Beam Energy Dependence of Azimuthal Anisotropy at RHIC-PHENIX

Arkadij Taranenko

Nuclear Chemistry Group

SUNY Stony Brook, NY, USA

for the PHENIX Collaboration

Critical Point and Onset of Deconfinement (CPOD 2010), Dubna , 23-29.08.2010

Elliptic Flow at RHIC

Two nuclei pass each other in a time of $t_{pass} \sim 0.15$ fm/c

- The probe for early time
 - The dense nuclear overlap is ellipsoid at the beginning of heavy ion collisions
 - Pressure gradient is largest in the shortest direction of the ellipsoid
 - The initial spatial anisotropy evolves (via interactions and density gradients) → Momentum-space anisotropy
 - Signal is self-quenching with time

 $\int d^{2} \frac{N}{dp_{r}^{2} dv} \left[1 + 2v_{1} \cos(\varphi - \Psi_{R}) + 2v_{2} (2[\varphi - \Psi_{R}]) + ... \right]$

$$v_2 = \langle \cos(2[\phi - \Psi_R]) \rangle$$

Beam Energy dependence of Elliptic Flow: Constraints for the Hadronic EOS

Ten Years of Elliptic Flow Measurements at RHIC

Elliptic Flow Measurements V₂ (p_T, centrality) in PHOBOS/STAR/PHENIX

Results from different methods should Not be used as a measure of systematic error!

Comparison of differential $v_2(p_T, centrality)$: PHOBOS/PHENIX

v₂{RXN EP} PHENIX Preliminary EP: 1.0<|ŋ|<2.8 v₂{EP}[PHOBOS Prelim] J.Phys.G34:S887-892,2007 1.5 2 2.5 3 p_{_}, GeV/c

Overall good agreement between differential flow measurements

Comparison v₂(p_T, centrality): STAR [Central TPC $|\eta| < 1.0$] / PHENIX

http://quark.phy.bnl.gov/www/cathie_files/ca-te/

PHENIX: Extensive anisotropy Data

Phys. Rev. Lett. 105, 062301 (2010) 0.1 0.25 0.05 (a) (b) Centrality (%) Idea 0.08 50-60 45-50 Quad 0.06 40 - 45Linea 5 35-40 0.20 0.04 0.04 30-35 25-30 20-25 0.02 15-20 10-15 0 0.03 0.15 0 50 5 - 100-544 22 φ 0.5 0.10 0.02 0.4 Ż ¥ 0.3 v₂ (p_T) 0.2 0.05 0.01 0.1 0 0.5 n 0.00 0.00 0 5 3 2 3 2 4 0 pT (GeV/c) pT (GeV/c)

K. Dusling, D. Teaney, ...

Departure from equilibrium on the freeze out surface – largest part of viscous correction to v2=f[pt)

Lesson 1: One need high precision double differential flow measurements

Estimates for η/s **Comparison with viscous** hydrodynamics calculations η/s=0.16 [Glauber] Glauber 0.25 0.2 \mathcal{L}^{1} 0.15 PHENDX: n.u = 0.00010.1 $n^{1.25}$. 0.05 Oundratic: П. \odot 0.5 \mathbf{Z}_{i} 2.51.4 3 3.5 $p_i (OnW)$ η/s = 0.08 [CGC] CUR 0.25 0.2 \mathcal{L}^{0} 0.15

Linear

Quadratic

2. $p_i (OnV)$

1.5

n^{1.5}

2.5

3

3.5

quantify viscous corrections via a fitting procedure, to obtain Knudsen number as a function of N_{PART}

M. Luzum, J-Y Ollitrault

0.1

0.05

Π. Ο.

Phys.Rev.C82:014906,2010

0.5

One need a new experimental constraint for

distinguishing Glauber and CGC Initial geometry:

Phys. Rev. C 81, 061901(R) (2010)

importance of higher harmonics of anisotropy

Lesson2: Simultaneous measurements of all available harmonics of azimuthal anisotropy are important for extraction of transport properties

Universal scaling of harmonic flow at RHIC

Lesson3: Flow measurements for different particle species are very important

Scaling constrains η/s

Flow scales across centrality

KE_T + NCQ scaling at RHIC: beam energy/system size

 KE_T/n_q< 1GeV – soft physics Hydrodynamic flow
Interplay soft-hard 3.0 < p_T< 5 GeV/c ?

•Hard dominates: p_T> 5 GeV/c

Transverse Kinetic Energy + NCQ scaling at SPS

Pb+Pb at 158 GeV [sqrt(Snn) ~ 17.3 GeV]

M. Mitrovski for NA49 Collaboration, SQM 2009

Do we have scaling at SPS?? Hard to tell.....

Evidence of a softening of the EOS due to a phase transition ????

Elliptic Flow at RHIC/SPS

Phenix: Phys. Rev. Lett. 94, 232302 (2005) **STAR:** Phys.Rev.C75:054906,2007 STAR (62.4 GeV; 0-40%; mid-rapidity) 0.3 0.15 * π⁺+π⁻ (a) (b √S_{NN} (GeV) p_T (GeV/c) (GeV) \IS_{NN} p+p - 200 (PHENIX) • 0.4 62.4 (open) 0.1 62.4 (PHENIX) 130 (filled grey) **★** 0.75 17 (CERES) **- 1.35** 200 (filled) 27 0.2 0.05 NA49 (17.3 GeV; 0-43.5%; 0<y<0.7) $\pi^+ + \pi^ -p+\overline{p}$ < 1.2 0.1 $\pi^+ + \pi^- (17.3 / 62.4)$ 0.8 $\pi^+ + \pi^- (200 / 62.4)$ $V_2^X GeV \Lambda_2^{62.4 GeV}$ 0.6 $\mathbf{V} = K_s^0 (200 / 62.4)$ 1.2 n ▲ p+p (17.3 / 62.4) 0.8 100 200 300 0 2 5 △ p (200 / 62.4) 0.6 <N_{part}> Λ+Λ (200 / 62.4) p_T (GeV/c) 0.5 2.5 1.5 Transverse Momentum p_{τ} (GeV/c)

PHENIX: RHIC/SPS ~50% difference. STAR: RHIC/SPS ~ 10-15% difference in the differential V_2 results.

20

Beam Energy dependence of v₂ : Au+Au at 62.4 GeV Run10/Run4

Significant improve in statistics: Run10 [~500 M] / Run4 [~40 M] and event plane resolution

Beam Energy dependence of v_2 : Au+Au at 39 GeV Run10

 $\sigma_{_{I\!\!RP}}$ vs Centrality for v_, Au+Au at 39 GeV i**8.0** يه - RXN - RXN_{ou} 0.7 - RXN MPC BBC 0.6 0.5 0.4 8 0.3 0.2 Π П n 0.1 20 10 30 40 50 60 Centrality %

~200 M events: centrality/pT dependence of v2 for identified charged hadrons + scaling and comparison with 62.4-200 GeV data

Summary

- There is good qualitative agreement between STAR/PHENIX for v₂ v₄ and scaling results.
- Reasonable quantitative agreement found for event plane results for V₂ (p_T, centrality) for charged hadrons from Au+Au collisions at 200 GeV:
 - ✓ PHENIX/PHOBOS and PHENIX/STAR [for mid-central collisions].
 - ✓ The difference in central collisions can be explained by a small difference in centrality definition
 - \checkmark No evidence for a strong ${\bigtriangleup}\eta$ dependent non-flow contribution.
- Measurements compatible with a small value of η/s
- Universal scaling (KET + NCQ) of v₂ and higher harmonics below pT ~ 3 GeV/c implying partonic flow.
- Analysis of data from the initial RHIC low energy scan is well launched
 - **!! Stay tuned for new results and implications for critical point !!**

Backup Slides

Comparison v₂(p_T, centrality) PHENIX: BBC vs ZDC/SMD event plane

Agreement between RHIC measurements!

✓ Consideration of fluctuations important when comparing different methods

The results from different methods should Not be used as a measure of systematic error!

Proofing of the methodology

Methodology successfully proofed – very important

Comparison of integral flow results from different methods ...

Centrality dependence of V₄ / (V₂²) ratio STAR/PHENIX

What about $V_6 \sim k * (V_2^3)$ very-very small signal??? The potential difference in methods for event plane resolution [for v_4 measurements] may explain the residual difference in $v_4/(v_2^2)$ ratios

V₄ : A Small, But Sensitive Observable For Heavy Ion Collisions

Do we have qualitative agreement ? Answer is : YES!!!