Critical Point and Onset of Deconfinement 2010

The HADES-at-FAIR project

Kirill Lapidus for the HADES Collaboration Excellence Cluster Universe and TU Munich

August 2010 JINR, Dubna

Location: GSI, SIS-18, Darmstadt

Ultimate goal: study of the Chiral Symmetry Restoration at non-zero µ_B

<u>Program</u>: di-electron and hadron measurements in elementary channels and heavy ion collisions, vector meson and baryon spectroscopy, hadron in-medium modifications

HADES (SIS18): 1-2 AGeV $\rho/\rho_N = 1-3$ T < 80 MeV "resonace matter"

- Measurements at beam energies up to 10 AGeV unexplored range for dilepton experiment
- Environment characterized by higher baryonic

densities: up to $\rho/\rho_N\,$ = 4

- 2 orders of magnitude higher vector meson yield as compared to SIS-18
- favourable conditions to study spectral functions of VM
- bridge to CBM, CERES and NA60 measurements
- high statistics (multi)differential measurements

- Running experiment, well understood performance
- Can deliver high quality data
- Setup tests with coming heavy-ion runs at SIS-18
- Upgrade improved stability, DAQ and time resolution of the Spectrometer

HADES and CBM in the cave

HADES in front of CBM

HADES acceptance for dielectrons at SIS-100: ω direct decays

Estimation of the acceptance for di-electrons from $\omega \rightarrow e^+e^-$

HADES acceptance for dielectrons at SIS-100: ω direct decays

Estimation of the acceptance for di-electrons from $\omega \rightarrow e^+e^-$

HADES acceptance for dielectrons at SIS-100: ω direct decays

Estimation of the acceptance for di-electrons from $\omega \rightarrow e^+e^-$

Dielectron invariant mass spectra at SIS-100

Simulated di-electron invariant mass spectra Au+Au 1 AGeV and 8 AGeV

Single leptons filtered with HADES acceptance, lepton momenta smeared

Larger yield of vector mesons: $\omega(8AGeV)/\omega(2AGeV) = 29$ $\phi(8AGeV)/\phi(2AGeV) = 73$

HADES acceptance for hadrons at SIS-100

HADES acceptance for hadrons at SIS-100

C + C 8 AGeV

HADES acceptance for hadrons at SIS-100

- Ready for SIS-18 heavy systems and for SIS-100
- Cope with multiplicities of Au+Au 1.5 AGeV
- Accept up to 20 KHz trigger rate
- Reaction plane and centrality determination: Forward Hodoscope
- New high-granularity RPC instead of TOFINO
- DAQ upgrade (new Trigger and Readout Board)
- New Plane I of Tracking Chambers

Upgrade of the TOF system: high granularity RPC wall

Efficiency

- Two-layer design
- 186 channels per sector

Time resolution System average: 73 ps σ

Central Au+Au at 1.5 AGeV and 8 AGeV, C+C at 2.0 AGeV and 8 AGeV From C+C at 2.0 AGeV \rightarrow Au+Au at 1.5 AGeV (SIS18) - factor of 14

At Au+Au at 1.5 AGeV expected 20% double hit probability Charged particle multiplicity corresponds to Ni+Ni (A = 58) at 8 AGeV – **the heaviest possible system at SIS-100**

Simulation: K⁻ acceptance and purity for Ag+Ag 1.65 AGeV

Acceptance

Purity (no dE/dx used)

- large acceptance: midrapidity coverage
- very good K⁻ purity up to $p_t < 800 \text{ MeV/c}$

Forward Wall Hodoscope

Reaction plane determination:

$$\vec{Q}_{RP} = \sum_{i} \vec{e}_{i}, \ \vec{e}_{i} = \frac{\vec{r}_{i}}{|\vec{r}_{i}|};$$

with weights: $\vec{Q}_{RP} = \sum_{i} Z_{i} \vec{e}_{i}$
 $Q = \left|\vec{Q}_{RP}\right|$

- 280 channel Scintillator hodoscope located 5-7 m from the target
- Already used in 2007 pp and dp runs
- Reaction plane and centrality determination → kaon flow measurements

simulation

Motivation:

1) neutral meson measurement

 $\pi^{_0}$ for normalization,

η — dominating cocktail component
2) better e/π separation at high momenta p > 400 MeV/c

 η yield: 1-2 AGeV — TAPS data No data at higher energies — only models

Planned as a substitute for the SHOWER detector

Electromagnetic Calorimeter for HADES

Lead glass modules from OPAL end cap calorimeter. ~ 900 modules needed, 1080 modules moved to GSI.

Module dimensions: 42 x 9 x 9 cm

Lead glass type: CEREN 25

Nucl. Instr. Meth. A290, 76 (1990)

Fig. 3. A complete OPAL end cap electromagnetic calorimeter consisting of two Dees, mounted on the OPAL magnet pole

Energy resolution (crystal + PMT) ~ $5\%/\sqrt{E}$, E in GeV

Simulation of the e/π separation with the Calorimeter

The e/π separation: experimental results

Dedicated beam tests: γ-beam MAMI 2009 π-beam CERN 2010

Significant improvement of the e/π separation for the p > 400 MeV/c (at higher efficiency)

Proposed experiments at SIS-100

Experiment	Energy $[AGeV]$	intensity [part./sec.]	duration
p+p	8, 10	$5.0 \cdot 10^8 / s$	2×2 weeks
C+C	4, 10	$2.0 \cdot 10^7 / s$	2×2 weeks
Ca+Ca	4,10	$6.0 \cdot 10^{6}/s$	2×2 weeks
Ni+Ni	4, 10	$4.0 \cdot 10^{6}/s$	2×2 weeks

- Elementary collisions as a reference
- Systematic investigation of light and heavy ion collisions

Summary

- The HADES experiment at SIS-100
 - High-quality systematic dielectron and hadron measurements in the unexplored energy range
 - Abundant vector mesons at high baryonic densities
 - High acceptance up to 10 AGeV
- Upgrade for SIS-100 already available at SIS-18
 - High-granularity RPCs
 - New DAQ system up to 20 kHz rates
 - New MDC plane I
 - Forward Hodoscope for reaction plane and centrality determination
- Ongoing development of the electromagnetic calorimeter

G. Agakishiev⁸, C. Agodi¹, A. Balanda^{3,e}, G. Bellia^{1,a}, D. Belver¹⁵, A. Belyaev⁶, J. L. Boyard¹³, P. Braun-Munzinger⁴, P. Cabanelas¹⁵, A. Blanco², M. Böhmer¹¹, E. Castro¹⁵, S. Chernenko⁶, T. Christ¹¹, M. Destefanis⁸, J. Díaz¹⁶, F. Dohrmann⁵, A. Dybczak³, T. Eberl¹¹, L. Fabbietti¹¹, O. Fateev⁶, P. Finocchiaro¹, P. Fonte^{2,b}, J. Friese¹¹, I. Fröhlich⁷, T. Galatyuk⁴, J. A. Garzón¹⁵, R. Gernhäuser¹¹, A. Gil¹⁶, C. Gilardi⁸, M. Golubeva¹⁰, D. González-Díaz⁴, E. Grosse^{5,c}, F. Guber¹⁰, M. Heilmann⁷, T. Hennino¹³, R. Holzmann⁴, A. Ierusalimov⁶, I. Iori^{9,d}, A. Ivashkin¹⁰, M. Jurkovic¹¹, B. Kämpfer⁵, K. Kanaki⁵, T. Karavicheva¹⁰, D. Kirschner⁸, I. Koenig⁴, W. Koenig⁴, B. W. Kolb⁴, R. Kotte⁵, A. Kozuch^{3,e}, A. Krása¹⁴, F. Krizek¹⁴, R. Krücken¹¹, W. Kühn⁸, A. Kugler¹⁴, A. Kurepin¹⁰, J. Lamas-Valverde¹⁵, S. Lang⁴, J. S. Lange⁸, K. Lapidus¹⁰, L. Lopes², M. Lorenz⁷, L. Maier¹¹, A. Mangiarotti², J. Marín¹⁵, J. Markert⁷, V. Metag⁸, J. Micel⁷, B. Michalska³, D. Mishra⁸, E. Morinière¹³, J. Mousa¹², C. Müntz⁷, L. Naumann⁵, R. Novotny⁸, J. Otwinowski³, Y. C. Pachmayer⁷, M. Palka⁴, Y. Parpottas¹², V. Pechenov⁸, O. Pechenova⁸, T. Pérez Cavalcanti⁸, J. Pietraszko⁴, W. Przygoda^{3,e}, B. Ramstein¹³, A. Reshetin¹⁰, M. Roy-Stephan¹³, A. Rustamov⁴, A. Sadovsky¹⁰, B. Sailer¹¹, P. Salabura³, A. Schmah⁴, R. Simon⁴, Yu.G. Sobolev¹⁴, S. Spataro⁸, B. Spruck⁸, H. Ströbele⁷, J. Stroth^{7,4}, C. Sturm⁷, M. Sudol⁴, A. Tarantola⁷, K. Teilab⁷, P. Tlusty¹⁴, M. Traxler⁴, R. Trebacz³, H. Tsertos¹², I. Veretenkin¹⁰, V. Wagner¹⁴, H. Wen⁸, M. Wisniowski³, T. Wojcik³, J. Wüstenfeld⁵, S. Yurevich⁴, Y. Zanevsky⁶, P. Zhou⁵, P. Zumbruch⁴

¹ Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, 95125 Catania, Italy

- ² LIP-Laboratório de Instrumentação e Física Experimental de Partículas , 3004-516 Coimbra, Portugal
- ³ Smoluchowski Institute of Physics, Jagiellonian University of Cracow, 30-059 Kraków, Poland
- ⁴ Gesellschaft für Schwerionenforschung mbH, 64291 Darmstadt, Germany
- ⁵ Institut für Strahlenphysik, Forschungszentrum Dresden-Rossendorf, 01314 Dresden, Germany

- ⁷ Institut f
 ür Kernphysik, Johann Wolfgang Goethe-Universit
 ät, 60438 Frankfurt, Germany
- ⁸ II.Physikalisches Institut, Justus Liebig Üniversität Giessen, 35392 Giessen, Germany
- ⁹ Istituto Nazionale di Fisica Nucleare, Sezione di Milano, 20133 Milano, Italy
- ¹⁰ Institute for Nuclear Research, Russian Academy of Science, 117312 Moscow, Russia
- ¹¹ Physik Department E12, Technische Universität München, 85748 München, Germany
- ¹² Department of Physics, University of Cyprus, 1678 Nicosia, Cyprus
- ¹³ Institut de Physique Nucléaire (UMR 8608), CNRS/IN2P3 Université Paris Sud, F-91406 Orsay Cedex, France
- ¹⁴ Nuclear Physics Institute, Academy of Sciences of Czech Republic, 25068 Rez, Czech Republic
- ¹⁵ Departamento de Física de Partículas, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- ¹⁶ Instituto de Física Corpuscular, Universidad de Valencia-CSIC, 46971 Valencia, Spain

⁶ Joint Institute of Nuclear Research, 141980 Dubna, Russia

- Number of modules 150x6=900
- Mass of one module of lead-glass

1592

• Total mass of cal.

14 kg

12600 kg

E. Lisowski, TU Krakow