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OUTLINE

• Introduction

• QCD phase digram

• Vacuum with quark condensates in NJL model and phase
diagram

• Gingburg-Landau expansion and TDGL equation

• Quenching through second order transition and domain growth

• Quenching through first order transition (bubble nuclation and
spinodal decomposition)

• Summary and Outlook
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QCD UNDER EXTEREME CONDITION

• Extreme conditions exist in the universe. (Compact
astrophysical objects, Cosmology)

• Exploring QCD phase diagram is important to understand
the phase we live in

• Fundamental properties of QCD
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QCD PHASE DIAGRAM (SCHEMATIC)
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CSB AND VAC. STRUCTURE IN NJL MODEL

LNJL = iψ̄∂/ ψ +G[(ψ̄ψ)2 + (ψ̄iγ5τψ)2]

Two flavor, massless.

|vac〉 = exp(q0(k)†σ · k̂h(k)q̃0(−k)dk − h.c.)|0〉

q0|0〉 = 0

Determine the condensate function h(k) by minimising energy (T=0,µ=0),/free energy
(T 6= 0,µ = 0)/, thermodynamic potential (T 6= 0, µ 6= 0).

tan 2h(k) =
M

|k| =
−2g〈ψ̄ψ〉

|k|

g = G(1 + 1

4Nc

)

CPOD 2010 workshop, JINR, Dubna August 23, 2010 – p. 6



NJL MODEL CONTD.· · ·
Thermodynamic potential

Ω = − 12

(2π)3

Z

(
p

k2 +M2 − |k|)dk

− 12

(2π)3

Z

[log(1 + exp(−βω−) + log(1 + exp(−βω+)]dk

+
M2

4g
(1)

ω∓ =
√

k2 +M2 ∓ ν, ν = µ−Gρv/Nc.
Mass gap equation

M = 2g
2NcNf

(2π)3

Z

M√
k2 +M2

[1 − n−(k, β, µ) − n+(k, β, µ)]dk
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PHASE DIAGRAM; NJL MODEL
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Mass∼ G〈ψ̄ψ〉 as a function of µ for T=0 (Fig a) and as a function of T for µ = 0 (Fig b)
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PHASE DIAGRAM; NJL MODEL CONTD.· · ·
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Phase diagram of the Nambu-Jona-Lasinio (NJL) model in the (µ, T )-plane for zero current

quark mass. A line of first-order transitions (I, green ) meets a line of second-order

transitions (II, blue ) at the tricritical point (tcp). We have (µtcp, Ttcp) ≃ (282.58, 78) MeV. The

dot-dashed lines S1 and S2 denote the spinodals or metastability limits for the first-order

transitions.
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PHASE DIAGRAM; NJL MODEL CONTD.· · ·

2nd order

tricritical pt.

spinodal

1st orderspinodal
(triple line)

M.Stephanov,arXiv:hep-ph/0402115

T1 > T > Tc, M>0 is a metastable state (superheated liq.)
T2 < T < Tc, M=0 is metastable state (supercooled gas)
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GINZBURG LANDAU EXPANSION OF FREE ENERGY

In the mean field approx. close to the phase boundary, the
thermodynamic potential may be expanded in power series
of the order parameter M :
Sasaki,Friman,Redlich,PRD77, 034024 (2008); Iwasaki,PRD 70, 114031(2004) · · ·

Ω̃ (M) = Ω̃ (0) +
a

2
M2 +

b

4
M4 +

d

6
M6 + · · · ≡ f (M) .

a, b, d —functions of (µ, T )
Gap equation:

f ′ (M) = aM + bM3 + dM5 = 0.

Soln.s






M0 = 0,

M2
± =

−b ±
√

b2 − 4ad

2d
.
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G L FREE ENERGY–CONTD· · ·
For b > 0 transition is second order.
Stationary pt.s are M = 0(for a > 0) OR M=0,±M+(for a < 0)
For b < 0 phase transition is first order with the soln.s of gap
eq.s

M = 0, a > b2/4d,

M = 0, ±M+, ±M−, b2/4d > a > 0, (2)

M = 0, ±M+, a < 0.

Condn. of degeneracy of two minima
(Ω(M = 0)=Ω(M = M+) or ac = 3b2/(16d)) determines Tc.
T1 (T2) is determined by a = b2/4d (a = 0).
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GINZBURG LANDAU PHASE DIAGRAM

in the (b,a) space
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Non equllibrium system can probe the metastable and
unstable region
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DYNAMICAL EQUATIONS (TDGL EQNS)

Consider a system which is rendered thermodynamically
unstable by a rapid quench from the disordered (symmetric)
phase to the ordered (broken-symmetric) phase.
The unstable homogeneous state (with M ≃ 0) evolves via
the emergence and growth of domains rich in the preferred
phase (with M 6= 0).
Such far-from-equilibrium evolution, is termed phase
ordering dynamics or domain growth or coarsening. Most
problems in this area historically arise from condensed
matter systems.
Equally fascinating is the kinetics of chiral transition!
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TDGL CONTD.· · ·
Since coarsening system is inhomogeneous one includes a gradient term in the GL free
energy

Ω [M ] =

Z

d~r

»

F (M) +
K

2

“

~∇M
”2

–

The evolution of the system is described by the time-dependent Ginzburg-Landau (TDGL)
equation:

∂

∂t
M (~r, t) = −Γ

δΩ [M ]

δM
+ θ (~r, t)

which models the relaxational dynamics of M (~r, t) to the minimum of Ω [M ] (dissipative
which damps the system towards the equillibrium configuration). Γ: inverse damping
coefficient.

θ(~r, t) represents the Langevin noise force assumed to be Gaussian and white satisfying the

fluctuation-dissipation relation 〈θ (r, t)〉 = 0 and

〈θ(r′, t′)θ(r′′, t′′)〉 = 2ΓTδ(r′ − r
′′)δ (t′ − t′′)
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TDGL CONTD· · ·
Rescaling

M =
√

|a|
|b|M

′

~r =
√

K

|a| · ~r′

t = 1

Γ|a|t
′

θ = Γ|a|3/2

|b|1/2 θ′. (3)

Dropping primes, we obtain the dimensionless TDGL
equation:

∂

∂t
M (~r, t) = −sgn (a)M − sgn (b)M3 − λM5 + ∇2M + θ (~r, t) ,

where λ = |a|d/|b|2 > 0. CPOD 2010 workshop, JINR, Dubna August 23, 2010 – p. 16



Quenching through second order line b > 0

For b > 0, the chiral transition occurs when a < 0. The
relevant TDGL equation is

∂

∂t
M (~r, t) = M − M3 − λM5 + ∇2M + θ (~r, t) ,

Numerically solve this equation using a simple Euler
discretization scheme on a 3d lattice of size 2563 with
periodic boundary condn.For stabilty,

∆t <
2∆x2

4d + α1∆x2
,

Initial cond. :Small amplitude random fluctuation about
M = 0. The system rapidly evolves with domains with
nonzero value of the order parameter. Interface of these
domains have M = 0. CPOD 2010 workshop, JINR, Dubna August 23, 2010 – p. 17



DOMAIN GROWTH (b > 0)

Evolution of domain in 3-d when b > 0 and a < 0. Here, we plot the interfaces between the

domains (M = 0) only. Either side of the interface corresponds to equivalent domains with

M ≃ +M+ or M ≃ −M+.
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CORRELATION FUNCTIONS

Domains have a characteristic length scale L(t), which grows with time.

C (~r, t) ≡ 1

V

Z

d~R
hD

M(~R, t)M(~R+ ~r, t)
E

−
D

M(~R, t)
E D

M(~R+ ~r, t)
Ei

,
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Scaling of correlation function for λ = 0.14 at four different time steps. OJK function (as for

usual M4-free energy) has good agreement with simulation data.
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CORRELATION FUNCTIONS CONTD· · ·
The existence of characteristic scale results in the dynamical scaling of C(~r, t)

C (~r, t) = g (r/L) =
2

π
sin−1

“

e−r2/L2
”

.

Ohta-Jasnow-Kawasak (PRL49,1223 (1982)) scaling function.
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log-log plot of domain size L(t) vs t for λ = 0.14. The domain growth data is consistent with

the AC growth law, L(t) ∼ t1/2
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QUENCHING THROUGH FIRST ORDER LINE b < 0

First order transition occurs for a < ac = 3|b|2/16d (λ < λc = 3/16)
For a < 0, double well structure for the free energy; the domain growth structure and
ordering dynamics is similar to quenching through the 2nd order transition.
We confine our attention to 0 < a < ac (λ < λc)

∂

∂t
M (~r, t) = −M +M3 − λM5 + ∇2M + θ (~r, t) .

Evolve this equation with the initial state with M = 0 which is a metastable state. The chiral

transition proceeds via the nucleation and growth of droplets of the preferred phase

(M = ±M+). This nucleation results either from large fluctuations in the initial condition or

thermal fluctuations during the evolution. Droplets grow with time and coalesce into domains.

CPOD 2010 workshop, JINR, Dubna August 23, 2010 – p. 21



NUCLEATION AND SPINODAL DECOMPOSITION

Shows regions with M = 0 only for λ = 0.14 at three different times t = 200, t = 400 and

t = 4000 respectively. In the left of each evolution pattern we have shown the variation of

order parameter profile along diagonal cross section.
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Corrln. function and domain growth
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Domain growth
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Almost no growth in the early stages when droplets are
being nucleated. Domain growth process begin once
nucleation is over.
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SUMMARY

We considered the equllibrium phase diagram in a two flavor NJL model.

In the mean field approximation and near the chiral phase transition, the
thermodynamic potential can be Ginzburg Landau effective theory.

The kinetics of the transition is considered using the TDGL equations.

We studied the ordering dynamics resulting from a sudden temperature quench
through both first order and second order transition lines. For quenches through the
second order line the phase conversion is via spinodal decomposition. For quenches
through the first order line, phase transition proceeds via nucleation and growth of
droplets. Subsequent merger of these droplets results in late stage domain growth.
Domain growth shows self similar dynamical scaling.
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