$SU(3) \times SU(3)$ nonlocal quark model and QCD phase transition

Andrey Radzhabov

Institute for System Dynamics and Control Theory

Critical Point and Onset of Deconfinement 27 August 2010, JINR, Dubna

In collaboration with Michael Buballa

Motivation

Nonlocal chiral quark model

- Thermodynamic potential at mean field
- Beyond mean field

Comparison with lattice QCD calculations

- Order parameters
- Pressure
- Entropy
- Interaction measure

Conclusion

▲ @ ▶ ▲ ∃ ▶

The quark part of Lagrangian of the nonlocal model has the form

$$\mathcal{L} = \mathcal{L}_{free} + \mathcal{L}_{4q} + \mathcal{L}_{tH}$$

$$\mathcal{L}_{free} = \bar{q}(x)(i\hat{\partial} - m_c)q(x)$$

 m_c is a current quark mass matrix with diagonal elements $m_c^u = m_c^d$, m_c^s .

$$\mathcal{L}_{4q} = \frac{G}{2} [J_S^a(x) J_S^a(x) + J_P^a(x) J_P^a(x)]$$

nonlocal quark currents are

$$J_M^a(x) = \int d^4(x_1 x_2) f(x_1) f(x_2) \bar{q}(x - x_1) \Gamma_M q(x + x_2),$$

$$\Gamma_S = \lambda^a, \Gamma_P = i\gamma^5 \lambda^a$$

The quark part of Lagrangian of the nonlocal model has the form

$$\mathcal{L} = \mathcal{L}_{free} + \mathcal{L}_{4q} + \mathcal{L}_{tH}$$

$$\mathcal{L}_{free} = \bar{q}(x)(i\hat{\partial} - m_c)q(x)$$

 m_c is a current quark mass matrix with diagonal elements $m_c^u = m_c^d$, m_c^s .

$$\mathcal{L}_{4q} = \frac{G}{2} [J_S^a(x) J_S^a(x) + J_P^a(x) J_P^a(x)]$$

$$\mathcal{L}_{tH} = H[\det \bar{q}(1+\gamma_5)q + \det \bar{q}(1-\gamma_5)q]$$

nonlocal quark currents are

$$J_M^a(x) = \int d^4(x_1 x_2) f(x_1) f(x_2) \bar{q}(x - x_1) \Gamma_M q(x + x_2),$$

$$\Gamma_S = \lambda^a, \Gamma_P = i\gamma^5 \lambda^a$$

() < </p>

The quark part of Lagrangian of the nonlocal model has the form

$$\mathcal{L} = \mathcal{L}_{free} + \mathcal{L}_{4q} + \mathcal{L}_{tH}$$

$$\mathcal{L}_{free} = \bar{q}(x)(i\hat{\partial} - m_c)q(x)$$

 m_c is a current quark mass matrix with diagonal elements $m_c^u = m_c^d$, m_c^s .

$$\mathcal{L}_{4q} = \frac{G}{2} [J_S^a(x) J_S^a(x) + J_P^a(x) J_P^a(x)]$$

 $\mathcal{L}_{tH} = -\frac{H}{4} T_{abc} [J_S^a(x) J_S^b(x) J_S^c(x) - 3J_P^a(x) J_P^b(x) J_P^c(x)]$ nonlocal quark currents are

$$J_M^a(x) = \int d^4(x_1 x_2) f(x_1) f(x_2) \bar{q}(x - x_1) \Gamma_M q(x + x_2),$$

$$\Gamma_S = \lambda^a, \Gamma_P = i\gamma^5 \lambda^a$$

The mean-field part of the thermodynamic potential reads

$$\begin{aligned} \Omega_{\rm mf}(T,\mu) &= -2T \sum_{f} \sum_{i=0,\pm} \sum_{n} \int \frac{d^{3}k}{(2\pi)^{3}} \ln\left[(\omega_{n}^{i})^{2} + \vec{k}^{2} + M_{f}^{2} ((\omega_{n}^{i})^{2} + \vec{k}^{2}) \right] + \\ &- \frac{1}{2} \left[\sum_{f} (m_{d}^{f} \bar{S}^{f} + \frac{G}{2} \bar{S}^{f} \bar{S}^{f}) + \frac{H}{2} \bar{S}^{u} \bar{S}^{d} \bar{S}^{s} \right] + \mathcal{U}(\Phi,\bar{\Phi}) \end{aligned}$$

where $M_f(p^2) = m_c^f + m_d^f f^2(p^2)$. The Matsubara frequencies $\omega_n = (2n+1)\pi T$ are shifted due to the coupling to the Polyakov loop according to

$$\omega_n^{\pm} = \omega_n \pm \phi_3 - i\mu_f, \quad \omega_n^0 = \omega_n - i\mu_f,$$

where $A_0 = -iA_4$ and $A_4 = \phi_i \lambda^i$, $\Phi = \overline{\Phi} = (1 + 2\cos(\phi_3/T))/3$. In stationary phase approximation

$$\bar{S}^f = 8 \sum_{i=0,\pm} \sum_n \int \frac{d^3k}{(2\pi)^3} \frac{f^2((\omega_n^i)^2) M_f((\omega_n^i)^2 + \vec{k}^2)}{(\omega_n^i)^2 + \vec{k}^2 + M_f^2((\omega_n^i)^2 + \vec{k}^2)}$$

◆□> ◆□> ◆目> ◆目> ●目 ● ○○

Thermodynamic potential

 ${\cal U}$ potential in logarithmic form 1

$$\frac{\mathcal{U}(\Phi,\Phi)}{T^4} = -\frac{1}{2}a(T)\,\bar{\Phi}\Phi + b(T)\,\ln\left[1 - 6\,\bar{\Phi}\Phi + 4\left(\bar{\Phi}^3 + \Phi^3\right) - 3\left(\bar{\Phi}\Phi\right)^2\right]$$

$$a(T) = a_0 + a_1 \left(\frac{T_0}{T}\right) + a_2 \left(\frac{T_0}{T}\right)^2, \ b(T) = b_3 \left(\frac{T_0}{T}\right)^3, \ T_0 = 270 \text{ MeV}$$

Equation of motion

$$\frac{\partial \Omega_{\rm mf}}{\partial m_d^f} = 0 \quad , \frac{\partial \Omega_{\rm mf}}{\partial \phi_3} = 0$$

Model parameters for $f(p^2) = \exp(-p^2/\Lambda^2)$ "large" mass² $m_c^u = 8.5 \text{ MeV}, m_d^u = 304.5 \text{ MeV}, m_c^s = 110 \text{ MeV}, m_d^s = 390 \text{ MeV}, \Lambda = 1.0 \text{ GeV}$ "small" mass $m_c^u = 5.5 \text{ MeV}, m_d^u = 250.0 \text{ MeV}, m_c^s = 151 \text{ MeV}, m_d^s = 353 \text{ MeV}, \Lambda = 1.3 \text{ GeV}$

¹S. Roessner, C. Ratti and W. Weise, Phys. Rev. D 75 (2007) 034007.

²A. Scarpettini, D. Gomez Dumm and N. N. Scoccola, Phys. Rev. D 69 (2004) 114018.

Thermodynamic potential beyond mean field

The contribution of the mesonic correlations is given by (this is result of ring sum)

$$\Omega_{\rm Nc} = -\sum_{\rm M} \frac{d_{\rm M}}{2} i \mathbf{Tr} \ln \left[1 - G^{\rm M} \Pi^{\rm M} \right],$$

where G^{M} and Π^{M} are the matrices of coupling constants and polarization loops.

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

subtracted condensate

$$\Delta_{l,s} = \frac{\langle \bar{u}u \rangle^T - \frac{m_c^u}{m_c^s} \langle \bar{s}s \rangle^T}{\langle \bar{u}u \rangle^0 - \frac{m_c^u}{m_c^s} \langle \bar{s}s \rangle^0}$$

- ${\scriptstyle \bullet}$ Polyakov loop Φ
- \bullet pressure $p=-\Omega$
- entropy density $s=-\partial\Omega/\partial T$
- energy density $\epsilon = -p + Ts$
- ${\scriptstyle \bullet}$ interaction measure $\epsilon-3p$
- non-strange(I) and strange(s) quark number susceptibilities

$$\chi_l = -\frac{\partial^2 \Omega}{\partial \mu_l^2}, \quad \chi_s = -\frac{\partial^2 \Omega}{\partial \mu_s^2}$$

<ロト <回 > < 三 > < 三 >

pressure

SU(3) nonlocal quark model and QCD phase transit

SU(3) nonlocal quark model and QCD phase transit

A.E. Radzhabov (IDSTU)

Polyakov loop

Condensate

A.E. Radzhabov (IDSTU)

SU(3) nonlocal quark model and QCD phase transit

27 August 2010, CPOD 23 / 44

Condensate at low temperatures

A.E. Radzhabov (IDSTU)

SU(3) nonlocal quark model and QCD phase transit

27 August 2010, CPOD 24 / 44

χ_l/χ_s . "large" mass parametrization

 $|\epsilon/T^2\chi_l$ and $\epsilon/T^2\chi_s$. "large" mass parametrization

χ_l/χ_s . "small" mass parametrization

 $\epsilon/T^2\chi_l$ and $\epsilon/T^2\chi_s$. "small" mass parametrization

- The nonlocal quark model is extended beyond mean field using ring sum contribution (strict $1/N_c$ expansion)
- It seems that T_0 parameter of Polyakov loop potential should be lowered ($T_0 = 219$ MeV from fit of lattice data)
- Ring sum contribution is enough for correct description of pressure and quark condensate at low T
- Ring sum contribution is not enough for correct description of quark number susceptibilities at low 7
- Mesonic correlations lead to the lowering of the temperature of phase transition
- Near the phase transition $1/N_c$ expansion breaks out non-perturbative scheme is needed $\dots, \dots, \dots, \dots, \dots, \dots, \dots, \dots$

- The nonlocal quark model is extended beyond mean field using ring sum contribution (strict $1/N_c$ expansion)
- It seems that T_0 parameter of Polyakov loop potential should be lowered ($T_0 = 219$ MeV from fit of lattice data)
- Ring sum contribution is enough for correct description of pressure and quark condensate at low T
- Ring sum contribution is not enough for correct description of quark number susceptibilities at low 7
- Mesonic correlations lead to the lowering of the temperature of phase transition
- Near the phase transition $1/N_c$ expansion breaks out non-perturbative scheme is needed \dots

- The nonlocal quark model is extended beyond mean field using ring sum contribution (strict $1/N_c$ expansion)
- It seems that T_0 parameter of Polyakov loop potential should be lowered ($T_0 = 219$ MeV from fit of lattice data)
- Ring sum contribution is enough for correct description of pressure and quark condensate at low T
- Ring sum contribution is not enough for correct description of quark number susceptibilities at low T
- Mesonic correlations lead to the lowering of the temperature of phase transition
- Near the phase transition $1/N_c$ expansion breaks out non-perturbative scheme is needed \dots \dots

- The nonlocal quark model is extended beyond mean field using ring sum contribution (strict $1/N_c$ expansion)
- It seems that T_0 parameter of Polyakov loop potential should be lowered ($T_0 = 219$ MeV from fit of lattice data)
- Ring sum contribution is enough for correct description of pressure and quark condensate at low T
- Ring sum contribution is not enough for correct description of quark number susceptibilities at low T
- Mesonic correlations lead to the lowering of the temperature of phase transition
- Near the phase transition $1/N_c$ expansion breaks out non-perturbative scheme is needed

- The nonlocal quark model is extended beyond mean field using ring sum contribution (strict $1/N_c$ expansion)
- It seems that T_0 parameter of Polyakov loop potential should be lowered ($T_0 = 219$ MeV from fit of lattice data)
- Ring sum contribution is enough for correct description of pressure and quark condensate at low T
- Ring sum contribution is not enough for correct description of quark number susceptibilities at low T
- Mesonic correlations lead to the lowering of the temperature of phase transition

• Near the phase transition $1/N_c$ expansion breaks out – non-perturbative scheme is needed $\dots, \dots, \dots, \dots, \dots, \dots, \dots, \dots$

- The nonlocal quark model is extended beyond mean field using ring sum contribution (strict $1/N_c$ expansion)
- It seems that T_0 parameter of Polyakov loop potential should be lowered ($T_0 = 219$ MeV from fit of lattice data)
- Ring sum contribution is enough for correct description of pressure and quark condensate at low T
- Ring sum contribution is not enough for correct description of quark number susceptibilities at low T
- Mesonic correlations lead to the lowering of the temperature of phase transition
- Near the phase transition 1/N_c expansion breaks out non-perturbative scheme is needed

(ロ) (四) (三) (三)

(ロ) (四) (三) (三)

Polyakov loop

Untraced Polyakov loop(Polyakov line)

$$L(\vec{x}) = \mathcal{P} \exp\left\{i\int_{0}^{\beta} d\tau A_{4}(\tau, \vec{x})\right\}$$

transforms under SU(3) gauge transformations as : $L \to U L U^\dagger$ Gauge invariant object

$$\Phi = \frac{1}{3} \mathrm{Tr}_{\mathrm{c}} L \qquad \bar{\Phi} = \frac{1}{3} \mathrm{Tr}_{\mathrm{c}} L^{+}$$

transform under global Z(3) transformations :

$$\Phi \to e^{i\frac{2\pi n}{3}} \Phi \qquad \bar{\Phi} \to e^{-i\frac{2\pi n}{3}} \bar{\Phi}$$
$$\langle \Phi \rangle = e^{-F_q/T}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 $\begin{array}{l} \mbox{confinement} \ \langle \Phi \rangle = 0 \\ \mbox{deconfinement} \ \langle \Phi \rangle \neq 0 \end{array}$

$\ensuremath{\mathcal{U}}$ potential

\mathcal{U} potential I

$$\frac{\mathcal{U}(\Phi,T)}{T^4}(\Phi,\bar{\Phi}) = -\frac{b_2(T)}{2}\bar{\Phi}\Phi - \frac{b_3}{6}(\Phi^3 + \bar{\Phi}^3) + \frac{b_4}{4}(\Phi\bar{\Phi})^2,$$
$$b_2(T) = a_0 + a_1\left[\frac{T_0}{T}\right] + a_2\left[\frac{T_0}{T}\right]^2 + a_3\left[\frac{T_0}{T}\right]^3$$

C. Ratti, M. A. Thaler and W. Weise, Phys. Rev. D 73 (2006) 014019.

$\mathcal U$ potential II

$$\frac{\mathcal{U}(\Phi,\bar{\Phi})}{T^4} = -\frac{1}{2}a(T)\,\bar{\Phi}\Phi + b(T)\,\ln\left[1 - 6\,\bar{\Phi}\Phi + 4\left(\bar{\Phi}^3 + \Phi^3\right) - 3\left(\bar{\Phi}\Phi\right)^2\right]$$

with

$$a(T) = a_0 + a_1 \left(\frac{T_0}{T}\right) + a_2 \left(\frac{T_0}{T}\right)^2, \qquad b(T) = b_3 \left(\frac{T_0}{T}\right)^3.$$

S. Roessner, C. Ratti and W. Weise, Phys. Rev. D 75 (2007) 034007.

$\mathcal U$ potential. Effective potential for different temperatures

◆□> ◆□> ◆目> ◆目> ●目 ● ○○

S. Roessner, C. Ratti and W. Weise, Phys. Rev. D 75 (2007) 034007

${\mathcal U}$ potential

Fit³ to scaled pressure, entropy density and energy density as functions of the temperature in the pure gauge sector, compared to the corresponding lattice data (G. Boyd *et al.*, Nucl. Phys. B $_{COC}$)

RingSum $m_u = m_s$, H = 0

A.E. Radzhabov (IDSTU)

SU(3) nonlocal quark model and QCD phase transit

27 August 2010, CPOD 40 / 44

RingSum $m_u = m_s$, $H \neq 0$

RingSum $m_u \neq m_s$, H = 0

RingSum $m_u \neq m_s$, $H \neq 0$

A.E. Radzhabov (IDSTU)

SU(3) nonlocal quark model and QCD phase transit

27 August 2010, CPOD 43 / 44

Screening masses

