First results from the ALICE experiment

Iouri Belikov (IPHC, Strasbourg) for the ALICE collaboration

ALICE experiment at CERN LHC

- Motivation for doing the pp measurements
- Trigger, data samples and event classes
- Detector performance

The first results :

- Multiplicity
- Charged particle spectra
- Baryon production
- Bose-Einstein correlations
- Identified particle spectra
- Jet and underlying event properties
- Heavy Flavour production

- published

preliminary

Detector configuration 2009/2010 :

- ITS, TPC, TOF, HMPID, MUON, V0, T0, FMD, PMD, ZDC (100%)
- TRD (7/18)
- EMCAL (4/12)
- PHOS (3/5)

I. Belikov

- The main goal of the ALICE experiment: properties of strongly interacting matter (QGP) created in HE nucleus-nucleus collisions
 - Necessity of the hadronic reference for the observables
- Understanding the particle production in the new energy domain
 - Comparison with models
- Search for collective effects at the partonic level
 - Multiplicity dependence of the measurement results

Available statistics:

- <u>Minimum bias</u>" trigger: at least one charged particle in 8 units of η (All ALICE is read out)
 - SPD or V0A or V0C
- "Single-muon trigger" (MUON, SPD, V0, FMD, ZDC are read out)
 - MUON in coincidence with the "minimum bias"
- Both in coincidence with the BPTX beam pickup counters
- 2009 (0.9 and 2.36 TeV): \sim 0.5 M min. bias 2010 (0.9 and 7 TeV): \sim 400 M min. bias(\sim 15 M MUON trg)

I. Belikov

Event classes

0.9 and 2.36 TeV

<u>7 TeV</u>

- INEL and NSD
- Use measured cross sections for diffractive processes
- Change MC generator fractions (SD/INEL, DD/INEL) so that they match these fractions
- Use Pythia and Phojet to assess effect of different kinematics of diffractive processes

- Diffraction is quite unknown
- Hadron-level definition of events (similar to ATLAS: Phys. Lett. B 688 (2010) 21)
 - All events that have at least one charged primary particle in |η|<1 "INEL>0"
 - Minimizes model dependence

<u>INEL</u>: MB_{OR} (SPD *or* VZEROA *or* VZEROC) *and* offline background suppression <u>NSD</u>: MB_{AND} (VZEROA *and* VZEROC) *and* offline background suppression <u>INEL>0</u>: INEL *and* at least one charged primary particle in $|\eta| < 1$

ALICE detector performance

<u>Multiplicity measurements</u> (Done with SPD, r ~4 and 7 cm)

- Pseudo-rapidity densities and multiplicity distributions:
 - ♦ 0.9 TeV: EPJC Vol. 65 (2010) 111
 - 0.9 and 2.36 TeV: EPJC Vol. 68 (2010) 89
 - ♦ 7 TeV: arXiv:1004.3514, accepted by EPJC
- Multiplicity distributions well described by single negative binomial distributions and consistent with the results by other experiments.

n

Multiplicity: $dN_{ch}/d\eta \ vs \sqrt{s}$

Power law dependence fits well $\sim s^{0.1}$

Significantly larger increase from 0.9 to 7 TeV than in MCs

Increase in dN _{ch} /dh	\sqrt{s}	ALICE (%)	MCs (%)
in η < 1 for INEL > 0 arXiv:1004.3514	0.9 → 2.36 TeV	23.3 ± 0.4 $_{-0.7}^{+1.1}$	15 – 18
	0.9 → 7 TeV	57.6 ± 0.4 $_{-1.8}^{+3.6}$	33 – 48

I. Belikov

I. Belikov

CPOD10, Dubna, Russia, Aug. 23 - 29 2010

 \rightarrow ALICE measures harder spectrum than CMS, ATLAS, UA1 (narrower window at central rapidity)

10

p_{_} (Gev/c)

0.4

0.2 10⁻¹ CMS / ALICE

CPOD10, Dubna, Russia, Aug. 23 - 29 2010

0.4

0.2

10⁻¹

UA1 / ALICE

10

p_{_} (Gev/c)

<p_t> vs multiplicity vs MC

- Perugia-0 (fails for multiplicity) describes well <p_t>, but only for p_t>500 MeV/c (ATLAS found agreement for p_t > 500 MeV/c)
- → **Phojet** (describes multiplicity) fails for $< p_t >$
- I. Belikov

<u>p/p measurement at mid-</u> <u>rapidity</u>

Baryon number transport by a di-quark and/or a string junction

- Valence quarks: Rossi and Veneziano, NPB123 (1977) 507 (strong suppression with Δy)
- Gluonic field: Kopeliovich and Zakharov, ZPC43 (1989) 241 (weak suppression with Δy)
- Proton identification with TPC dE/dx
- Special care for secondary particle contamination and absorption corrections
- pbar/p at |y| < 0.5 and 0.45 < p_t < 1.05 GeV/c</p>

$$\left(\frac{\overline{p}}{p}\right) = \frac{1}{1 + C \cdot e^{(\alpha_J - \alpha_p)\Delta y}} \rightarrow \begin{cases} a_J = 0.5 \ (fixed) \\ a_p = 1.2 \ (fixed) \\ C = 10.0 \pm 1.0 \end{cases}$$

0.9 TeV: $\bar{p}/p = 0.957 \pm 0.006(\text{stat}) \pm 0.014(\text{syst})$ 7 TeV: $\bar{p}/p = 0.990 \pm 0.006(\text{stat}) \pm 0.014(\text{syst})$

- Data described well by PYTHIA ATLAS-CSC
- Other models (HIJING-B, PYTHIA Perugia-SOFT) underestimate the data
- Conclusion: The baryon number transport over large rapidity gaps is strongly suppressed.

(Accepted by PRL)

I. Belikov

<u>CPOD10, Dubna, Russia, Aug. 23 - 29 2010</u>

Bose-Einstein correlations

- Assess the space-time evolution of the system that emits particles in pp collisions
- Measure the Bose-Einstein enhancement for pairs of pions (identical bosons) at low momentum difference q_{inv}=|**p**₁-**p**₂|, vs. event multiplicity and pair k_t = |**p**_{t1}+**p**_{t2}|/2
- Fit with a Gaussian

$$C(q_{inv}) = 1 + \lambda \exp(-q_{inv}^2 R^2)$$

15

BEC vs other experiments

Radius grows with dN_{ch}/dη

No visible k_t dependence (base line !)

I. Belikov

Identified particle spectra at 0.9 TeV

HC HUGISCIPILATE STRANGENESS AT 0.9 and 7 TeV

I. Belikov

Strange particle spectra

- very good agreement between STAR (200 GeV) and ALICE (900 GeV)
- very different from CDF (630/1800) and UA1 (630) for $p_T > 1.5 \text{ GeV}$
- UA1(630) and CDF(630) don't agree either ...

0.5

0

0

to be further investigated (different triggers, acceptance, feed-down correction ?)

1.5

2

2.5

3

3.5

4

4.5

p_(GeV/c)

5

o and K^{*0} at 0.9 and 7 TeV

I. Belikov

CPOD10, Dubna, Russia, Aug. 23 - 29 2010

3

Prospects for π^0 : conversions

Prospects for π^0 : calorimeters

PHOS

PHOS

26/05/2010

0.6

0.7 0.8

M_{yy}, GeV/c

I. Belikov

High p_T and Jets

- Charged-track jets raw spectra 0.9 and 7 TeV
 - ♦ |η|<0.5</p>
 - Four jets algos compared
 - uncorrected

High p_{T} particle correlations

Trigger Particle:highest p_T particle in event (p_{Tt}) Associated Particle:all the others (p_{Ta})

I. Belikov

High p_{τ} , UE structure vs MC

Hubert CURIEN

- Inclusive $\Delta \phi$ correlations wrt the leading track
- For p_t<10 GeV/c, the data are less "back-to-back-ish" than MCs</p>
- I. Belikov

J/ψ→ee, |η|<0.9

e PID from TPC TRD and EMCAL calibration is ongoing

I. Belikov

Forward J/ $\psi \rightarrow \mu \mu$

J/ψ→μμ, -4<η<-2.5</p> [™] Mp/Np Np **ALICE Performance** 20/07/2010 10² p+p at√s = 7 TeV **10** $\sigma_{J/\psi} = 94 \pm 4 \, MeV/c^2$ 2.5 3.5 3 2 4.5 $M_{\mu\mu}$ (GeV/c²)

acceptance to $p_t=0$

I. Belikov

CPOD10, Dubna, Russia, Aug. 23

s^{1/2}

31

M(Kππ)-M(Kπ) MeV/c²

Heavy flavour from single leptons

- Electrons |η|<0.9</p>
- TPC dE/dx, K and p rejection with TOF
- TRD and EMCAL will join soon
- Displacement selection

Muons -4<η<-2.5</p>

- Light quark contribution subtracted with PYTHIA
- c & b to be separated by fitting based on pQCD shapes (in progress...)

- Particle multiplicity
 - increase from 0.9 to 7 TeV significantly larger (>20%) than predicted
- Momentum spectra
 - <pt><pt><vs N_{ch} not described by any of the MCs
- Anti-proton/proton ratio at midrapidity
 - pbar/p goes to 1 at 7 TeV → baryon number transfer suppressed over large ∆y
- Bose-Einstein correlations at 0.9 TeV
 - particle emitting source "size" increases with multiplicity
- Event topology
 - significant activity outside jets, inside the UE
- Promising performance for ID spectra, strangeness, charm, charmonium
 - More strangeness than predicted (except φ)

K. Aamodt et al. (ALICE), Eur. Phys. J C 65 (2010) 111

- data collected 23 Nov, paper submitted 28 Nov
- 284 events (~ 3.7 authors per event)

Systematic uncertainties dN_{ch}/dη

Systematic uncertainties in %	900 GeV	2.36 TeV	7 TeV	
Fractions ND/DD/SD*	0.5	0.3	1.0	
MC dependence	+0.8	+1.5	+2.8	
Detector efficiency	±1.5			
Particle composition**	±(0.5 - 1.0)			
Material budget	negl.			
p _T spectrum	±0.5			
SPD triggering efficiency	negl.			
V0 triggering efficiency	negl.			
Background	negl.			

* Fractions changed at 0.9 and 2.36 TeV like in paper 2; at 7 TeV by 50% ** $\eta\text{-dependence}$

$$\chi^{2}(U) = \sum_{m} \left(\frac{M_{m} - \sum_{t} R_{mt} U_{t}}{e_{m}} \right)^{2} + \beta R(U)$$

- One free parameter per bin for unfolded spectrum U_t
- Regularization
 - Prefer constant locally
 - Prefer linear function locally
- Weight parameter β needs to be tuned
 - χ^2 /ndf not larger than 1
 - Keep bias low

Phojet

- provides a good description at 900 GeV
- fails at 2.36 and 7 TeV
- Pythia Atlas CSC
 - fails at 0.9 TeV
 - reasonably close at 2.36 and 7 TeV but deviations around 10-20
- Pythia D6T and Perugia-0 far from the distribution at all energies

I. Belikov

Track reconstruction in TPC (\leq 160 hits) +ITS (\leq 6 hits)

- p_t measurement from TPC only (ITS-TPC alignment not final)
 - $(\sigma(p_T)/p_T)^2 \approx (0.01)^2 + (0.007p_T)^2 \%$
- Track selection:
 - p_t > 150 MeV/c, |η| < 0.8
 - nhits_{TPC} > 70, χ^2 /hits<4 in TPC
 - at least 2 matching hits in ITS
 - at least 1 in SPD
 - 4.7 on average
 - cut on transverse impact
 - parameter (7 σ)
- From MC, cross-checked with data:
 - Efficiency 50-80%

I. Belikov

Secondary cont. 9-1%

- Valence quarks: Rossi and Veneziano, NPB123 (1977) 507
- Gluonic field: Kopeliovich and Zakharov, ZPC43 (1989) 241

Conventional approach - QGSM

Within QGSM one expects an asymmetry ${\sim}0$ at LHC energies

□ No BN transported at mid-rapidity from the fragmentation region

String Junction

BN transport even at large rapidity gaps
(large energies).
 Veneziano: Probability exponentially
suppressed (a_j: SJ intercept - model
dependent)
 Kopeliovich: Probability constant with
rapidity

I. Belikov

I. Belikov

<u>D⁰ meson reconstruction</u>

- Main selection: displaced-vertex topology
- Example: $D^0 \rightarrow K^-\pi^+$
 - good pointing of reconstructed D momentum to the primary vertex
 - pair of opposite-charge tracks with large impact parameters
- Kaon ID in TPC+TOF helps rejecting background at low p_t

