

The search for collective phenomena in hadron interactions

E. Kokoulina, A. Kutov, V. Nikitin, Yu.Petukhov, V. Popov and V. Riadovikov. For the SVD Collaboration

6th International Workshop on Critical Point and Onset of Deconfinement, 23-29 August, 2010, Dubna, Russia

Introduction

 $pp(pA) \rightarrow n, n = n_{ch} + n_0$ Experiment at U-70, IHEP, Protvino $E_{lab} = 50 - 70 \text{ GeV}$ mean multiplicity: $\langle n_{ch} \rangle \sim 5$, $\langle n_0 \rangle \sim 2$ extreme (high) multiplicity (EM): n >> <n> EM is formed in dense medium?

Introduction

We expect:

the collective behavior of secondary can be manifested at EM region. Since in this region can be formed the high density system.

Outline

The extreme multiplicity puzzles

SVD-2 setup and data processing

Collective phenomena search

Gluon Dominance Model

MC PHYPIA code has shown that standard generator predicts a value of the cross section at 70 GeV/c which is reasonably good agreement with data at small multiplicity, n_{ch} <10, but it underestimates the value $\sigma(n_{ch})$ by 2 orders of the magnitude at n_{ch} > 18.

At 70 (50) GeV/c up to n_{ch}= 18 (16).

The present-day models are very much sensitive in the EMI region for the multiplicity distributions (MD)

CERN-PH-EP/2010-004 March 15, 2010

Charged-particle multiplicities in pp interactions at $\sqrt{s} = 900$ GeV measured with the ATLAS detector at the LHC

MD in e^+e^- -annihilation at $\sqrt{s}=14$, 56, 91 and 189 GeV: data and GDM (based on QCD-cascade and hadronization model).

3 possible scenarios $for < p_{\parallel} > and < p_{T} >$ at EM: (?)

SVD-2 setup and data processing

SVD-2 setup

U-70 at IHEP, Protvino, E= 50 GeV. The ScH selects the rare events with the EM. The suppression factor of events with lower multiplicity amounts about 10⁴. HT is a 7cm - thick. 25mm -diameter vessel.

Scintillator hodoscope (camomile) for the EM event registration

20 petals: 18mm-altitude, 1.8-mm thick coupled with PMT FEU-137-3.

The liquid-hydrogen target

MC event generator is designed for the setup element simulation;

- Data processing software;
- > Alignment procedure;

Track and vertex reconstruction...

Kalman Filter as Track Fitter for SVD

- 1. Drift tubes calibration from raw TDC time to drift distance.
- 2. Recognize track candidates find track-like groups of hits: pattern recognition.
- 3. Taking into account REALITY: alignment.
- 4. From track candidates to real track parameters: track fitting.
- 5. From tracks to vertexes: vertex fitting.

Analysis sequence (some detailes)
1. VD + MS reconstruction: track parameter determination; using of MS data for momentum estimation and vertex finding.

- 2. DT track candidate finding separately in U, Y and V planes, then build 3D tracks.
- 3. DT + MS track fitting: track parameters from 1 as initial values, hit list from 2, then Kalman Filtering procedure.

4. During fit taking into account non-uniform magnetic field, multiple scattering, energy losses.

- 5. Re-fit vertexes, if it is necessary.
- 6. Kinematical fit.

MC simulation and reconstruction in DT and MS detectors

Data from MSVD

Multiplicity Distributions (MD) in pp interactions at the different trigger levels: 8, 10, 12. run 2008,PVD.

Data (MSVD) and GDM

Run 2008, 50 GeV/c, MD in pp-interactions 8th trigger-level (8 x MIP)

1. Bose-Einstein Condensation (BEC);

2. Cherenkov gluon emission;

3. Gluon Dominance Model (GDM);

4. Excess of soft photon (SP) yield;

5. Clusterization; turbulence phenomena ...

M. Gorenstein and V. Begun had predicted an abrupt and anomalous increase of the scaled variance ω^0 of neutral and charged pion number fluctuations in the vicinity of the BEC line [Phys.Lett.B651:114 (2007)].

$$\omega^0$$
 - scaled variance
 $\omega^0 = \langle \Delta | n_0|^2 \rangle / \langle | n_0 \rangle \rangle$
 $\Delta | n_0|^2 = (| n_0 - \langle | n_0 \rangle)^2$

The phase diagram of the ideal pion gas with zero net electric charge.

The dashed-dotted lines present the trajectories in ρ-T plane with fixed energy density at 9.7GeV. V.Begun and M.Gorenstein Phys.Rev.C77:064903,2008

n	n _{ch} =2 4 6 8	10 12	14	16	18	19	20	21	<n<sub>0></n<sub>
3	1*8								1.00
4	2*8 + 0* 198							-	0.08
5	3 *8 + 1 *381) nali	min				1.04
6	4*2 + 2 *425+ 0 *310		— P	reii	min	ary	,		1.16
7	5 *1 + 3 *285+ 1 *568								1.67
8	6 *1 + 4 *191+ 2 *583+ 0 *751			/ork	in				1.27
9	7 *1 + 5 *120+ 3 *443+ 1 *1369	9						10	1.71
10	6 *56 + 4 *309+ 2 *149	l+ 0 *434	n	roa	roco	2			1.99
11	7*24 + 5 *184+ 3 *1222	2+1*835	— P	iug	103	3			2.47
12	8 *10 + 6 *78 + 4 *836	+ 2 *928 + 0 *1	57						2.86
13	9 *2 +7*43 + 5 *472	+ 3*688 + 1*3	05						3.34
14	10* 2 + 8* 10 + 6* 231	+ 4*469 +2*3	71+0*84						3.52
15	11* 2 + 9* 9 + 7* 107	+ 5*265 + 3*3	12+1*157						3.83
16	12 *1 + 10 *2 + 8 *64	+ 6*127 +4*1	88+ 2 *159-	+0*74					3.86
17	13 *1 + 9 *19	+ 7*49 + 5*10	09+3*127+	1*123				10	3.68
18	10*8	+ 8*39 + 6*5	1 +4*79 +	2 *160 +	-0*8				3.87
19	11*5	+ 9*18 +7*2	8 +5*48 +	3 *109 +	-1*20	+0*3			4.33
20	12*3	+ 10 *6 + 8 *1	6 +6*22 +	4*7 0 +	- 2 *30 -	+ 1 *11	+0*1		4.45
21		11* 4 + 9* 8	3 + 7 *13 -	+5*53 -	+3*24	+2*8	+1*2	+0*2	4.93
22	headd	12* 1 + 10* 8	8 +8*7 +	6 *40 +	- 4 *16 -	+3*8	+2*7	+1*1	5.59
23	De alda	11*:	3 +9*3 -	-7*16 -	+ 5 *11	+4*4	+ 3 *1		6.47
24		14* 1 + 12* 2	2 +10*3 +	8 *8 +	-6 *6	+5*2	+4*3	+ 3 *1	7.42
25		-	11*1 +	9* 8 +	7*2	+6*2	+ 5 *1		8.14
26		16 *1 + 14 *1	-	10*2 +	8*3 -	+7*1	:	+5*2	9.1
27				11*5	+9*3	+8*1	+7*1		9.7
28				12 *2	+10*3		+8*1		10.33
29				13 *1					13.
30					12 *1		+10*1	15	11.2
ΣN_{ev}	29 1698 2539 6578	3865 1559	703 671	1	27 4	0	18 (5	

Two-hump structure in pp at n_ch >9 (2008) run

Monte-Carlo simulation & track reconstruction $(n_{ch} \ge 9)$

3th order polynomial of background and two Gausses of peaks

Ring Events (?) Our experiment: $\cos \Theta_{Ch} = 1 / \beta n, \ \beta = p / E,$

n - the index of the refraction,

 $\theta_{\rm Ch} = 0.065 \pm 0.005, \, n = 1.0023 \pm 0.0003$

Dremin theory:

n (p) = 1+Δn (p) = 1+3m_{pr}³ σ(p) ν_h ρ(p) / 8πp_{pr},

 v_h – the number of scatters, $\rho = \text{Re F}/\text{Im F}$, $\Delta n (p) = 3 \text{ m}_p^3 \text{Re F}/2p^2 = 0.0005 * \text{Re F}$, at Re F =4.6 GeV (0.92 fm)

Dremin stresses (arXiv:0910.0099 [hep-ph]) that RHIC and cosmic rays data were fitted with different values of the refraction index close to 3 and 1, correspondingly. He explains this distinction via the difference in values x and Q²: \checkmark The large x and Q² are related to the dilute parton system (our case) \checkmark The low x and Q² correspondents to a more dense system (RHIC).

$$e^+e^- \to \gamma(Z^0) \to q\overline{q} \to (q,g) \to ? \to hadrons$$

First stage (cascade): a) gluon fission; b) quark bremsstrahlung; c) quark pair creation; NBD.

Second stage (hadronization): BD

$$Q_p^H = \left[1 + \frac{\overline{n}_p^h}{N_p}(z-1)\right]^{N_p}.$$

$$P_m = \frac{k_p(k_p+1)\dots(k_p+m-1)}{m!} \left(\frac{\overline{m}}{\overline{m}+k_p}\right)^m \left(\frac{k_p}{\overline{m}+k_p}\right)^{k_p}.$$

A.Giovannini. NP, B161 (1979).

Convolution of two stages.

<u>GDM for e⁺e⁻: the mean</u> hadron multiplicity formed from gluon, $<n_g^h>$, while its passing through the hadronization stage is remained constant $<n_g^h> ~1$ (14 -189 GeV).

Fragmentation mechanism: 1 parton \rightarrow 1 hadron.

B.Muller (nucl-th/0404015)

<u>GDM had shown</u>: quarks of initial protons are staying in leading particles (from U-70 up to ISR). Multiparticle production is realized by active gluons.

Two schemes: with/without gluon branch. Convolution gluon (Poisson/Farry) & hadron (PBD) MDs.

The recombination mechanism of hadronization: the increase of $\langle n_g^h \rangle$ from 1.6 at 70 GeV (U-70) up to 3.3 at 60 GeV (ISR) in pp-interactions.

RHIC, in central AA-interactions:

 $\frac{Baryon}{\approx 1}$ Meson

B.Muller (nucl-th/0404015)

Soft Photons (SP) $p_t \le 0.1 GeV/c, x \le 0.01$ σ (SP) are 5-8 times more in the comparison with the QED predictions.

Assumption: Parton system or excited new formed hadrons set in almost equilibrium state during a short period (we use the black body emission spectrum):

$$\sigma_{\gamma} \approx 4mb, \, \sigma_{in} \approx 40mb, \, \sigma_{\gamma} \approx n_{\gamma}(T) \cdot \sigma_{in} \rightarrow n_{\gamma} \approx 0.1$$

Estimations of SP emission region: <~ 4 fm.

Outlook

- The continuation of the search for the collective phenomena in pp (pA) interactions at the EM region: BEC, ring events (dense groups in angle distributions), clusterization, turbulence phenomena.
- ✓ Soft photon studies at the EM
- Preparation to autumn (2010) carbon-nucleus interaction program, ~34 GeV/N at U-70 on SVD-2 setup .