Inhomogeneous chiral symmetry breaking phases

Michael Buballa

$6^{\text {th }}$ International Conference on
Critical Point and Onset of Deconfinement

JINR Dubna, August 23-29, 2010

Motivation

Motivation

- QCD phase diagram

Motivation

Motivation

- QCD phase diagram
- frequent assumption:
$\langle\bar{q} q\rangle,\langle q q\rangle$ constant in space
- inhomogeneous phases:

Motivation

- QCD phase diagram
- frequent assumption:
$\langle\bar{q} q\rangle,\langle q q\rangle$ constant in space
- inhomogeneous phases:
- Skyrme crystal

Motivation

- QCD phase diagram
- frequent assumption:
$\langle\bar{q} q\rangle,\langle q 9\rangle$ constant in space
- inhomogeneous phases:
- Skyrme crystal
- crystalline color superconductors

Motivation

- QCD phase diagram
- frequent assumption:
$\langle\bar{q} q\rangle,\langle q 9\rangle$ constant in space
- inhomogeneous phases:
- Skyrme crystal
- crystalline color superconductors
- chiral density wave

Motivation

Thies, Urlichs (2003)

- QCD phase diagram
- frequent assumption:
$\langle\bar{q} q\rangle,\langle q q\rangle$ constant in space
- inhomogeneous phases:
- Skyrme crystal
- crystalline color superconductors
- chiral density wave
- 1+1 D Gross-Neveu model

Motivation

Thies, Urlichs (2003)

- QCD phase diagram
- frequent assumption:
$\langle\bar{q} q\rangle,\langle q q\rangle$ constant in space
- inhomogeneous phases:
- Skyrme crystal
- crystalline color superconductors
- chiral density wave
- 1+1 D Gross-Neveu model
- This talk:
inhomogeneous χ SB in the NJL model

Collaborators

- based on:

Phys. Rev. D 82 (2010), in print [arXiv:1007.1397],
together with

Model

- NJL model:

$$
\mathcal{L}=\bar{\psi}(i \not \partial-m) \psi+G_{S}\left((\bar{\psi} \psi)^{2}+\left(\bar{\psi} i_{\gamma_{5}} \vec{\tau} \psi\right)^{2}\right)
$$

Model

- NJL model:

$$
\mathcal{L}=\bar{\psi}(i \not \partial-m) \psi+G_{S}\left((\bar{\psi} \psi)^{2}+\left(\bar{\psi} i \gamma_{5} \vec{\tau} \psi\right)^{2}\right)
$$

- bosonize: $\quad \sigma(x)=\bar{\psi}(x) \psi(x), \quad \vec{\pi}(x)=\bar{\psi}(x) i \gamma_{5} \vec{\tau} \psi(x)$

$$
\Rightarrow \quad \mathcal{L}=\bar{\psi}\left(i \not \partial-m+2 G_{S}\left(\sigma+i \gamma_{5} \vec{\tau} \cdot \vec{\pi}\right)\right) \psi-G_{S}\left(\sigma^{2}+\vec{\pi}^{2}\right)
$$

Model

- NJL model:

$$
\mathcal{L}=\bar{\psi}(i \not \partial-m) \psi+G_{S}\left((\bar{\psi} \psi)^{2}+\left(\bar{\psi} i \gamma_{5} \vec{\tau} \psi\right)^{2}\right)
$$

- bosonize: $\quad \sigma(x)=\bar{\psi}(x) \psi(x), \quad \vec{\pi}(x)=\bar{\psi}(x) i \gamma_{5} \vec{\tau} \psi(x)$

$$
\Rightarrow \quad \mathcal{L}=\bar{\psi}\left(i \not \partial-m+2 G_{S}\left(\sigma+i \gamma_{5} \vec{\tau} \cdot \vec{\pi}\right)\right) \psi-G_{S}\left(\sigma^{2}+\vec{\pi}^{2}\right)
$$

- mean-field approximation:

$$
\sigma(x) \rightarrow\langle\sigma(x)\rangle \equiv S(\vec{x}), \quad \pi_{a}(x) \rightarrow\left\langle\pi_{a}(x)\right\rangle \equiv P(\vec{x}) \delta_{a 3}
$$

- $S(\vec{x}), P(\vec{x})$ time independent classical fields
- retain space dependence!

Mean-field model

- mean-field Lagrangian: $\quad \mathcal{L}_{M F}=\bar{\psi}(x) \mathcal{S}^{-1}(x) \psi(x)-G_{S}\left(S^{2}(\vec{x})+P^{2}(\vec{x})\right)$
- inverse dressed propagator:

$$
\mathcal{S}^{-1}(x)=i \not D-m+2 G_{S}\left(S(\vec{x})+i \gamma_{5} \tau_{3} P(\vec{x})\right)
$$

Mean-field model

- mean-field Lagrangian: $\quad \mathcal{L}_{M F}=\bar{\psi}(x) \mathcal{S}^{-1}(x) \psi(x)-G_{S}\left(S^{2}(\vec{x})+P^{2}(\vec{x})\right)$
- inverse dressed propagator:

$$
\mathcal{S}^{-1}(x)=i \not \partial-m+2 G_{S}\left(S(\vec{x})+i \gamma_{5} \tau_{3} P(\vec{x})\right) \equiv \gamma^{0}\left(i \partial_{0}-\mathcal{H}_{M F}\right)
$$

- $\mathcal{H}_{M F}=\mathcal{H}_{M F}[S, P]: \quad$ hermitean, time independent

Mean-field model

- mean-field Lagrangian: $\quad \mathcal{L}_{M F}=\bar{\psi}(x) \mathcal{S}^{-1}(x) \psi(x)-G_{S}\left(S^{2}(\vec{x})+P^{2}(\vec{x})\right)$
- inverse dressed propagator:

$$
\mathcal{S}^{-1}(x)=i \not \partial-m+2 G_{S}\left(S(\vec{x})+i \gamma_{5} \tau_{3} P(\vec{x})\right) \equiv \gamma^{0}\left(i \partial_{0}-\mathcal{H}_{M F}\right)
$$

- $\mathcal{H}_{M F}=\mathcal{H}_{M F}[S, P]:$ hermitean, time independent
- thermodynamic potential:

$$
\Omega_{M F}(T, \mu ; S, P)=-\frac{T}{V} \operatorname{Tr} \ln \left(\frac{1}{T}\left(i \partial_{0}-\mathcal{H}_{M F}+\mu\right)\right)+\frac{G_{S}}{V} \int_{V} d^{3} x\left(S^{2}(\vec{x})+P^{2}(\vec{x})\right)
$$

Mean-field model

- mean-field Lagrangian: $\quad \mathcal{L}_{M F}=\bar{\psi}(x) \mathcal{S}^{-1}(x) \psi(x)-G_{S}\left(S^{2}(\vec{x})+P^{2}(\vec{x})\right)$
- inverse dressed propagator:

$$
\mathcal{S}^{-1}(x)=i \not \partial-m+2 G_{S}\left(S(\vec{x})+i \gamma_{5} \tau_{3} P(\vec{x})\right) \equiv \gamma^{0}\left(i \partial_{0}-\mathcal{H}_{M F}\right)
$$

- $\mathcal{H}_{M F}=\mathcal{H}_{M F}[S, P]:$ hermitean, time independent
- thermodynamic potential:

$$
\begin{aligned}
\Omega_{M F}(T, \mu ; S, P) & =-\frac{T}{V} \operatorname{Tr} \ln \left(\frac{1}{T}\left(i \partial_{0}-\mathcal{H}_{M F}+\mu\right)\right)+\frac{G_{S}}{V} \int_{V} d^{3} x\left(S^{2}(\vec{x})+P^{2}(\vec{x})\right) \\
& =-\frac{1}{V} \sum_{\lambda}\left[\frac{E_{\lambda}-\mu}{2}+T \ln \left(1+e^{\frac{E_{\lambda}-\mu}{T}}\right)\right]+\frac{1}{V} \int_{V} d^{3} x \frac{|M(\vec{x})-m|^{2}}{4 G_{s}}
\end{aligned}
$$

- mass function: $M(\vec{x})=m-2 G_{S}(S(\vec{x})+i P(\vec{x}))$
- $E_{\lambda}=E_{\lambda}[M(\vec{x})]=$ eigenvalues of $\mathcal{H}_{M F}$

One dimensional modulations

- remaining tasks:
- calculate eigenvalue spectrum of $\mathcal{H}_{M F}$ for given mass function $M(\vec{x})$
- minimize w.r.t. $M(\vec{x})$
extremely difficult!

One dimensional modulations

- remaining tasks:
- calculate eigenvalue spectrum of $\mathcal{H}_{M F}$ for given mass function $M(\vec{x})$
- minimize w.r.t. $M(\vec{x})$
extremely difficult!
- simplification:
- consider only one-dimensional modulations $M(z)$

One dimensional modulations

- remaining tasks:
- calculate eigenvalue spectrum of $\mathcal{H}_{M F}$ for given mass function $M(\vec{x})$
- minimize w.r.t. $M(\vec{x})$
extremely difficult!
- simplification:
- consider only one-dimensional modulations $M(z)$
- important observation: [D. Nickel, PRD (2009)]
problem can be mapped to the $1+1$ dimensional case

One dimensional modulations

- remaining tasks:
- calculate eigenvalue spectrum of $\mathcal{H}_{M F}$ for given mass function $M(\vec{x})$
- minimize w.r.t. $M(\vec{x})$
extremely difficult!
- simplification:
- consider only one-dimensional modulations $M(z)$
- important observation: [D. Nickel, PRD (2009)]
problem can be mapped to the $1+1$ dimensional case
- solutions known analytically: [M. Thies, J. Phys. A (2006)] $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \quad$ (chiral limit), $\operatorname{sn}(\xi \mid \nu)$: Jacobi elliptic functions

One dimensional modulations

- remaining tasks:
- calculate eigenvalue spectrum of $\mathcal{H}_{M F}$ for given mass function $M(\vec{x})$
- minimize w.r.t. $M(\vec{x})$
extremely difficult!
- simplification:
- consider only one-dimensional modulations $M(z)$
- important observation: [D. Nickel, PRD (2009)]
problem can be mapped to the $1+1$ dimensional case
- solutions known analytically: [M. Thies, J. Phys. A (2006)]
$M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \quad$ (chiral limit),
$\operatorname{sn}(\xi \mid \nu)$: Jacobi elliptic functions
- remaining task:
minimize w.r.t. 2 parameters ($m \neq 0: 3$ parameters)

One dimensional modulations

- remaining tasks:
- calculate eigenvalue spectrum of $\mathcal{H}_{M F}$ for given mass function $M(\vec{x})$
- minimize w.r.t. $M(\vec{x})$
extremely difficult!
- simplification:
- consider only one-dimensional modulations $M(z)$
- important observation: [D. Nickel, PRD (2009)]
problem can be mapped to the $1+1$ dimensional case
- solutions known analytically: [M. Thies, J. Phys. A (2006)]
$M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \quad$ (chiral limit),
$\operatorname{sn}(\xi \mid \nu)$: Jacobi elliptic functions
- remaining task:
minimize w.r.t. 2 parameters $(m \neq 0: 3$ parameters) doable!

Phase diagram (chiral limit)

[D. Nickel, PRD (2009)]

Phase diagram (chiral limit)

[D. Nickel, PRD (2009)]

Phase diagram (chiral limit)

[D. Nickel, PRD (2009)]

- 1st-order line completely covered by the inhomogeneous phase!
- all phase boundaries 2nd order
- critical point coincides with Lifshitz point

Free energy difference

[D. Nickel, PRD (2009)]

- homogeneous chirally broken
- solitons
- chiral density wave:
$M_{C D W}(z)=\Delta e^{i q z}$
("chiral spiral")
- soliton phase favored, when it exists
- $\delta \Omega_{\text {soliton }} \approx 2 \delta \Omega_{C D W} \quad \Rightarrow \quad$ chiral spiral never favored

Mass functions and density profiles ($T=0$)

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$

Mass functions and density profiles ($T=0$)

TECHNISCHE UNIVERSITÄT DARMSTADT

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$
$M(z)(\mu=307.5 \mathrm{MeV})$

Mass functions and density profiles ($T=0$)

TECHNISCHE UNIVERSITATT DARMSTADT

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$
$M(z)(\mu=308 \mathrm{MeV})$

Mass functions and density profiles ($T=0$)

TECHNISCHE
UNIVERSITÄT
DARMSTADT

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$
$M(z)(\mu=309 \mathrm{MeV})$

Mass functions and density profiles ($T=0$)

TECHNISCHE
UNIVERSITÄT
DARMSTADT

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$
$M(z)(\mu=310 \mathrm{MeV})$

Mass functions and density profiles ($T=0$)

TECHNISCHE
UNIVERSITÄT
DARMSTADT

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$
$M(z)(\mu=320 \mathrm{MeV})$

Mass functions and density profiles ($T=0$)

TECHNISCHE
UNIVERSITÄT DARMSTADT

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$
$M(z)(\mu=330 \mathrm{MeV})$

Mass functions and density profiles ($T=0$)

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$
$M(z)(\mu=340 \mathrm{MeV})$

Mass functions and density profiles ($T=0$)

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$
$M(z)(\mu=345 \mathrm{MeV})$

Mass functions and density profiles ($T=0$)

TECHNISCHE
UNIVERSITATT
DARMSTADT

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$
$M(z)(\mu=307.5 \mathrm{MeV})$

Mass functions and density profiles ($T=0$)

TECHNISCHE

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$
$M(z)(\mu=307.5 \mathrm{MeV})$

- Quarks reside in the chirally restored regions.

Mass functions and density profiles ($T=0$)

TECHNISCHE
UNIVERSITATT
DARMSTADT

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$
$M(z)(\mu=308 \mathrm{MeV})$

normalized density ($\mu=308 \mathrm{MeV}$)

- Quarks reside in the chirally restored regions.

Mass functions and density profiles ($T=0$)

TECHNISCHE
UNIVERSITATT
DARMSTADT

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$
$M(z)(\mu=309 \mathrm{MeV})$

normalized density ($\mu=309 \mathrm{MeV}$)

- Quarks reside in the chirally restored regions.

Mass functions and density profiles ($T=0$)

TECHNISCHE
UNIVERSITATT
DARMSTADT

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$
$M(z)(\mu=310 \mathrm{MeV})$

normalized density ($\mu=310 \mathrm{MeV}$)

- Quarks reside in the chirally restored regions.

Mass functions and density profiles ($T=0$)

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$
$M(z)(\mu=320 \mathrm{MeV})$

normalized density ($\mu=320 \mathrm{MeV}$)

- Quarks reside in the chirally restored regions.
- Density gets smoothened with increasing μ and T.

Mass functions and density profiles ($T=0$)

$-M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$
$M(z)(\mu=330 \mathrm{MeV})$

normalized density ($\mu=330 \mathrm{MeV}$)

- Quarks reside in the chirally restored regions.
- Density gets smoothened with increasing μ and T.

Mass functions and density profiles ($T=0$)

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$
$M(z)(\mu=340 \mathrm{MeV})$

normalized density ($\mu=340 \mathrm{MeV}$)

- Quarks reside in the chirally restored regions.
- Density gets smoothened with increasing μ and T.

Mass functions and density profiles ($T=0$)

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$
$M(z)(\mu=345 \mathrm{MeV})$

normalized density ($\mu=345 \mathrm{MeV}$)

- Quarks reside in the chirally restored regions.
- Density gets smoothened with increasing μ and T.

Including vector interactions

- additional vector term:

$$
\mathcal{L}_{V}=-G_{V}\left(\bar{\psi} \gamma^{\mu} \psi\right)^{2}
$$

Including vector interactions

- additional vector term:

$$
\begin{aligned}
\mathcal{L}_{V} & =-G_{V}\left(\bar{\psi} \gamma^{\mu} \psi\right)^{2} \\
\bar{\psi} \gamma^{\mu} \psi & \rightarrow\left\langle\bar{\psi} \gamma^{\mu} \psi\right\rangle \equiv n(\vec{x}) \delta^{\mu 0} \quad \text { (density!) }
\end{aligned}
$$

- additional mean field: $\quad \bar{\psi} \gamma^{\mu} \psi \rightarrow\left\langle\bar{\psi} \gamma^{\mu} \psi\right\rangle \equiv n(\vec{x}) \delta^{\mu 0}$

Including vector interactions

- additional vector term:

$$
\mathcal{L}_{V}=-G_{V}\left(\bar{\psi} \gamma^{\mu} \psi\right)^{2}
$$

- additional mean field: $\quad \bar{\psi} \gamma^{\mu} \psi \rightarrow\left\langle\bar{\psi} \gamma^{\mu} \psi\right\rangle \equiv n(\vec{x}) \delta^{\mu 0} \quad$ (density!)
- mean-field Hamiltonian: $\quad \mathcal{H}_{M F}-\mu=\left.\mathcal{H}_{M F}\right|_{G_{V}=0}-\tilde{\mu}(\vec{x})$
- $\tilde{\mu}(\vec{x})=\mu-2 G_{V} n(\vec{x}) \quad$ "shifted chemical potential"

Including vector interactions

- additional vector term:

$$
\mathcal{L}_{V}=-G_{V}\left(\bar{\psi} \gamma^{\mu} \psi\right)^{2}
$$

- additional mean field: $\quad \bar{\psi} \gamma^{\mu} \psi \rightarrow\left\langle\bar{\psi} \gamma^{\mu} \psi\right\rangle \equiv n(\vec{x}) \delta^{\mu 0} \quad$ (density!)
- mean-field Hamiltonian:

$$
\mathcal{H}_{M F}-\mu=\left.\mathcal{H}_{M F}\right|_{G_{V}=0}-\tilde{\mu}(\vec{x})
$$

- $\tilde{\mu}(\vec{x})=\mu-2 G_{V} n(\vec{x}) \quad$ "shifted chemical potential"
- further approximation: $n(\vec{x}) \rightarrow\langle n\rangle=$ const. $\Rightarrow \tilde{\mu}=$ const.

Including vector interactions

- additional vector term:

$$
\mathcal{L}_{V}=-G_{V}\left(\bar{\psi} \gamma^{\mu} \psi\right)^{2}
$$

- additional mean field: $\quad \bar{\psi} \gamma^{\mu} \psi \rightarrow\left\langle\bar{\psi} \gamma^{\mu} \psi\right\rangle \equiv n(\vec{x}) \delta^{\mu 0} \quad$ (density!)
- mean-field Hamiltonian: $\quad \mathcal{H}_{M F}-\mu=\left.\mathcal{H}_{M F}\right|_{G_{V}=0}-\tilde{\mu}(\vec{x})$
- $\tilde{\mu}(\vec{x})=\mu-2 G_{V} n(\vec{x}) \quad$ "shifted chemical potential"
- further approximation: $n(\vec{x}) \rightarrow\langle n\rangle=$ const. $\Rightarrow \tilde{\mu}=$ const.
- questionable in the inhomogeneous phase at low μ and T
- ok near the restored phase (including the Lifshitz point)

Including vector interactions

- additional vector term:

$$
\mathcal{L}_{V}=-G_{V}\left(\bar{\psi} \gamma^{\mu} \psi\right)^{2}
$$

- additional mean field: $\quad \bar{\psi} \gamma^{\mu} \psi \rightarrow\left\langle\bar{\psi} \gamma^{\mu} \psi\right\rangle \equiv n(\vec{x}) \delta^{\mu 0} \quad$ (density!)
- mean-field Hamiltonian: $\quad \mathcal{H}_{M F}-\mu=\left.\mathcal{H}_{M F}\right|_{G_{V}=0}-\tilde{\mu}(\vec{x})$
- $\tilde{\mu}(\vec{x})=\mu-2 G_{V} n(\vec{x}) \quad$ "shifted chemical potential"
- further approximation: $n(\vec{x}) \rightarrow\langle n\rangle=$ const. $\Rightarrow \tilde{\mu}=$ const.
- questionable in the inhomogeneous phase at low μ and T
- ok near the restored phase (including the Lifshitz point)
- advantage: known analytic solutions can still be used

Including vector interactions

- additional vector term:

$$
\mathcal{L}_{V}=-G_{V}\left(\bar{\psi} \gamma^{\mu} \psi\right)^{2}
$$

- additional mean field: $\quad \bar{\psi} \gamma^{\mu} \psi \rightarrow\left\langle\bar{\psi} \gamma^{\mu} \psi\right\rangle \equiv n(\vec{x}) \delta^{\mu 0} \quad$ (density!)
- mean-field Hamiltonian: $\quad \mathcal{H}_{M F}-\mu=\left.\mathcal{H}_{M F}\right|_{G_{V}=0}-\tilde{\mu}(\vec{x})$
- $\tilde{\mu}(\vec{x})=\mu-2 G_{V} n(\vec{x}) \quad$ "shifted chemical potential"
- further approximation: $n(\vec{x}) \rightarrow\langle n\rangle=$ const. $\Rightarrow \tilde{\mu}=$ const.
- questionable in the inhomogeneous phase at low μ and T
- ok near the restored phase (including the Lifshitz point)
- advantage: known analytic solutions can still be used
- additional parameter: $\tilde{\mu}$, fixed by constraint $\frac{\partial \Omega_{M F}}{\partial \tilde{\mu}}=0$

Phase diagram

TECHNISCHE UNIVERSITÄT DARMSTADT

- homogeneous phases: strong G_{V}-dependence of the critical point

Phase diagram

- homogeneous phases: strong G_{V}-dependence of the critical point
- inhomogeneous regime: stretched in μ direction, Lifshitz point at constant T

Phase diagram

- independent of G_{v} !
- homogeneous phases: strong G_{V}-dependence of the critical point
- inhomogeneous regime: stretched in μ direction, Lifshitz point at constant T

Chiral density wave

- How much can we trust the approximation $\tilde{\mu}=\mu-2 G_{v} \bar{n}$?
- Chiral density wave: $M(z)=\Delta e^{i q z} \Rightarrow n(z)=$ const.

- CDW \rightarrow restored and Lifshitz point agree with soliton solution
- chirally broken \rightarrow CDW: 1st order and at higher μ
- exact phase boundary somewhere in between

Finite current quark masses

- phase diagrams for $m=5 \mathrm{MeV}$:

- same qualitative behavior

Susceptibilities

- signature of the critical point: divergent susceptibilities
- e.g., quark number susceptibility:

$$
\chi_{n n}=-\frac{\partial^{2} \Omega}{\partial \mu^{2}}=\frac{\partial n}{\partial \mu}
$$

homogeneous phases only:

[K. Fukushima, PRD (2008)]

Susceptibilities

- signature of the critical point: divergent susceptibilities
- e.g., quark number susceptibility:

$$
\chi_{n n}=-\frac{\partial^{2} \Omega}{\partial \mu^{2}}=\frac{\partial n}{\partial \mu}
$$

- including inhomogeneous phases?
homogeneous phases only:

[K. Fukushima, PRD (2008)]

Susceptibilities

- signature of the critical point: divergent susceptibilities
- e.g., quark number susceptibility:

$$
\chi_{n n}=-\frac{\partial^{2} \Omega}{\partial \mu^{2}}=\frac{\partial n}{\partial \mu}
$$

- including inhomogeneous phases?
- expectations:

- $G_{v}=0$:

CP = Lifshitz point
$\rightarrow \quad$ no qualitative change

Susceptibilities

- signature of the critical point: divergent susceptibilities
- e.g., quark number susceptibility:

$$
\chi_{n n}=-\frac{\partial^{2} \Omega}{\partial \mu^{2}}=\frac{\partial n}{\partial \mu}
$$

- including inhomogeneous phases?
- expectations:

homogeneous phases only:

[K. Fukushima, PRD (2008)]
- $G_{v}=0$: $C P=$ Lifshitz point
$\rightarrow \quad$ no qualitative change
- $G_{V}>0$:
no CP \rightarrow no divergence

Susceptibilities

- signature of the critical point: divergent susceptibilities
- e.g., quark number susceptibility:

$$
\chi_{n n}=-\frac{\partial^{2} \Omega}{\partial \mu^{2}}=\frac{\partial n}{\partial \mu}
$$

- including inhomogeneous phases?
- results:

homogeneous phases only:

[K. Fukushima, PRD (2008)]
- $G_{V}=0$:
$\chi_{n n}$ diverges
at phase boundary (hom. broken - inhom.)

Susceptibilities

- signature of the critical point: divergent susceptibilities
- e.g., quark number susceptibility:

$$
\chi_{n n}=-\frac{\partial^{2} \Omega}{\partial \mu^{2}}=\frac{\partial n}{\partial \mu}
$$

- including inhomogeneous phases?
- results:

homogeneous phases only:

[K. Fukushima, PRD (2008)]
- $G_{V}=0$:
$\chi_{n n}$ diverges at phase boundary (hom. broken - inhom.)
- $G_{v}>0$:
no divergence

Susceptibilities

- densities and quark number susceptibilities for $G_{V}=0$:

- $\underline{T=T_{C P}, \mu<\mu_{c}:}$
$\chi_{n n} \propto \frac{1}{\sqrt{\mu_{c}-\mu}}$
- $T=0, \mu>\mu_{c r}:$
$\chi_{n n} \propto \frac{1}{\left(\mu-\mu_{c r}\right) \log ^{2}\left(\mu-\mu_{c r}\right)}$
- $G_{V}>0$:
$\left.\delta \chi_{n n}\right|_{T=0, \mu=\mu_{C r}} \approx \frac{1}{2 G_{V}}$

Including Polyakov-loop dynamics

- PNJL model: $\quad \mathcal{L}=\bar{\psi}(i \not D-m) \psi+G_{S}\left((\bar{\psi} \psi)^{2}+\left(\bar{\psi} i \gamma_{5} \vec{\tau} \psi\right)^{2}\right)+U(\ell, \bar{\ell})$
- covariant derivative: $D_{\mu}=\partial_{\mu}+i A_{0} \delta_{\mu}$,
- Polyakov loop: $L(\vec{x})=\mathcal{P} \exp \left[i \int_{0}^{1 / T} d \tau A_{4}(\tau, \vec{x})\right], \quad A_{4}(\tau, \vec{x})=i A_{0}(t=-i \tau, \vec{x})$
- expectation values: $\quad \ell=\frac{1}{N_{c}}\left\langle\operatorname{Tr}_{c} L\right\rangle, \quad \bar{\ell}=\frac{1}{N_{c}}\left\langle\operatorname{Tr}_{c} L^{\dagger}\right\rangle$
- assumption:
$\ell, \bar{\ell}$ space-time independent, even in inhomogeneous phases
- main effect:
$T \ln \left(1+\mathrm{e}^{-\frac{E-\mu}{T}}\right) \rightarrow T \ln \left(1+\mathrm{e}^{-3 \frac{E-\mu}{T}}+3 \ell \mathrm{e}^{-\frac{E-\mu}{T}}+3 \bar{\ell} \mathrm{e}^{-2 \frac{E-\mu}{T}}\right)$
\rightarrow suppresion of thermally excited quarks at small $\ell, \bar{\ell}$

Results

NJL vs. PNJL

- Polyakov loop:
- suppression of thermal effects
\rightarrow phase diagram stretched in T direction
- no qualitative change

Results

NJL vs. PNJL

- Polyakov loop:
- suppression of thermal effects
\rightarrow phase diagram stretched in T direction
- no qualitative change

- Polyakov-loop expectation value:
- inhomogeneous regime:

$$
\ell \lesssim 0.15, \quad \bar{\ell} \lesssim 0.2
$$

- effects of neglecting spatial variations of $\ell, \bar{\ell}$ presumably small

Conclusions

- Inhomogeneous phases must be considered!

Conclusions

- Inhomogeneous phases must be considered!
- NJL model with one-dimensional modulations of $\langle\bar{q} q\rangle$:
- 1st-order line and critical point covered by an inhomogeneous region
- inhomogeneous phase rather stable w.r.t. vector interactions
- number susceptibility always finite (for $G_{v}>0$)
- usual effect of the Polyakov loop

Conclusions

- Inhomogeneous phases must be considered!
- NJL model with one-dimensional modulations of $\langle\bar{q} q\rangle$:
- 1st-order line and critical point covered by an inhomogeneous region
- inhomogeneous phase rather stable w.r.t. vector interactions
- number susceptibility always finite (for $G_{v}>0$)
- usual effect of the Polyakov loop
- outlook:
- include strange quarks
- include color superconductivity
- relax approximations (constant density, constant Polyakov loop)
- higher dimensional modulations

