Inhomogeneous chiral symmetry breaking phases

TECHNISCHE UNIVERSITÄT DARMSTADT

Michael Buballa

6th International Conference on Critical Point and Onset of Deconfinement

JINR Dubna, August 23 - 29, 2010

QCD phase diagram

QCD phase diagram

- QCD phase diagram
- ► frequent assumption: \(\bar{q}q\), \(\langle qq\) constant in space

- QCD phase diagram
- frequent assumption: $\langle \bar{q}q \rangle$, $\langle qq \rangle$ constant in space
- inhomogeneous phases:

- QCD phase diagram
- ► frequent assumption: (q̄q), (qq) constant in space
- inhomogeneous phases:
 - Skyrme crystal

August 27, 2010 | Michael Buballa | 2

- QCD phase diagram
- ► frequent assumption: \langle \bar{q} \rangle, \langle qq \rangle constant in space
- inhomogeneous phases:
 - Skyrme crystal
 - crystalline color superconductors

August 27, 2010 | Michael Buballa | 2

- QCD phase diagram
- ► frequent assumption: \langle \bar{q} \rangle, \langle qq \rangle constant in space
- inhomogeneous phases:
 - Skyrme crystal
 - crystalline color superconductors
 - chiral density wave

- QCD phase diagram
- ► frequent assumption: \langle \bar{q} \rangle, \langle qq \rangle constant in space
- inhomogeneous phases:
 - Skyrme crystal
 - crystalline color superconductors
 - chiral density wave
 - 1+1 D Gross-Neveu model

- QCD phase diagram
- ► frequent assumption: ⟨q̄q⟩, ⟨qq⟩ constant in space
- inhomogeneous phases:
 - Skyrme crystal
 - crystalline color superconductors
 - chiral density wave
 - 1+1 D Gross-Neveu model
- This talk:

inhomogeneous $\chi {\rm SB}$ in the NJL model

Collaborators

► based on:

Phys. Rev. D 82 (2010), in print [arXiv:1007.1397],

together with

Stefano Carignano (TU Darmstadt)

Dominik Nickel (INT Seattle)

Model

► NJL model:

$$\mathcal{L} = \bar{\psi}(i\partial\!\!\!/ - m)\psi + G_{\mathcal{S}}\left((\bar{\psi}\psi)^2 + (\bar{\psi}i\gamma_5\vec{\tau}\psi)^2\right)$$

Model

NJL model:

$$\mathcal{L}=\bar{\psi}(i\partial\!\!\!/-m)\psi+G_{\mathcal{S}}\left((\bar{\psi}\psi)^2+(\bar{\psi}i\gamma_5\vec{\tau}\psi)^2\right)$$

► bosonize: $\sigma(x) = \bar{\psi}(x)\psi(x), \quad \vec{\pi}(x) = \bar{\psi}(x)i\gamma_5\vec{\tau}\psi(x)$

$$\Rightarrow \quad \mathcal{L} = \bar{\psi} \left(i \partial \!\!\!/ - m + 2G_S(\sigma + i \gamma_5 \vec{\tau} \cdot \vec{\pi}) \right) \psi - G_S \left(\sigma^2 + \vec{\pi}^2 \right)$$

Model

NJL model:

$$\mathcal{L} = \bar{\psi}(i\partial \!\!\!/ - m)\psi + G_{\mathcal{S}}\left((\bar{\psi}\psi)^2 + (\bar{\psi}i\gamma_5\vec{\tau}\psi)^2\right)$$

► bosonize: $\sigma(x) = \bar{\psi}(x)\psi(x), \quad \vec{\pi}(x) = \bar{\psi}(x)i\gamma_5\vec{\tau}\psi(x)$

$$\Rightarrow \quad \mathcal{L} = \bar{\psi} \left(i \partial \!\!\!/ - m + 2G_S(\sigma + i\gamma_5 \vec{\tau} \cdot \vec{\pi}) \right) \psi - G_S \left(\sigma^2 + \vec{\pi}^2 \right)$$

mean-field approximation:

$$\sigma(\mathbf{x}) \rightarrow \langle \sigma(\mathbf{x}) \rangle \equiv S(\vec{\mathbf{x}}), \quad \pi_a(\mathbf{x}) \rightarrow \langle \pi_a(\mathbf{x}) \rangle \equiv P(\vec{\mathbf{x}}) \, \delta_{a3}$$

- $S(\vec{x})$, $P(\vec{x})$ time independent classical fields
- retain space dependence !

- ► mean-field Lagrangian: $\mathcal{L}_{MF} = \bar{\psi}(x)S^{-1}(x)\psi(x) G_S\left(S^2(\vec{x}) + P^2(\vec{x})\right)$
 - inverse dressed propagator:

$$\mathcal{S}^{-1}(x) = i\partial - m + 2G_S\left(S(\vec{x}) + i\gamma_5\tau_3 P(\vec{x})\right)$$

- ► mean-field Lagrangian: $\mathcal{L}_{MF} = \bar{\psi}(x)S^{-1}(x)\psi(x) G_S\left(S^2(\vec{x}) + P^2(\vec{x})\right)$
 - inverse dressed propagator:

$$\mathcal{S}^{-1}(x) \,=\, i \not \! \partial - m + 2 G_{\mathcal{S}} \left(\mathcal{S}(\vec{x}) + i \gamma_5 \tau_3 \mathcal{P}(\vec{x}) \right) \,\equiv\, \gamma^0 \, \left(i \partial_0 - \mathcal{H}_{MF} \right)$$

• $\mathcal{H}_{MF} = \mathcal{H}_{MF}[S, P]$: hermitean, time independent

- ► mean-field Lagrangian: $\mathcal{L}_{MF} = \bar{\psi}(x)S^{-1}(x)\psi(x) G_S\left(S^2(\vec{x}) + P^2(\vec{x})\right)$
 - inverse dressed propagator:

$$\mathcal{S}^{-1}(x) = i\partial \!\!\!/ - m + 2G_S\left(S(\vec{x}) + i\gamma_5\tau_3 P(\vec{x})\right) \equiv \gamma^0 (i\partial_0 - \mathcal{H}_{MF})$$

- $\mathcal{H}_{MF} = \mathcal{H}_{MF}[S, P]$: hermitean, time independent
- thermodynamic potential:

$$\Omega_{MF}(T,\mu;S,P) = -\frac{T}{V}\operatorname{Tr}\ln\left(\frac{1}{T}(i\partial_0 - \mathcal{H}_{MF} + \mu)\right) + \frac{G_S}{V}\int\limits_V d^3x \left(S^2(\vec{x}) + P^2(\vec{x})\right)$$

- ► mean-field Lagrangian: $\mathcal{L}_{MF} = \bar{\psi}(x)S^{-1}(x)\psi(x) G_S\left(S^2(\vec{x}) + P^2(\vec{x})\right)$
 - inverse dressed propagator:

$$\mathcal{S}^{-1}(x) \,=\, i \partial \!\!\!/ - m + 2 G_{\mathcal{S}} \left(\mathcal{S}(\vec{x}) + i \gamma_5 \tau_3 \mathcal{P}(\vec{x}) \right) \,\equiv\, \gamma^0 \, \left(i \partial_0 - \mathcal{H}_{MF} \right)$$

- $\mathcal{H}_{MF} = \mathcal{H}_{MF}[S, P]$: hermitean, time independent
- thermodynamic potential:

$$\Omega_{MF}(T,\mu;S,P) = -\frac{T}{V}\operatorname{Tr} \ln\left(\frac{1}{T}(i\partial_0 - \mathcal{H}_{MF} + \mu)\right) + \frac{G_S}{V}\int_V d^3x \left(S^2(\vec{x}) + P^2(\vec{x})\right)$$
$$= -\frac{1}{V}\sum_{\lambda} \left[\frac{E_{\lambda} - \mu}{2} + T\ln\left(1 + e^{\frac{E_{\lambda} - \mu}{T}}\right)\right] + \frac{1}{V}\int_V d^3x \frac{|M(\vec{x}) - m|^2}{4G_s}$$

- mass function: $M(\vec{x}) = m 2G_S(S(\vec{x}) + iP(\vec{x}))$
- $E_{\lambda} = E_{\lambda}[M(\vec{x})] = \text{eigenvalues of } \mathcal{H}_{MF}$

- remaining tasks:
 - ► calculate eigenvalue spectrum of \mathcal{H}_{MF} for given mass function $M(\vec{x})$
 - minimize w.r.t. $M(\vec{x})$

- remaining tasks:
 - ► calculate eigenvalue spectrum of \mathcal{H}_{MF} for given mass function $M(\vec{x})$
 - minimize w.r.t. $M(\vec{x})$

- simplification:
 - consider only one-dimensional modulations M(z)

- remaining tasks:
 - ► calculate eigenvalue spectrum of \mathcal{H}_{MF} for given mass function $M(\vec{x})$
 - minimize w.r.t. $M(\vec{x})$

- simplification:
 - consider only one-dimensional modulations M(z)
 - important observation: [D. Nickel, PRD (2009)]
 problem can be mapped to the 1 + 1 dimensional case

- remaining tasks:
 - ► calculate eigenvalue spectrum of \mathcal{H}_{MF} for given mass function $M(\vec{x})$
 - minimize w.r.t. $M(\vec{x})$

- simplification:
 - consider only one-dimensional modulations M(z)
 - important observation: [D. Nickel, PRD (2009)]
 problem can be mapped to the 1 + 1 dimensional case
 - ► solutions known analytically: [M. Thies, J. Phys. A (2006)] $M(z) = \sqrt{\nu}\Delta \operatorname{sn}(\Delta z | \nu)$ (chiral limit), $\operatorname{sn}(\xi | \nu)$: Jacobi elliptic functions

- remaining tasks:
 - ► calculate eigenvalue spectrum of \mathcal{H}_{MF} for given mass function $M(\vec{x})$
 - minimize w.r.t. $M(\vec{x})$

extremely difficult!

- simplification:
 - consider only one-dimensional modulations M(z)
 - important observation: [D. Nickel, PRD (2009)]
 problem can be mapped to the 1 + 1 dimensional case
 - ► solutions known analytically: [M. Thies, J. Phys. A (2006)] $M(z) = \sqrt{\nu}\Delta \operatorname{sn}(\Delta z | \nu)$ (chiral limit), $\operatorname{sn}(\xi | \nu)$: Jacobi elliptic functions
 - remaining task:

minimize w.r.t. 2 parameters ($m \neq 0$: 3 parameters)

- remaining tasks:
 - ► calculate eigenvalue spectrum of \mathcal{H}_{MF} for given mass function $M(\vec{x})$
 - minimize w.r.t. $M(\vec{x})$

extremely difficult!

- simplification:
 - consider only one-dimensional modulations M(z)
 - important observation: [D. Nickel, PRD (2009)]
 problem can be mapped to the 1 + 1 dimensional case
 - ► solutions known analytically: [M. Thies, J. Phys. A (2006)] $M(z) = \sqrt{\nu}\Delta \operatorname{sn}(\Delta z | \nu)$ (chiral limit), $\operatorname{sn}(\xi | \nu)$: Jacobi elliptic functions
 - remaining task:

minimize w.r.t. 2 parameters ($m \neq 0$: 3 parameters) doable!

Phase diagram (chiral limit)

Phase diagram (chiral limit)

Phase diagram (chiral limit)

- 1st-order line completely covered by the inhomogeneous phase!
- all phase boundaries 2nd order
- critical point coincides with Lifshitz point

Free energy difference

- homogeneous chirally broken
- solitons
- ► chiral density wave: M_{CDW}(z) = △ e^{iqz} ("chiral spiral")
- soliton phase favored, when it exists
- $\delta\Omega_{soliton} \approx 2\delta\Omega_{CDW} \Rightarrow$ chiral spiral never favored

$$\blacktriangleright M(z) = \sqrt{\nu}\Delta \operatorname{sn}(\Delta z|\nu) \quad \rightarrow \quad \begin{cases} \Delta \tanh(\Delta z) & \text{for } \nu \to 1 \\ \sqrt{\nu}\Delta \sin(\Delta z) & \text{for } \nu \to 0 \end{cases}$$

August 27, 2010 | Michael Buballa | 9

August 27, 2010 | Michael Buballa | 9

•
$$M(z) = \sqrt{\nu}\Delta \operatorname{sn}(\Delta z | \nu) \rightarrow \begin{cases} \Delta \tanh(\Delta z) & \text{for } \nu \to 1 \\ \sqrt{\nu}\Delta \sin(\Delta z) & \text{for } \nu \to 0 \end{cases}$$

 $M(z) \ (\mu = 345 \text{ MeV})$
 $M(z) \ (\mu = 345 \text$

August 27, 2010 | Michael Buballa | 9

•
$$M(z) = \sqrt{\nu} \Delta \operatorname{sn}(\Delta z | \nu) \longrightarrow$$

 $\begin{cases} \Delta \tanh(\Delta z) & \text{for } \nu \to 1 \\ \sqrt{\nu} \Delta \sin(\Delta z) & \text{for } \nu \to 0 \end{cases}$

- Quarks reside in the chirally restored regions.
- Density gets smoothened with increasing μ and T.

- Quarks reside in the chirally restored regions.
- Density gets smoothened with increasing μ and T.

- Quarks reside in the chirally restored regions.
- Density gets smoothened with increasing μ and T.

- Quarks reside in the chirally restored regions.
- Density gets smoothened with increasing μ and T.

• additional vector term: $\mathcal{L}_V = -G_V (\bar{\psi} \gamma^{\mu} \psi)^2$

- additional vector term:
- additional mean field:

 $\mathcal{L}_V = -G_V (\bar{\psi}\gamma^\mu \psi)^2$

 $\bar{\psi}\gamma^{\mu}\psi \rightarrow \langle \bar{\psi}\gamma^{\mu}\psi \rangle \equiv n(\vec{x})\,\delta^{\mu 0} \quad (density!)$

- additional vector term:
- ► additional mean field:
- mean-field Hamiltonian:
 - $\tilde{\mu}(\vec{x}) = \mu 2G_V n(\vec{x})$ "s

$$\mathcal{L}_V = -G_V (\bar{\psi}\gamma^\mu \psi)^2$$

$$\bar{\psi}\gamma^{\mu}\psi \rightarrow \langle \bar{\psi}\gamma^{\mu}\psi \rangle \equiv n(\vec{x}) \,\delta^{\mu 0} \quad (density!)$$

$$\mathcal{H}_{MF} - \mu = \mathcal{H}_{MF}|_{G_{V}=0} - \tilde{\mu}(\vec{x})$$

"shifted chemical potential"

- additional vector term:
- ► additional mean field:
- mean-field Hamiltonian:
 - $\tilde{\mu}(\vec{x}) = \mu 2G_V n(\vec{x})$
- ► further approximation:

$$\mathcal{L}_V = -G_V (\bar{\psi}\gamma^\mu \psi)^2$$

$$ar{\psi}\gamma^{\mu}\psi
ightarrow \langle ar{\psi}\gamma^{\mu}\psi
angle \equiv n(ec{x})\,\delta^{\mu 0} \quad (density!)$$

$$\mathcal{H}_{MF} - \mu = \mathcal{H}_{MF}|_{G_V=0} - \tilde{\mu}(\vec{x})$$

"shifted chemical potential"

$$n(\vec{x}) \rightarrow \langle n \rangle = const. \Rightarrow \tilde{\mu} = const.$$

- additional vector term:
- additional mean field:
- mean-field Hamiltonian:
 - $\tilde{\mu}(\vec{x}) = \mu 2G_V n(\vec{x})$ "shifted chemical potential"

$$\mathcal{L}_V = -G_V (\psi \gamma^\mu \psi)^2$$

$$ar{\psi}\gamma^{\mu}\psi
ightarrow\langlear{\psi}\gamma^{\mu}\psi
angle\equiv{\it n}(ec{x})\,\delta^{\mu0}$$
 (density!)

$$\mathcal{H}_{MF} - \mu = \mathcal{H}_{MF}|_{G_{V}=0} - \tilde{\mu}(\vec{x})$$

- (x) Sinted chemical potential
- further approximation:

$$n(\vec{x}) \rightarrow \langle n \rangle = const. \Rightarrow \tilde{\mu} = const.$$

- questionable in the inhomogeneous phase at low μ and T
- ok near the restored phase (including the Lifshitz point)

- additional vector term:
- additional mean field:
- mean-field Hamiltonian:
 - $\tilde{\mu}(\vec{x}) = \mu 2G_V n(\vec{x})$

$$\mathcal{L}_V = -G_V (\bar{\psi}\gamma^\mu \psi)^2$$

$$ar{\psi}\gamma^{\mu}\psi
ightarrow \langle ar{\psi}\gamma^{\mu}\psi
angle \equiv \textit{n}(ec{x})\,\delta^{\mu0} \quad (\textit{density!})$$

$$\mathcal{H}_{MF} - \mu = \mathcal{H}_{MF}|_{G_{V}=0} - \tilde{\mu}(\vec{x})$$

- "shifted chemical potential"
- further approximation: $n(\vec{x}) \rightarrow \langle n \rangle = const. \Rightarrow \tilde{\mu} = const.$
 - guestionable in the inhomogeneous phase at low μ and T
 - ok near the restored phase (including the Lifshitz point)
 - advantage: known analytic solutions can still be used

- additional vector term:
- additional mean field:
- mean-field Hamiltonian:
 - $\tilde{\mu}(\vec{x}) = \mu 2G_V n(\vec{x})$ "shifted chemical potential"

$$\mathcal{L}_V = -G_V (\bar{\psi}\gamma^\mu \psi)^2$$

 $\bar{\psi}\gamma^{\mu}\psi \rightarrow \langle \bar{\psi}\gamma^{\mu}\psi \rangle \equiv n(\vec{x})\,\delta^{\mu 0} \quad (density!)$

$$\mathcal{H}_{MF} - \mu = \mathcal{H}_{MF}|_{G_{V}=0} - \tilde{\mu}(\vec{x})$$

- further approximation: $n(\vec{x}) \rightarrow \langle n \rangle = const. \Rightarrow \tilde{\mu} = const.$
 - guestionable in the inhomogeneous phase at low μ and T
 - ok near the restored phase (including the Lifshitz point)
 - advantage: known analytic solutions can still be used
 - additional parameter: $\tilde{\mu}$, fixed by constraint $\frac{\partial \Omega_{MF}}{\partial \tilde{\mu}} = 0$

Phase diagram

▶ homogeneous phases: strong *G_V*-dependence of the critical point

Phase diagram

homogeneous phases: strong G_V-dependence of the critical point

• inhomogeneous regime: stretched in μ direction, Lifshitz point at constant T

August 27, 2010 | Michael Buballa | 11

Phase diagram

▶ homogeneous phases: strong *G_V*-dependence of the critical point

• inhomogeneous regime: stretched in μ direction, Lifshitz point at constant T

August 27, 2010 | Michael Buballa | 11

Chiral density wave

- How much can we trust the approximation $\tilde{\mu} = \mu 2G_V \bar{n}$?
- Chiral density wave: $M(z) = \Delta e^{iqz} \Rightarrow n(z) = const.$

- ► CDW → restored and Lifshitz point agree with soliton solution
- chirally broken \rightarrow CDW: 1st order and at higher μ
- exact phase boundary somewhere in between

Finite current quark masses

• phase diagrams for m = 5 MeV:

same qualitative behavior

- signature of the critical point: divergent susceptibilities
- e.g., quark number susceptibility:

$$\chi_{nn} = -\frac{\partial^2 \Omega}{\partial \mu^2} = \frac{\partial n}{\partial \mu}$$

homogeneous phases only:

[K. Fukushima, PRD (2008)]

- signature of the critical point: divergent susceptibilities
- e.g., quark number susceptibility:

 $\chi_{nn}=-\frac{\partial^2\Omega}{\partial\mu^2}=\frac{\partial n}{\partial\mu}$

including inhomogeneous phases?

[K. Fukushima, PRD (2008)]

- signature of the critical point: divergent susceptibilities
- e.g., quark number susceptibility:

 $\chi_{nn}=-\frac{\partial^2\Omega}{\partial\mu^2}=\frac{\partial n}{\partial\mu}$

- including inhomogeneous phases?
- expectations:

homogeneous phases only:

[K. Fukushima, PRD (2008)]

• $G_V = 0$: CP = Lifshitz point

→ no qualitative change

- signature of the critical point: divergent susceptibilities
- e.g., quark number susceptibility:

 $\chi_{nn}=-\frac{\partial^2\Omega}{\partial\mu^2}=\frac{\partial n}{\partial\mu}$

including inhomogeneous phases?

expectations:

homogeneous phases only:

- signature of the critical point: divergent susceptibilities
- e.g., quark number susceptibility:

 $\chi_{nn}=-\frac{\partial^2\Omega}{\partial\mu^2}=\frac{\partial n}{\partial\mu}$

- including inhomogeneous phases?
- results:

homogeneous phases only:

[K. Fukushima, PRD (2008)]

• $G_V = 0$:

 χ_{nn} diverges at phase boundary (hom. broken - inhom.)

- signature of the critical point: divergent susceptibilities
- e.g., quark number susceptibility:

 $\chi_{nn}=-\frac{\partial^2\Omega}{\partial\mu^2}=\frac{\partial n}{\partial\mu}$

- including inhomogeneous phases?
- results:

homogeneous phases only:

[K. Fukushima, PRD (2008)]

• $G_V = 0$:

 χ_{nn} diverges at phase boundary (hom. broken - inhom.)

• densities and quark number susceptibilities for $G_V = 0$:

Including Polyakov-loop dynamics

- ► PNJL model: $\mathcal{L} = \bar{\psi}(i\not\!\!D m)\psi + G_S\left((\bar{\psi}\psi)^2 + (\bar{\psi}i\gamma_5\vec{\tau}\psi)^2\right) + U(\ell,\bar{\ell})$
 - covariant derivative: $D_{\mu} = \partial_{\mu} + iA_0\delta_{\mu 0}$,
 - ► Polyakov loop: $L(\vec{x}) = \mathcal{P} \exp[i \int_{0}^{1/\tau} d\tau A_4(\tau, \vec{x})], \qquad A_4(\tau, \vec{x}) = iA_0(t = -i\tau, \vec{x})$
 - expectation values: $\ell = \frac{1}{N_c} \langle \text{Tr}_c L \rangle$, $\bar{\ell} = \frac{1}{N_c} \langle \text{Tr}_c L^{\dagger} \rangle$
- ► assumption:

 $\ell, \bar{\ell}$ space-time independent, even in inhomogeneous phases

main effect:

$$T \ln \left(1 + e^{-\frac{E-\mu}{T}}\right) \rightarrow T \ln \left(1 + e^{-3\frac{E-\mu}{T}} + 3\ell e^{-\frac{E-\mu}{T}} + 3\bar{\ell} e^{-2\frac{E-\mu}{T}}\right)$$

 $\rightarrow\,$ suppresion of thermally excited quarks at small $\ell,\,\bar\ell$

Results

- Polyakov loop:
 - suppression of thermal effects
 - \rightarrow phase diagram stretched in ${\it T}$ direction
 - no qualitative change

Results

- Polyakov loop:
 - suppression of thermal effects
 - \rightarrow phase diagram stretched in T direction
 - no qualitative change

- Polyakov-loop expectation value:
 - inhomogeneous regime: $\ell \lesssim 0.15, \ \ \bar{\ell} \lesssim 0.2$
 - ► effects of neglecting spatial variations of l, l
 presumably small

Conclusions

Inhomogeneous phases must be considered!

Conclusions

- Inhomogeneous phases must be considered!
- ▶ NJL model with one-dimensional modulations of $\langle \bar{q}q \rangle$:
 - 1st-order line and critical point covered by an inhomogeneous region
 - inhomogeneous phase rather stable w.r.t. vector interactions
 - number susceptibility always finite (for $G_V > 0$)
 - usual effect of the Polyakov loop

Conclusions

- Inhomogeneous phases must be considered!
- ▶ NJL model with one-dimensional modulations of $\langle \bar{q}q \rangle$:
 - 1st-order line and critical point covered by an inhomogeneous region
 - inhomogeneous phase rather stable w.r.t. vector interactions
 - number susceptibility always finite (for $G_V > 0$)
 - usual effect of the Polyakov loop
- outlook:
 - include strange quarks
 - include color superconductivity
 - relax approximations (constant density, constant Polyakov loop)
 - higher dimensional modulations