

Baryon Stopping

JINR, 28.08.10

Rapidity Density

Fit

Reduced curvature Crossove Summar

Requirements

Baryon Stopping as a Possible Signal of Mixed-Phase Onset

Alulti-Fluid Dynamics

Yu.B. Ivanov

GSI&Kurchatov Inst.

NICA Round Table 5 Dubna, JINR, August 28, 2010

イロト 不得 トイヨト イヨト ニヨー

Baryon Stopping

Baryon Stopping

JINR, 28.08.10

Rapidity Density

Fit

Reduced curvature

Crossove

Summary

Problems

Requirements

Net-baryon rapidity distribution is a direct measure of the baryon stopping.

However, we have to rely on net-proton data.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Baryon Stopping

Baryon Stopping

JINR, 28.08.10

Rapidity Density

Fit

Reduced curvature

Crossove

Summary

Problems

Requirements

Net-baryon rapidity distribution is a direct measure of the baryon stopping.

However, we have to rely on net-proton data.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Two-Thermal-Sources Fit

Baryon Stopping

Fit

Two thermal sources shifted by $\pm y_s$ from the midrapidity.

 $w_{\rm s} =$ width of the sources

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Reduced curvature in the midrapidity

Baryon Stopping

JINR, 28.08.10

Rapidity Density

Fit

Reduced curvature Crossover Summary Problems Requirements

$$C_y \equiv \left(y_{cm}^3 \frac{d^3 N}{dy^3}\right)_{y=y_{cm}} / \left(y_{cm} \frac{dN}{dy}\right)_{y=y_{cm}}$$
$$= \left(y_{cm}/w_s\right)^2 \left(\sinh^2 y_s - w_s \cosh y_s\right)$$

with respect to the "dimensionless" rapidity $(y - y_{cm})/y_{cm}$. C_y is independent of the overall normalization

> $C_y =$ shape (concave or convex) at midrapidity and $(y_{cm}dN/dy)_{y=y_{cm}} =$ magnitude at midrapidity

two independent characteristics of a spectrum

"zig-zag" irregularity

JINR, 28.08.10

Rapidity Density

Fit

Reduced curvature Crossover Summary Problems Requirements

C_y in 2P-EoS scenario \Rightarrow zig-zag irregularity [qualitatively similar to that in the data]

Hadronic scenario \Rightarrow monotonous behaviour

Crossover EoS (preliminary)

Baryon Stopping

JINR, 28.08.10

Rapidity Density

Fit

Reduced curvature Crossover

Summary Problems Requirements

Crossover transition to QGP

[Khvorostukhin, Skokov, Redlich, Toneev, Eur. Phys. J. C48, 531 (2006)]

Phase transition is smoother \Rightarrow wiggle instead of zig-zag

Summary

Baryon Stopping

JINR, 28.08.10

- Rapidity Density
- Fit
- Reduce
- Crossove
- Summary
- Problems
- Requirements

- Baryon stopping is sensitive to phase transition into QGP
- Data qualitatively favor onset of a phase transition between 10 and 20 GeV/nucl.
 - This is the range, where other irregularities (horn, step) occur.
- Still the question: Why there is no quantitative agreement?

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Problems

Baryon Stopping

JINR, 28.08.10

Rapidity Density

Fit

Reduced curvature

Crossove

Summary

Problems

Requirements

- It is suspicious that zig-zag occurs at the border between AGS and SPS energies.
- Too narrow range of $y y_{cm}$ in data at 80A and 158A GeV.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

• Neutrons are unavailable.

Experimental Requirements

Baryon Stopping

JINR, 28.08.10

Rapidity Density

Fit

- Reduced curvature Crossove
- Summary
- Problems
- Requireme

Net-proton *dN/dy* within the same exp. setup at energies 6A ≤ E_{lab} ≤ 40A in the range at least |y - y_{cm}| ≤ 0.7 (better if 0.9)

• What we expect in the nearest future:

- Au@RHIC $E_{lab} \ge 18A$ GeV
- Pb@SPS *E*_{lab} ≥ 20*A* GeV In@SPS *E*_{lab} ≥ 10*A* GeV
- Au@FAIR/GSI (1st stage) $E_{lab} \le 10A$
- Au@NICA $6A \le E_{lab} \le 60A$

Neutrons are highly appreciated (but not critical)

(日) (日) (日) (日) (日) (日) (日)