Phase Structure of the Polyakov–Quark-Meson Model beyond Mean Field

Bernd-Jochen Schaefer

University of Graz, Austria

 23^{rd} - 29^{th} August, 2010

6th International Workshop

on

Critical Point and Onset of Deconfinement (CPOD)

JINR, Dubna, Russia

Phase structure of PQM beyond mean fiedl

QCD Phase Transitions

 $QCD \rightarrow$ two phase transitions:

restoration of chiral symmetry

 $SU_{L+R}(N_f) \rightarrow SU_L(N_f) \times SU_R(N_f)$

order parameter:

 $\langle \bar{q}q \rangle \left\{ \begin{array}{l} > 0 \Leftrightarrow \text{ symmetry broken, } T < T_c \\ = 0 \Leftrightarrow \text{ symmetric phase, } T > T_c \end{array} \right.$

2 de/confinement

order parameter: Polyakov loop variable

$$\Phi \left\{ \begin{array}{l} = 0 \Leftrightarrow \text{confined phase}, \quad T < T_c \\ > 0 \Leftrightarrow \text{deconfined phase}, \quad T > T_c \end{array} \right.$$

 $\Phi = \left\langle \operatorname{tr}_{c} \mathcal{P} \exp\left(i \int_{0}^{\beta} d\tau A_{0}(\tau, \vec{x})\right) \right\rangle / N_{c}$

alternative: → dressed Polyakov loop (or dual condensate)

it relates chiral and deconfinement transition to spectral properties of Dirac operator

effective models:

1 Quark-meson model	or other models e.g. NJL
2 Polyakov-quark-meson model	or PNJL models

At densities/temperatures of interest only model calculations available

Phase structure of PQM beyond mean fiedl

The conjectured QCD Phase Diagram

At densities/temperatures of interest only model calculations available Open issues:

related to chiral & deconfinement transition

- ▷ existence of CEP?
- \triangleright its location?
- Additional CEPs? How many?
- \triangleright coincidence of both transitions at $\mu = 0$?
- \triangleright quarkyonic phase at $\mu > 0$?
- chiral CEP/ deconfinement CEP?
- so far only MFA results effect of fluctuations (e.g. size of crit. reg.)?

⊳ ...

Outline

• Polyakov–Quark-Meson Model

• Functional renormalization group (FRG)

$N_f=3\mbox{ Quark-Meson}$ (QM) model

■ Model Lagrangian:
$$\mathcal{L}_{qm} = \mathcal{L}_{quark} + \mathcal{L}_{meson}$$

Quark part with Yukawa coupling h:

$$\mathcal{L}_{quark} = \bar{q}(i\partial \!\!\!/ - h \frac{\lambda_a}{2}(\sigma_a + i\gamma_5\pi_a))q$$

Meson part: scalar σ_a and pseudoscalar π_a nonet

fields:
$$M = \sum_{a=0}^{8} \frac{\lambda_a}{2} (\sigma_a + i\pi_a)$$

$$\mathcal{L}_{\text{meson}} = \text{tr}[\partial_\mu M^{\dagger} \partial^\mu M] - m^2 \text{tr}[M^{\dagger} M] - \lambda_1 (\text{tr}[M^{\dagger} M])^2 - \lambda_2 \text{tr}[(M^{\dagger} M)^2] + c[\text{det}(M) + \text{det}(M^{\dagger})] + \text{tr}[H(M + M^{\dagger})]$$

- explicit symmetry breaking matrix: $H = \sum_{a} \frac{\lambda_a}{2} h_a$
- $U(1)_A$ symmetry breaking implemented by 't Hooft interaction

Polyakov-quark-meson (PQM) model

■ Lagrangian $\mathcal{L}_{PQM} = \mathcal{L}_{qm} + \mathcal{L}_{pol}$ with $\mathcal{L}_{pol} = -\bar{q}\gamma_0 A_0 q - \mathcal{U}(\phi, \bar{\phi})$

polynomial Polyakov loop potential:

Polyakov 1978, Meisinger 1996, Pisarski 2000

$$\frac{\mathcal{U}(\phi,\bar{\phi})}{T^4} = -\frac{b_2(T,T_0)}{2}\phi\bar{\phi} - \frac{b_3}{6}\left(\phi^3 + \bar{\phi}^3\right) + \frac{b_4}{16}\left(\phi\bar{\phi}\right)^2$$

with $b_2(T,T_0) = a_0 + a_1(T_0/T) + a_2(T_0/T)^2 + a_3(T_0/T)^3$

Iogarithmic potential:

Rößner et al. 2007

$$\begin{aligned} \frac{\mathcal{U}_{\log}}{T^4} &= -\frac{1}{2}a(T)\bar{\phi}\phi + b(T)\ln\left[1 - 6\bar{\phi}\phi + 4\left(\phi^3 + \bar{\phi}^3\right) - 3\left(\bar{\phi}\phi\right)^2\right]\\ \text{with} \quad a(T) &= a_0 + a_1(T_0/T) + a_2(T_0/T)^2 \quad \text{and} \quad b(T) = b_3(T_0/T)^2 \end{aligned}$$

Fukushima

Fukushima 2008

$$\mathcal{U}_{\mathsf{Fuku}} = -bT\left\{54e^{-a/T}\phi\bar{\phi} + \ln\left[1 - 6\bar{\phi}\phi + 4\left(\phi^3 + \bar{\phi}^3\right) - 3\left(\bar{\phi}\phi\right)^2\right]\right\}$$

a controls deconfinement b strength of mixing chiral & deconfinement

Polyakov-quark-meson (PQM) model

■ Lagrangian $\mathcal{L}_{PQM} = \mathcal{L}_{qm} + \mathcal{L}_{pol}$ with $\mathcal{L}_{pol} = -\bar{q}\gamma_0 A_0 q - \mathcal{U}(\phi, \bar{\phi})$

polynomial Polyakov loop potential:

Polyakov 1978, Meisinger 1996, Pisarski 2000

$$\frac{\mathcal{U}(\phi,\bar{\phi})}{T^4} = -\frac{b_2(T,T_0)}{2}\phi\bar{\phi} - \frac{b_3}{6}\left(\phi^3 + \bar{\phi}^3\right) + \frac{b_4}{16}\left(\phi\bar{\phi}\right)^2$$

with $b_2(T,T_0) = a_0 + a_1(T_0/T) + a_2(T_0/T)^2 + a_3(T_0/T)^3$

in presence of dynamical quarks: $T_0 = T_0(N_f, \mu)$

BJS, Pawlowski, Wambach, 2007

N_f	0	1	2	2 + 1	3
T_0 [MeV]	270	240	208	187	178

 $\mu \neq 0: \quad \bar{\phi} > \phi$

since $\bar{\phi}$ is related to free energy gain of antiquarks in medium with more quarks \rightarrow antiquarks are more easily screened.

QCD Thermodynamics $N_f = 2 + 1$

[BJS, M. Wagner, J. Wambach '10]

SB limit:
$$\frac{p_{\text{SB}}}{T^4} = 2(N_c^2 - 1)\frac{\pi^2}{90} + N_f N_c \frac{7\pi^2}{180}$$

(P)QM models (three different Polyakov loop potentials) versus QCD lattice simulations

[Bazavov et al. '09]

Critical region

contour plot of size of the critical region around CEP in the phase diagram

Contour lines are defined via fixed ratio of susceptibilities: $R = \chi_q/\chi_q^{\text{free}}$

[BJS, M. Wagner; in preparation]

Outline

• Polyakov–Quark-Meson Model

• Functional renormalization group (FRG)

Functional RG Approach

 $\Gamma_k[\phi]$ scale dependent effective action ; $t = \ln(k/\Lambda)$; R_k regulators

FRG (average effective action)

[Wetterich '93]

Isentropes s/n = const and Focussing

[E. Nakano, BJS, B.Stokic, B.Friman, K.Redlich '10]

here: $N_f = 2$ QM model: kink in MFA are washed out in FRG

 \rightarrow no focussing if fluctuations taken into account

smallnest of critical region

Isentropes s/n = const and Focussing

[E. Nakano, BJS, B.Stokic, B.Friman, K.Redlich '10]

here: $N_f = 2$ QM model: kink in MFA are washed out in FRG

 \rightarrow no focussing if fluctuations taken into account

smallnest of critical region

kink structure at boundary in mean field approximation

 \Rightarrow remnant of first-order transition in chiral limit

if Dirac term neglected

$\mathbf{T}_0(N_f,\mu)$ modification

full QCD FRG flow: gluon , ghosts, quark and meson (via hadronization) fluctuations [J. Braun, H. Gies, L.M. Haas, F. Marhauser, J.M. Pawlowski et al.]

$$T_0 \leftrightarrow \Lambda_{QCD}$$
 : $T_0 \to T_0(N_f, \mu)$

[BJS, Pawlowski, Wambach, 2007] [Herbst, Pawlowski,BJS; arXiv:1008.0081]

Functional Renormalization Group

[Wetterich '93]

$$\partial_{t}\Gamma_{k}[\phi] = \frac{1}{2}\operatorname{Tr} \partial_{t}R_{k}\left(\frac{1}{\Gamma_{k}^{(2)} + R_{k}}\right) \qquad ; \qquad \Gamma_{k}^{(2)} = \frac{\delta^{2}\Gamma_{k}}{\delta\phi\delta\phi}$$
$$\partial_{t}\Gamma_{k}[\phi] = \frac{1}{2}\left(\overset{\bigotimes}{\bullet}\overset{\bigotimes}{\bullet}\right) - \begin{pmatrix}\overset{\bigotimes}{\bullet}\overset{\bigotimes}{\bullet}\end{pmatrix} - \begin{pmatrix}\overset{\bigotimes}{\bullet}\overset{\bigotimes}{\bullet}\end{pmatrix} + \frac{1}{2}\left(\overset{\bigotimes}{\bullet}\right)$$

 $\Gamma_k[\phi]$ scale dependent effective action ; $t = \ln(k/\Lambda)$; R_k regulators

 $\label{eq:post_formula} \text{PQM truncation } N_f = 2$

[Herbst, Pawlowski,BJS; arXiv:1008.0081]

$$\Gamma_{k} = \int d^{4}x \left\{ \bar{\psi} \left(\mathcal{D} + \mu \gamma_{0} + ih(\sigma + i\gamma_{5}\vec{\tau}\vec{\pi}) \right) \psi + \frac{1}{2} (\partial_{\mu}\sigma)^{2} + \frac{1}{2} (\partial_{\mu}\vec{\pi})^{2} + \Omega_{k}[\sigma, \vec{\pi}, \Phi, \bar{\Phi}] \right\}$$

Initial action at UV scale Λ :

$$\Omega_{\Lambda}[\sigma, \vec{\pi}, \Phi, \bar{\Phi}] = U(\sigma, \vec{\pi}) + \mathcal{U}(\Phi, \bar{\Phi}) + \Omega_{\Lambda}^{\infty}[\sigma, \vec{\pi}, \Phi, \bar{\Phi}]$$
$$U(\sigma, \vec{\pi}) = \frac{\lambda}{4}(\sigma^2 + \vec{\pi}^2 - v^2)^2 - c\sigma$$

Functional Renormalization Group

[Wetterich '93]

$$\partial_{t}\Gamma_{k}[\phi] = \frac{1}{2}\operatorname{Tr} \partial_{t}R_{k}\left(\frac{1}{\Gamma_{k}^{(2)} + R_{k}}\right) \qquad ; \qquad \Gamma_{k}^{(2)} = \frac{\delta^{2}\Gamma_{k}}{\delta\phi\delta\phi}$$
$$\partial_{t}\Gamma_{k}[\phi] = \frac{1}{2}\left(\overset{\bigotimes}{\bullet}\right) - \left(\overset{\bigotimes}{\bullet}\right) - \left(\overset{\bigotimes}{\bullet}\right) + \frac{1}{2}\left(\overset{\bigotimes}{\bullet}\right)$$

Flow equation for PQM $N_f = 2$

[Herbst, Pawlowski,BJS; arXiv:1008.0081]

$$\partial_t \Omega_k = \frac{k^5}{12\pi^2} \left[-\frac{2N_f N_c}{E_q} \left\{ 1 - N_q(T,\mu;\Phi,\bar{\Phi}) + N_{\bar{q}}(T,\mu;\Phi,\bar{\Phi}) \right\} + \frac{1}{E_\sigma} \operatorname{coth}\left(\frac{E_\sigma}{2T}\right) + \frac{3}{E_\pi} \operatorname{coth}\left(\frac{E_\pi}{2T}\right) \right]$$

with $E_{\sigma,\pi,q} = \sqrt{k^2 + m_{\sigma,\pi,q}^2}$, $m_{\sigma}^2 = 2\Omega'_k + 4\sigma^2 \Omega''_k$, $m_{\pi}^2 = 2\Omega'_k$, $m_q^2 = g^2 \sigma^2$ and

$$N_q(T,\mu;\Phi,\bar{\Phi}) = \frac{1+2\bar{\Phi}e^{\beta(E_q-\mu)} + \Phi e^{2\beta(E_q-\mu)}}{1+3\bar{\Phi}e^{\beta(E_q-\mu)} + 3\Phi e^{2\beta(E_q-\mu)} + e^{3\beta(E_q-\mu)}}$$

 $N_{\bar{q}}(T,\mu;\Phi,\bar{\Phi}) = N_q(T,-\mu;\Phi,\bar{\Phi})|_{\mu\to-\mu}$ cf. [Skokov et al. arXiv:1004.2665]

Phase structure of PQM beyond mean fiedl

B.-J. Schaefer (KFU Graz)

$\mu = 0$: order parameters and *T*-derivatives

 $T_0 = 270 \text{ MeV}$

Phase diagram $T_0 = 208$ **MeV**

[Herbst, Pawlowski,BJS; arXiv:1008.0081]

Phase diagram $T_0(\mu), T_0(0) = 208 \text{ MeV}$

[Herbst, Pawlowski,BJS; arXiv:1008.0081]

Thermodynamics

Critical region

similar conclusion if fluctuations are included

fluctuations via Functional Renormalization Group

[BJS, J. Wambach '06]

Summary

■ $N_f = 2$ and $N_f = 2 + 1$ chiral (Polyakov)-quark-meson model study

Mean-field approximation and FRG

fluctuations are important

Findings:

- ▷ matter **back-reaction to YM sector**: $T_0 \Rightarrow T_0(N_f, \mu)$
- ▷ **FRG with PQM truncation**: Chiral & deconfinement transition **coincide** for $N_f = 2$ with $T_0(\mu)$ -corrections
- ▷ same conclusion for $N_f = 2 + 1$?
- > role of quantum fluctuations

effects of Dirac term in a mean-field approximation

Outlook:

- ▷ include glue dynamics with FRG
 - \rightarrow towards full QCD

Schladming Winter School

49. Internationale Universitätswochen für Theoretische Physik

Physics at all scales: The Renormalization Group

Schladming, Styria, Austria, February 26 - March 5, 2011

Jürgen Berges (TU Darmstadt) Sebastian Diehl (University of Innsbruck) Richard J. Furnstahl (Ohio State University) Anna Hasenfratz (University of Colorado) Daniel Litim (University of Sussex)

Nonequilibrium Renormalization Group

Ultracold Quantum Gases and the Functional Renormalization Group The Renormalization Group in Nuclear Physics

Exploring the Conformal Window

Gravity and the Renormalization Group

If you wish to apply, please access the web page and complete the registration form as soon as possible, but not later than February 18, 2011. More Information about the school can be found on the web page as well.

