On Hypernuclear State in High Energy Heavy Ion Collisions

Genis Musulmanbekov JINR Dubna genis@jinr.ru

Content

- NA-49 results:
 - Strange to non-strange yield ratio: 'horn' effect
 - Spectra of kaons
- Models describing the 'horn' effect.

My proposal:

Action-Reaction mechanism in HIC:

- Initial state
- Overlap time
- Discussion

K/π and Λ/π ratio in central Pb-Pb collisions (NA49)

Clear evidence for horn structure in K+/pi+ and Lambda/pi+

No horn structure in K⁻/pi⁻

Transport models fail to describe exp. data

Mixed Phase? Critical Endpoint?

SMES M. Gazditzki, M. Gorenstein Thermal-Statistical Model P. Brawn-Munzinger, et al. Hadronic Kinetic Model E. Kolomeitsev, B. Tomasic

SMES

M. Gazditzki, M. Gorenstein

SMES

M. Gazditzki, M. Gorenstein

Thermal-Statistical Model *P. Brawn-Munzinger, et al.*

"Horn" is described as an interplay between QGP phase boundary and the higher resonance spectrum.

Higher resonances in conjunction with additional pions from the sigma describes "horn" structure well

Non-equilibrium Kinetic Model E. Kolomeitsev, B. Tomasik

energy VS. time

Action-Reaction Mechanism in HIC

Baryon density evolution At NICA energies $\rho/\rho_0 \sim 5 - 10$

• At NICA energies $\rho/\rho_0 \sim 5 - 10$.

• In overlap region nucleons are suppressed and forced to occupy much less space volume.

• Overlap time:

 $\tau_{\rm O}=2R_{\rm A}/(\gamma v)$

Action-Reaction Mechanism in HIC

Conjecture 1:

- In dense nuclear matter the baryon number conserves locally (nucleon is a topological soliton).
- How can baryons conserve their identity in a smaller volume inside a suppressed medium?
- **Answer : according to action-reaction mechanism.**

Conjecture 2:

• With a definite probability nucleons in the overlap region transform into hyperons (the heavier quark content of a baryon the less the spatial dimensions of it)

p, n \rightarrow hyperons + kaons

Conjecture 3:

• All spins of quarks both in hyperons and kaons should be parallel (hyperons and kaons oppose to the external suppression)

Action-Reaction Mechanism in HIC

Energy vs. time

Proton Transformations

$$p = (uud), n = (ddu), u, d \rightarrow s$$

$$p(uud) \rightarrow \Sigma^{+*}(uus) + K^{0*}(d\bar{s}) \rightarrow \Sigma^{0*}(uds) + K^{+*}(u\bar{s}) \rightarrow \Xi^{-*}(dss) + 2K^{+*}(u\bar{s}) \rightarrow \Xi^{0*}(uss) + K^{0*}(d\bar{s}) + K^{+*}(u\bar{s}) \rightarrow \Omega^{-}(sss) + 2K^{+*}(u\bar{s}) + K^{0*}(d\bar{s})$$

$$\begin{cases} S = -1 \\ I = 1 \\ I = 1 \\ I = \frac{1}{2} \\ S = -3, I = 0 \end{cases}$$

$$K^{0/+*}
ightarrow K^{0/+} + \pi^0$$

Neutron Transformations

$$n(ddu) \to \Sigma^{-*}(dds) + K^{+*}(u\bar{s}) \\\to \Sigma^{0*}(uds) + K^{0*}(d\bar{s}) \\\to \Xi^{0*}(uss) + 2K^{0*}(d\bar{s}) \\\to \Xi^{-*}(dss) + K^{0*}(d\bar{s}) + K^{+*}(u\bar{s}) \\\to \Omega^{-}(sss) + 2K^{0*}(d\bar{s}) + K^{+*}(u\bar{s}) \\ \end{bmatrix} \begin{cases} S = -2 \\ I = \frac{1}{2} \\ S = -3, I = 0 \end{cases}$$

$$K^{0/+*}
ightarrow K^{0/+} + \pi^0$$

Hyperon Resonances Decay

Action-Reaction Mechanism at RHIC and LHC

Early stage of the fireball evolution:

• Very high medium density

 Predominant production of (heavy) vector resonances at the early (high density) stage of the fireball evolution.

Consequences of the AR mechanism:

- Bad News
- Good News

Bad News

Early stage of the fireball evolution:

- Predominant production of (heavy) vector resonances at the early (high density) stage of the fireball evolution.
- Perhaps, this impacts the fireball the features of the ideal liquid.

QGP at FAIR and NICA and even at RHIC and LHC energies is not realized:

- No room for the 1st order phase transition and critical point.
- No room for dynamical fluctuations
- P or CP invariance is not violated neither at NICA and FAIR nor at RHIC and LHC.

Good News

The most observables and effects can be explained using the proposed mechanism.

To test it quatitatively one needs to implement it into the transport (URQMD, HSD, QGSM) and hybrid models.

Parameters:

- reaction time;
- probability of transition of nucleon to hyperon + kaon.

Good News

The most interesting physics is expected at NICA, FAIR, low energy region of SPS:

- The Isobar- and hyperon- nuclear states (application to physics neutron stars)
- Enhancement yield of (multi)strange baryons
- Correlations between strange baryons and kaon
- Effects of the Strong magnetic field:
 - ✓ Polarization of (multi)strange particles
 - ✓Vorticity effects
 - ✓ Skewness/asymmetry of particle emissions

"Entities must not be multiplied beyond necessity" Occam, Franciscan friar

Thanks for your patience

Current quark states in bound nucleons are **suppressed**

Nucleons inside nuclei are in constituent state!

Color Transparency "Breaking" in quasielastic scattering

 $p+A \rightarrow pp+X$ at $\theta_{cm}=90^{\circ}$ Observable:

 $T = \sigma^A / (Z \sigma^N)$

Color transparency : $T \rightarrow 1$

