Critical Point and Onset of Deconfinement (CPOD)

23 - 29 August 2010 at Joint Institute for Nuclear Research

Spinodal phase decomposition with dissipative fluid dynamics

Jørgen Randrup, LBNL

Schematic and simplified phase diagram of strongly interacting matter

(Under what circumstances) can spinodal phase separation occur in nuclear collisions?

Nuclear spinodal fragmentation

Equation of state

Inclusion of finite range

Dissipative fluid dynamics => dispersion relations

Nuclear liquid-gas phase transition

Nuclear spinodal fragmentation

Density undulations are amplified in the spinodal region:

Long-wavelength distortions grow slowly (it takes time to relocate the matter)

Short-wavelength distortions grow slowly (they are hardly felt due to finite range)

 $\int_{V_{\text{def}}} \frac{1}{\sqrt{2}} \int_{V_{\text{def}}} \frac$

There is an *optimal length scale* that grows faster than all others:

Ph Chomaz, M Colonna, J Randrup: Nuclear Spinodal Fragmentation, Physics Reports 389 (2004) 263

=> Equal-size fragments!

Nuclear spinodal fragmentation

Equation of state

Inclusion of finite range

Dissipative fluid dynamics => dispersion relations

Idealized equations of state: HG -> QGP

Hadron Gas:

 $p^{H} = p_{\pi} + p_{N} + p_{\bar{N}} + p_{w}$ $p_{\pi}(T) = -g_{\pi} \int_{m_{\pi}}^{\infty} \frac{p\epsilon d\epsilon}{2\pi^{2}} \ln[1 - e^{-\beta\epsilon}]$ $p_{N}(T, \mu_{0}) = g_{N} \int_{m_{N}}^{\infty} \frac{p\epsilon d\epsilon}{2\pi^{2}} \ln[1 + e^{-\beta(\epsilon - \mu_{0})}]$ $p_{\bar{N}}(T, \mu_{0}) = g_{N} \int_{m_{N}}^{\infty} \frac{p\epsilon d\epsilon}{2\pi^{2}} \ln[1 + e^{-\beta(\epsilon + \mu_{0})}]$ $p_{w}(\rho) = \rho \partial_{\rho} w(\rho) - w(\rho)$ $w(\rho) = \left[-A \left(\frac{\rho}{\rho_{s}}\right)^{\alpha} + B \left(\frac{\rho}{\rho_{s}}\right)^{\beta} \right] \rho$

Quark-Gluon Plasma:

$$p^{Q} = p_{g} + p_{q} + p_{\bar{q}} - B$$

$$p_{g} = g_{g} \frac{\pi^{2}}{90} T^{4}$$

$$p_{q} + p_{\bar{q}} = g_{q} \left[\frac{7\pi^{2}}{360} T^{4} + \frac{1}{12} \mu_{q}^{2} T^{2} + \frac{1}{24\pi^{2}} \mu_{q}^{4} \right]$$

 $\mu = \mu_0 + \partial_\rho w = 3\mu_q$

Phase coexistence: Comparison to LG

- qualitatively similar to LG

- qualitatively different from LG!

[Igor Iosilevsky]

Phase diagram (for uniform matter)

Nuclear spinodal fragmentation

Equation of state

Inclusion of finite range

Dissipative fluid dynamics => dispersion relations

Equation of state: Finite range

Free energy density for uniform matter: $f_0(
ho,T)$

The local density approximation: $f[\tilde{
ho}(\cdot), \tilde{T}(\cdot)](\boldsymbol{r}) \doteq f_0(\tilde{
ho}(\boldsymbol{r}), \tilde{T}(\boldsymbol{r}))$

... implies:

No good! => Finite range *must* be taken into account

<u>Non</u>-uniform densit $\widetilde{ ho}(m{r})$

gradient	$\tilde{w}(\boldsymbol{r})$	≡	$w_0(\tilde{\rho}(\boldsymbol{r})) + \frac{1}{2}C(\boldsymbol{\nabla})$	$\tilde{o}(\boldsymbol{r}))^2$
contribution	(•)			

$$\begin{array}{ll} \underline{local} \ entropy \ density: & \tilde{\sigma}(\boldsymbol{r}) \ \equiv \ \sigma(\tilde{\varepsilon}(\boldsymbol{r}), \tilde{\rho}(\boldsymbol{r})) \\ \Rightarrow & total \ entropy: \ S[\tilde{\varepsilon}(\boldsymbol{r}), \tilde{\rho}(\boldsymbol{r})] \ \equiv \ \int \tilde{\sigma}(\boldsymbol{r}) d\boldsymbol{r} \end{array} \Rightarrow \begin{cases} \tilde{\beta}(\boldsymbol{r}) \ \equiv \ \frac{\delta S}{\delta \tilde{\varepsilon}(\boldsymbol{r})} \ \Rightarrow \ \tilde{T}(\boldsymbol{r}) \\ \tilde{\alpha}(\boldsymbol{r}) \ \equiv \ \frac{\delta S}{\delta \tilde{\rho}(\boldsymbol{r})} \ \Rightarrow \ \tilde{\mu}(\boldsymbol{r}) \end{cases}$$

 \Rightarrow local pressure $ilde{p}(m{r})$ & local enthalpy density $ilde{h}(m{r})$ & ...

Free energy density: $ilde{f}_T(m{r}) = f_T(ilde{
ho}(m{r})) + rac{1}{2}C(m{
abla} ilde{
ho}(m{r}))^2$

J. Randrup, Phys. Rev. C 79, 054911 (2009) H. Heiselberg *et al.*, Phys. Rev. Lett. 70, 1355 (1993)

Interface equilibrium

Global equilibrium requires constant *T*, μ , p: $0 \doteq \delta S - \beta_0 \delta E - \alpha_0 \delta N = \int dx \left\{ [\tilde{\beta}(x) - \beta_0] \delta \tilde{\varepsilon}(x) + [\tilde{\alpha}(x) - \alpha_0] \delta \tilde{\rho}(x) \right\}$ $\Rightarrow \quad \tilde{\beta}(x) = \beta_0 \quad \& \quad \tilde{\alpha}(x) = \alpha_0 \quad \Rightarrow \quad \tilde{p}(x) = p_0$

 $\tilde{f}_{T}(\boldsymbol{r}) = f_{T}(\tilde{\rho}(\boldsymbol{r})) + \frac{1}{2}C(\boldsymbol{\nabla}\tilde{\rho}(\boldsymbol{r}))^{2} \implies$ The interface density profile is determined by $C\partial_{x}^{2}\rho(x) \doteq \mu_{T}(\rho(x)) - \mu_{0} = \partial_{\rho}\Delta f_{T}(\rho(x))$ where $\Delta f_{T}(\rho) \equiv f_{T}(\rho) - f_{T}^{M}(\rho)$ $f_{T}^{M}(\rho) \equiv f_{T}(\rho_{i}) + \mu_{0}(\rho - \rho_{i}) \leq f_{T}(\rho)$

The interface tension is given by

$$\gamma_T^{12} = \int_{
ho_1}^{
ho_2} d
ho \left[2C\Delta f_T(
ho)
ight]^{rac{1}{2}}$$

 $[\rho(x) not needed!]$

J. Randrup, Phys. Rev. C 79, 054911 (2009)

Dynamical effect of the gradient term: The local pressure is modified

Small deviations from uniformity:

$$\tilde{p}(\boldsymbol{r}) \approx p_0(\tilde{\varepsilon}(\boldsymbol{r}), \tilde{\rho}(\boldsymbol{r})) - C\rho_0 \nabla^2 \tilde{\rho}(\boldsymbol{r})$$

Small harmonic density undulations:

$$\tilde{\rho}(\boldsymbol{r},t) = \rho_0 + \delta \rho(x,t) \doteq \rho_0 + \rho_k e^{ikx - i\omega t}$$

$$p_k \rightarrow p_k + C\rho_0 k^2 \rho_k$$

Nuclear spinodal fragmentation

Equation of state

Inclusion of finite range

Dissipative fluid dynamics => dispersion relations

Transport model: Dissipative fluid dynamics

Energy-	$T^{00} \approx \varepsilon \& T^{0i} \approx (\varepsilon + p) v^i + q^i \& \qquad \qquad A$	Muronga, PRC 76, 014909 (2007)
momentum tensor:	$T^{ij} \approx \delta_{ij}p - \eta [\partial_i v^j + \partial_j v^i - \frac{2}{3}\delta_{ij}\partial^k v^k] - \zeta \delta_{ij}\partial^k v^k$	$ \rho_k \ll \rho_0 \; \Rightarrow \; v \ll 1$
	${oldsymbol abla} \cdot {oldsymbol T} \ pprox \ {oldsymbol abla} p - \eta \Delta {oldsymbol v} - [rac{1}{3}\eta + \zeta] {oldsymbol abla} ({oldsymbol abla} \cdot {oldsymbol v}) \ pprox \ \partial_x p - \eta \Delta {oldsymbol v} + \zeta] {oldsymbol abla} ({oldsymbol abla} \cdot {oldsymbol v}) \ pprox \ \partial_x p - \eta \Delta {oldsymbol v} + \zeta] {oldsymbol abla} ({oldsymbol abla} \cdot {oldsymbol v}) \ pprox \ \partial_x p - \eta \Delta {oldsymbol v} + \zeta] {oldsymbol abla} ({oldsymbol abla} \cdot {oldsymbol v}) \ pprox \ \partial_x p - \eta \Delta {oldsymbol v} + \zeta] {oldsymbol abla} ({oldsymbol abla} \cdot {oldsymbol v}) \ pprox \ \partial_x p - \eta \Delta {oldsymbol abla} + \zeta] {oldsymbol abla} ({oldsymbol abla} \cdot {oldsymbol abla} \cdot {oldsymbol abla} + \zeta] {old$	$[rac{4}{3}\eta+\zeta]\partial_x^2 v$ Eckart frame
Equations of motion:	$C: \partial_t \rho \doteq -\rho_0 \nabla \cdot \boldsymbol{v} \Rightarrow \omega \rho_k \doteq \rho_0 k v_k$	charge
	$oldsymbol{M}: \hspace{0.1cm} h_{0}\partial_{t}oldsymbol{v} \hspace{0.1cm} \doteq -oldsymbol{ abla}[p-\zetaoldsymbol{ abla}\cdotoldsymbol{v}] -oldsymbol{ abla}\cdotoldsymbol{\pi} -\partial_{t}oldsymbol{v}$	t q momentum
	$\mathbf{E}: \ \partial_t \varepsilon \ \doteq -h_0 \boldsymbol{\nabla} \cdot \boldsymbol{v} - \boldsymbol{\nabla} \cdot \boldsymbol{q}$	energy
Sound equation:	$\begin{array}{rcl} \partial_t E - \boldsymbol{\nabla} \cdot \boldsymbol{M} : & h_0 \partial_t^2 \varepsilon \doteq \Delta [p - \zeta \boldsymbol{\nabla} \cdot \boldsymbol{v}] + \boldsymbol{\nabla} \cdot (\boldsymbol{\nabla} \cdot \boldsymbol{\omega}^2 \varepsilon_k \doteq k^2 p_k - i [\frac{4}{3}\eta + \zeta] \frac{\omega}{\alpha} k^2 \rho_k \end{array}$	$\pi) \ \xi \equiv rac{4}{3}\eta + \zeta$
Heat flow:	$egin{aligned} & & p_0 \ & & m{q} pprox -\kappa [m{ abla} T + T_0 \partial_t m{v}]: \ & q_k = -i\kappa [kT_k - rac{T_0}{ ho_0} rac{\omega^2}{k} ho_k] \end{aligned}$	$T_k \approx \frac{1}{1 + i\kappa k^2 / \omega c_v} \frac{T_0}{\rho_0} \left(\frac{\partial p}{\partial \varepsilon}\right)_{\rho} \rho_k$
Equation of state:	$p_T(\rho) \Rightarrow p_k = \left(\frac{\partial p}{\partial \varepsilon}\right)_{\rho} c_v T_k + \frac{h_0}{p_0} v_T^2 \rho_k$	
Dispersion equation:	$\omega^2 \doteq v_T^2 k^2 + C \frac{\rho_0^2}{h_0} k^4 - i\xi \frac{\omega}{h_0} k^2 + \frac{v_s^2 - v_T^2}{1 + i\kappa k^2 / \omega c_v} k^2$	Heiselberg, Pethick, Ravenhall, Ann. Phys. 233, 37 (1993)

Transport coefficients

1) Bulk viscosity ζ : Ignore $\zeta \ll \eta \Rightarrow \xi \equiv \frac{4}{3}\eta + \zeta \approx \frac{4}{3}\eta$

2) Shear viscosity η :

$$\rho = 0: \quad h \equiv p + \varepsilon = T\sigma \qquad \rho > 0, \quad T \ll mc^{2}: \quad h \asymp mc^{2}n \gg T\sigma$$

$$\rho = 0: \quad \eta \ge \frac{\hbar}{4\pi}\sigma = \frac{\hbar}{4\pi}\frac{h}{T} \qquad \rho = 0: \quad n \sim T^{3} \implies \frac{\hbar c}{T} = 4\pi c_{0} d \qquad d \equiv n^{1/3}$$

$$\eta(\rho, T) = \eta_{0}\frac{c_{0}}{c}d(\rho, T) h(\rho, T) \qquad \lambda_{\text{visc}} \equiv \frac{1}{c}\frac{\xi(\rho, T)}{h(\rho, T)/c^{2}} \approx \frac{4}{3}\eta_{0} c_{0} d(\rho, T)$$

3) Heat conductivity κ:

$$\begin{split} \eta &\approx \frac{1}{3} n \bar{p} \ell & \frac{\kappa}{\eta} \approx \frac{c_v}{h/c^2} & \bar{p} = m \bar{v} & h \asymp mc^2 n \\ \kappa &\approx \frac{1}{3} \bar{v} \ell c_v & \frac{\eta}{\eta} \approx \frac{c_v}{h/c^2} & c_v \equiv \partial_T \varepsilon_T(\rho) & c_v \asymp \frac{3}{2} n \\ \kappa(\rho, T) &= \kappa_0 c_0 c d(\rho, T) c_v(\rho, T) & \lambda_{\text{heat}} \equiv \frac{1}{c} \frac{\kappa(\rho, T)}{c_v(\rho, T)} &= \kappa_0 c_0 d(\rho, T) \\ \text{V Koch & J Liao, PRC81, 014902 (2010)} & \text{JR: CPOD 2010} & c_0 = \frac{1}{4\pi} \left[(g_g + \frac{3}{3} g_g) \frac{\zeta(3)}{\pi^2} \right]^{\frac{1}{3}} \approx 0.12779 \end{split}$$

Spinodal growth rates

Nuclear spinodal fragmentation

Equation of state

Inclusion of finite range

Dissipative fluid dynamics => dispersion relations

Dynamical phase trajectories

Dynamics of collective modes in many-body systems

Amplification coefficient:

 $\omega_{\nu} = \epsilon_{\nu} + i\gamma_{\nu}$

Amplitude evolution:

$$\frac{d}{dt}A_{\nu}(t) = -i\omega_{\nu}A_{\nu}(t) + B_{\nu}(t)$$

Correlation function:

$$\sigma_{\nu\mu}(t_1, t_2) \equiv \prec A_{\nu}(t_1) A_{\mu}(t_2)^* \succ$$

Markovian noise:

$$\prec B_{\nu}(t) B_{\mu}(t')^* \succ = 2\mathcal{D}_{\nu\mu} \,\delta(t-t')$$

Evolution:

$$rac{d}{dt}\sigma_{
u\mu}(t) = 2\mathcal{D}_{
u\mu} - i(\omega_{
u} - \omega_{\mu}^{*})\sigma_{
u\mu}$$

Variance of a single mode:

$$\frac{d}{dt}\sigma_{\nu}^{2} = 2\mathcal{D}_{\nu} + 2\gamma_{\nu}\sigma_{\nu}^{2}$$

$$\Gamma_{\nu}(t) \equiv \int_{0}^{t} \gamma_{\nu}(t')dt'$$

$$\Rightarrow \quad \sigma_{\nu}^{2}(t) = \left[2\mathcal{D}_{\nu}\int_{0}^{t} e^{-2\Gamma_{\nu}(t')}dt' + \sigma_{0}^{2}\right]e^{2\Gamma_{\nu}(t)}$$

$$\gamma_{\nu} < 0: \quad \sigma_{\nu}^{2}(t) \rightarrow -\mathcal{D}_{\nu}/\gamma_{\nu}$$

Colonna, Chomaz, Randrup, NPA 567 (1994) 637 JR: CPOD 2010

Spinodal amplification

(Under what circumstances) can spinodal phase separation occur in nuclear collisions?

Spinodal decomposition <u>may</u> occur at $E_{lab} \approx 5-10$ GeV/A (FAIR & NICA):

Conclusion

Exists an optimal E range
 Significant amplification

- but:

Full dynamical calculations are needed!

<u>Suggestion:</u> Use fluid dynamics with <u>finite</u> range

<u>Need:</u> Transport coefficients $\eta(\rho,T)$, $\zeta(\rho,T)$, $\kappa(\rho,T)$

Important

MODEL REQUIREMENTS:

EoS $p(\rho,T)$ with phase transition Confined & deconfined phases Phase coexistence, incl interface* Spinodal modes* Dynamics with instabilities*

* Requires finite range