System Size Dependence of Particle Production at the SPS

Christoph Blume University of Frankfurt

6th International Workshop on Critical Point and Onset of Deconfinement JINR, Dubna August 2010

Outline

System size dependence of particle production (at the SPS)

Yields of strange particles and (anti-)protons Transverse mass and rapidity spectra Multiplicity fluctuations

What are the general features?

To what extend dominated by geometrical effects? How to model this and subtract trivial effects?

Core-Corona approach

Where does it work and where not?

Relevance for studies of the QCP phase diagram

How do *T* and μ_B depend on system size? Do these parameter really reflect a change of the fireball properties?

Experimental Access to Phase Diagram

System Size Dependence of T, $\mu_{\rm B}$

Strangeness Enhancement of $\Lambda, \, \Xi, \, \text{and} \, \Omega$

Enhancement factor

 $E = \frac{2}{\langle N_w \rangle} \frac{dn(Pb + Pb)/dy}{dn(p+p)/dy}$

NA49 and NA57 data Pb+Pb (C+C, Si+Si) at 158A GeV

General features

Rapid rise for small systems $\langle N_w \rangle < 60$

Saturation or slow increase for larger systems

Statistical Model: Canonical Suppression

Statistical model

Transition from canonical to grand-canonical description

Hierarchy of suppression depending on strangeness content

Ensemble volume $V = (V_0/2) \langle N_w \rangle$ with $V_0 = 7 \text{ fm}^3$

Onset of suppression does not match data

Model: $\langle N_{\rm w} \rangle \approx 30$ Data: $\langle N_{\rm w} \rangle > 60$

S. Hamieh, K. Redlich and A. Tounsi, Phys. Lett. B **486**, 61 (2000)

Core Corona Model

Two components in A+A collisions: core and corona

Corona:

Elementary nucleon-nucleon collisions \rightarrow p+p

Core:

Hot and dense fireball \rightarrow central A+A

System size dependencies determined by ratio core/corona

 $f(N_{\rm W})$ = fraction of nucleons that scatter more than once $M(N_w) = N_w \left[f(N_w) M_{core} + (1 - f(N_w)) M_{corona} \right]$

e.g.: EPOS (K. Werner) Here: Glauber model

P. Bozek, Acta Phys. Polon. **B36**, 3071 (2005).

F. Becattini and J. Manninen, J. Phys. G35, 104013 (2008)

J. Aichelin and K. Werner, Phys. Rev. C79, 064907 (2009)

Enhancement in Core-Corona Approach

Enhancement factor

$$E = \frac{2}{\langle N_w \rangle} \frac{dn(Pb + Pb)/dy}{dn(p+p)/dy}$$

Core Corona Model

Good description of system size dependences of enhancement factor

Λ , $\overline{\Lambda}$, and Ξ^{-}

Transport models dN/dy at mid-rapidity OK for Λ

Slightly below $\overline{\Lambda}$

Too low for Ξ

UrQMD: H. Petersen et al. arXiv: 0903.0396

HSD: W. Cassing and E. Bratkovskaya, Phys. Rep. **308**, 65 (1999) and private communication

Core Corona model

OK for Λ and Ξ

Also for $\overline{\Lambda}$?

Average Transverse Mass: $\langle m_t \rangle$ - m_0

Average Transverse Mass: $\langle m_t \rangle - m_0$

System size dependence similar to particle yields

Mid-rapidity data, Hyperons

Core Corona model

 \rightarrow Reasonable description also for Λ and Ξ

NA49 data: Phys. Rev. C80, 034906 (2009)

Antibaryons

Rapidity Distributions: (Anti-)Protons

How about system size dependence away from mid-rapidity?

 \rightarrow Net-protons (stronger variation of yields at forward rapidities)

Rapidity Distributions: (Anti-)Protons

Comparison to transport models

HSD and UrQMD

Non trivial evolution of longitudinal shapes

Rapidity Distributions: Net-Protons

Mid-Rapidity \leftrightarrow **Forward Rapidity**

Comparison of net-protons

Mid-rapidity and forward rapidity

Core Corona model

Works at mid-rapidity

Not as good at forward rapidities

Baryon stopping

Different physics involved than in particle production around mid-rapidity

Nucleon needs to be hit only once

Core-Corona: Central \leftrightarrow **Peripheral**

Core Corona model

 $f(N_{part})$ = fraction of nucleons, that scatter more than once

Centrality dependence

Stronger for smaller systems

Central reactions

Still clear change of $f_{\rm max}$ with system size

 $\begin{array}{ll} \text{Compare} & f_{\max}(\text{Pb+Pb}) \approx 0.9 \\ \text{and} & f_{\max}(\text{C+C}) & \approx 0.65 \end{array}$

 \Rightarrow apparent change of T + $\mu_{\rm B}$

Not real, just different mixture of core and corona

Different system sizes will not probe different T, μ_B Different core corona mixtures,

even for very central events

Core-Corona: Asymmetric Systems

Core Corona model

 $f(N_{part})$ = fraction of nucleons, that scatter more than once

Centrality dependence

Peculiar shape for small projectiles (e.g. C, O, Si, S)

Limiting case: p + A

 $f(N_{\text{part}}) = 1 / N_{\text{part}}$

Model applicable in p+A? First attempt in T. Šuša et al., Nucl. Phys. **A698** (2002) 491c

p+A Collisions

No clear evidence for decrease with N_{part}

Significant decrease visible only for anti-lambda

Data not fully consistent

But also: incoming nucleon with $N_{coll} > 1$ not equivalent to central fireball in A+A (\rightarrow core)

NA57: F. Antinori et al., J. Phys. **G32** (2006) 427

NA49: T. Šuša et al., Nucl. Phys. **A698** (2002) 491c

Fluctuations in Core Corona Approach

Multiplicity Fluctuations

Multiplicity fluctuations

Similar N_{part} dependence as Var(f)

Toy Model Study

Comparison: Toy Model ↔ Data

Var(n)∥n⟩ Data (all charges) MC way below data ! 3 MC (meas. input) Dominated by volume (N_{part}) MC (scaled input) fluctuations x100 2 **Scaled** input 50 100 0 $\frac{1}{N_{part}}\frac{dn}{dy}$ =1.0 $\frac{1}{N_{part}} \frac{dn}{dy}$ Core corona fluctuations =0.5, 0.25, 0.1, 0.01do not contribute significantly to observed multiplicity fluctuations

200

N_{proj}

150

Conclusions

Common behavior of system size dependencies

Yields of produced (strange) particlesAverage transverse masses**Exceptions:**Antibaryons $(\overline{p}, \overline{\Lambda}) \rightarrow$ Absorption?Net-protons of forward rapidities \rightarrow Stopping

Core Corona Approach

Good description of most observable (with above exceptions) Baseline for non-trivial effects Could further be tested by asymmetric collisions No significant contribution to multiplicity fluctuations

System size as control parameter for phase diagram

Changes only relative contribution of core and pp-like corona (if core-corona ansatz holds) Change in *T* only apparent, $\mu_{\rm B}$ = const.

QCD Phase Diagram

Chemical Freeze-Out Points

Results from different beam energies

Analysis of particle yields with statistical models

Freeze-out points reach QGP phase boundary at top SPS energies

System Size Dependence Net-Protons

No strong system size dependence observed

Peripheral spectrum slightly more pronounced *y*-dependence than central one

Beam rapidity not measured!

In measured rapdity range similar shape like p+p data

⇒ System size has no big influence on µ_B

p+p Data: M. Aguilar-Benitz et al., Z. Phys. C 50 (1991), 405.

System Size Dependence (Anti-)Proton *y*-Spectra

Preliminary data by NA49

Minimum bias Pb+Pb at 158A GeV

H. Ströbele et al. arXiv:0908.2777

Energy Dependence Example: Λ/π - and Ξ/π -Ratios

NA49 dataPhys. Rev. C78,
034918 (2008)Statistical modelsGenerally good
description at all
energiesFixes parameters
T and μB

 SHM(B): A. Andronic et al. Nucl. Phys. A 772, 167 (2006).
UrQMD: M. Bleicher et al., J. Phys. G 25, 1856 (1999) and private communication
HSD: E. Bratkovskaya et al., Phys. Rev. C69, 054907 (2004)

Christoph Blume

Energy Dependence Net-Baryon Distributions

Significant change of shape at SPS energies

 $Peak \rightarrow dip structure$

Rapid change of net-baryon density at y = 0

 \Rightarrow Strong variation of μ_{B}

Central Pb+Pb/Au+Au

158A GeV Phys. Rev. Lett. 82 Phys. Rev. C 60 (1999), 2471

E802

(1999), 064901

BRAHMS Phys. Rev. Lett. 93 (2004), 102301

