are heavier than nucleons.

	5	pace-spin symmetric	states
S	Ι	Channels	SU(3) irreps
0	0	NN	{10*}
-1	1/2	$\Lambda N, \Sigma N$	$\{10^*\}, \{8\}_a$
	3/2	ΣN	{10}
-2	0	ΞN	{8} _a
	1	$\equiv N, \Sigma \Sigma$	{10}, {10*}, {8}
		ΣΛ	{10}, {10*}
-3	1/2	ΞΛ,ΞΣ	$\{10\}, \{8\}_a$
	3/2	ΞΣ	{10*}
-4	0	三三	{10}
	Sp	ace-spin antisymmetri	c states
S	I	Channels	SU(3) irreps
0	1	NN	{27}
-1	1/2	$\Lambda N, \Sigma N$	{27}, {8},
	3/2	ΣN	{27}
-2	0	$\Lambda\Lambda$, ΞN , $\Sigma\Sigma$	$\{27\}, \{8\}, \{1\}$
	1	$\Xi N, \Sigma \Lambda$	{27}, {8},
	2	ΣΣ	{27}
-3	1/2	ΞΛ, ΞΣ	{27}, {8},
	3/2	ΞΣ	{27}
-4	1	三三	{27}

《日》《圖》《臣》《臣》

Introduction	Нуре	rnuclei	MEMOs	Producti 0000	on estimates	Summary
Baryon-	-baryon	potentials	from	Nijmegen	soft-core	models

- One-Boson exchange model for pseudoscalar, scalar, and vector mesons
- $SU(3)_f$ symmetry
- Fitted to scattering data (NN and NY)
- (Stoks, Rijken 1999):

 $\begin{array}{lll} \Sigma^+ \mathsf{p}, \ \Sigma^- \mathsf{n}: & \mathsf{quasibound} \\ \Sigma^+ \Sigma^+, \ \Sigma^- \Sigma^-: & E_b = -1.5 \ \mathrm{to} \ -3.2 \ \mathrm{MeV} \\ \Xi^0 \Sigma^+, \ \Xi^- \Sigma^-: & E_b = -2 \ \mathrm{to} \ -17 \ \mathrm{MeV} \\ \Xi^0 \Xi^0, \ \Xi^0 \Xi^-: & E_b = +1 \ \mathrm{to} \ -16 \ \mathrm{MeV} \end{array}$

24 / 43

- Quark-meson exchange model
- $SU(3)_f$ symmetry for coupling constants
- Confinement potential
- Good for light hypernuclei
- (Fujiwara, Suzuki, Nakamoto 2007):

No bound states !!

- $\bullet~$ One-boson exchange of pseudoscalar mesons +~ contact terms
- $SU(3)_f$ symmetry
- Fitted to scattering data (NN and NY)
- (Haidenbaer and Meißner 2010):

 $Ξ^0 Λ$: $E_b = -0.43$ MeV or quasibound $Ξ^0 Σ^+$: $E_b = -2.23$ to -6.15 MeV ΞΞ: $E_b = -2.56$ to -7.28 MeV

• Lattice results indicate an unbound H-dibaryon

27 / 43

Introduction	Hypernuclei	MEMOs	Production estimates	Summary
	Mod	lel for weak	decays	

J

Mesonic decay

- SU(3)_f symmetry for weak interaction vertex of two baryons and one pseudoscalar meson
- Fitted to hyperon decay amplitudes (Schaffner-Bielich, Mattiello, Sorge 2000)

Non-mesonic decay

- Meson exchange model:strong vertex from one-boson exchange
- Use parameterized deuteron-like wavefunction

28/43

introduction	пуренцен	MEMOS	0000	Summary
	Weak deca	ivs of the E	$E^0 \Xi^-$ dibaryon	

- $\bullet\,$ Can be seen in $\Xi^-\Lambda$ invariant mass plots
- Small branching ratio: needs larger production rate

 $\exists \rightarrow$

< A

Introduction	Hypernuclei	MEMOs	Production estimates	Summary
	Dec	cay characte	eristics	

Track them down by:

- Exotic tracks in TPC
- Invariant mass spectra for bound clusters
- Correlations: resonances and interaction potential

Introduction	Hypernuclei	MEMOs	Production estimates	Summary
		Coalescence		

- Take transport model of choice and calculate phase space distributions of baryons.
- A cluster is formed whenever the correct combination of baryons occupies a certain phase space "point"

$$dN/d\vec{P} = g \int f_A(\vec{x}_1, \vec{p}_1) f_B(\vec{x}_2, \vec{p}_2) \rho_{AB}(\Delta \vec{x}, \Delta \vec{p})$$

$$\delta(\vec{P} - \vec{p}_1 - \vec{p}_2) d^3 x_1 \ d^3 x_2 \ d^3 p_1 \ d^3 p_2$$

Results depend on parameters!

31/43

Introduction	Hypernuclei	MEMOs	Production estimates	Summary
	т.	ha nanaltu	factor	

The penalty factor

Usually cluster production is characterized by a penalty factor for introducing a baryon to a cluster:

The penalty factor can be understood in therms of a Boltzmann factor: $\exp -(m-\mu)/T$

Introduction	Hypernuclei	MEMOs	Production estimates	Summary
	Carla			

Coalescence estimates

• Coalescence model predictions at RHIC energies $\sqrt{s} = 200A$ GeV (multiplicity of $\Xi^0 \Xi^- \approx 10^{-3}$).

(Schaffner-Bielich, Mattiello, Sorge (2010))

33/43

Introduction	Hypernuclei	MEMOs	Production estimates	Summary
	Therma	Inroduction	rates	

- Thermal models give a reasonable description of hadron yields in HIC
- Parameters are usually temperature and the baryo-chemical potential
- Can also be used to estimate cluster production

Introduction	Hypernuclei	MEMOs	Production estimates	Summary
	т	he hybrid N	Nodel	

- We investigate production of MEMO's in a micro+macro hybrid approach ¹ to heavy ion collisions.
- Initial state from UrQMD mapped on 3+1 d Hydro grid.
- Accounts for fluctuations, baryon density phase-space separation (transparency). Baryon rapidity distribution from hydro initial state

Introduction	Hypernuclei	MEMOs	Production estimates	Summary
	т	he hybrid N	A odel	

- Transition from hydro to transport when $\epsilon < 600 MeV/fm^3$ ($\approx 4\epsilon_0$) in all cells of one transverse slice (Gradual freeze-out, GF)
- Cooper Frye Prescription $E\frac{dN}{d^3p}=\int_{\sigma}f(x,p)p^{\mu}d\sigma_{\mu}$
- For MEMO production the final state interactions are neglected.

• Central Pb+Pb/Au+Au collisions from AGS to RHIC.

୬ ୯ ୯ 37 / 43

Introduction	Hypernuclei	MEMOs	Production estimates • 0 0 0	Summary
	Multiplici	ties for vari	ous energies	

Midrapidity results from the hybrid model for various energies.

Reasonable agreement with coalescence predictions.

38 / 43

- FAIR will be ideal place to look for baryon-rich clusters.
- Multiplicities for various MEMOs (per degeneracy factor).

(Steinheimer, Mitrovski, Schuster, Petersen, Bleicher, Stöcker 2009)

39/43

Midrapidity results from the hybrid model for various energies.

Highest RHIC and LHC energies will open up Anti-Hypermatter opportunities.

40 / 43

Introduction	Hypernuclei	MEMOs	Production estimates ○○○●	Summary
	,	A strange r	atio	

- Consider the following ratio $R_H =^3_{\Lambda} H/^3 He \cdot p/\Lambda$.
- All fugacities cancel as well as should simple canonical corrections!

Introduction	Hypernuclei	MEMOs	Production estimates ○○○●	Summary
	,	A strange r	atio	

- Consider the following ratio $R_H =^3_{\Lambda} H/^3 He \cdot p/\Lambda$.
- All fugacities cancel as well as should simple canonical corrections!
- But what about Σ^0 (30% of all Λ 's come from the Σ^0)

Introduction	Hypernuclei	MEMOs	Production estimates	Summary
		Conclusio	n	

- Bound states of hyperons might exist, $\Xi^-\Xi^0$ is a candidate.
- CBM experiment at FAIR is ideally placed for for the search of exotic multihypernuclear Objects.
- For exploring the anti-hyper world RHIC and especially the LHC are promising

Introduction	Hypernuclei	MEMOs	Production estimates	Summary
		Conclusio	'n	

- Bound states of hyperons might exist, $\Xi^-\Xi^0$ is a candidate.
- CBM experiment at FAIR is ideally placed for for the search of exotic multihypernuclear Objects.
- For exploring the anti-hyper world RHIC and especially the LHC are promising
- Can we learn about strangeness equilibration and correlations from hyperclusters?

Introduction	Hypernuclei	MEMOs	Production estimates	Summary
		Backup		

- Way to enhance cluster production is by destillation
- We use a model that has a phase coexistence of hadrons and quarks (crossover like lattice)

< ∃⇒

18 A.