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Chemical fluctuations and their measures

Identity method*  was developed to study event-by-event fluctuations of the chemical 
composition of the hadronic system produced in nuclear collisions.

There are several measures which have already been developed to study chemical 
fluctuations:

• ςdyn used by NA49 to quantify e-b-e particle ratio (e.g. K/π)  fluctuations. 

• νdyn used by STAR. Simple relation ςdyn
2 ≈ νdyn connects both measures.

Disadvantage of ςdyn and νdyn:

for wounded nucleon and thermodynamical models 

they decrease as 1/<NW> and 1/V, respectively

This disadvantage is not present for the φ measure 

of chemical fluctuations (next slide)
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Chemical fluctuations and their measures
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• φx used already by NA49 to analyze pT and charge fluctuations.  

There are two advantages of this measure: 

φx(A+A)=φx(N+N) if A+A is superposition of N+N and 

φx=0 when inter-particle correlations in x are absent and single-particle x spectrum is 

independent of multiplicity 

φx for chemical fluctuations:

2i
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x

where hi is a type of particle with
index i and h1 and h2 are particle’s 
types selected for analysis.
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Chemical fluctuations and their measures

The study event-by-event chemical fluctuations has to consider one more effect which 
affects all ‘chemical’ measures: 

resolution effect

π mass

K mass

φx can be used only for perfect identification. 

Identity method generalizes φx to account to experimental resolution case 
keeping advantages of φx.
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Notation of the method

experimental mass resolution perfect mass resolution

m – measured particle mass;

ρ - mass distribution of all particles averaged over
events;

- average multiplicity of an event;

M – total number of particles in all events;
h – particle type selected for fluctuation analysis;
ρh - mass distribution of h particles averaged

over events;

- average multiplicity of h particles
in an event;

Ndm)m(

hh Ndm)m(

- for measured particle its 
probability of being h (‘identity’). 

It is defined by  measured particle’s 
mass m

)m(

)m(
w h

h
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for i=h particle

for i≠ h particle

h – particle type selected for
fluctuation analysis;

i – all particles;
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Ψ fluctuation measure 
Ψ, which is defined analogous to φ measure, as:

,wwz hhi
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n
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where - average over single particle inclusive distribution 
N

N
w h

h

event variable

where n – multiplicity of an event  

– value of          for experimental mass resolution case

– value of        for perfect mass resolution case

single-particle variable

res

corr

hw

hw

Let’s denote:
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VarA = 0 for perfect mass resolution
VarB = wh*(1-wh) for no resolution in mass measurement

0

hhres ))m(w1)(m(w)m(dm
M

1
Var

Statistical variance due to finite resolution

The following relation can be proven:

2
Bres

corr

res )Var/Var1(

Resolution function and inclusive particle yields are included in Varres/VarB element.  This 
relation is found to be this same for different types of correlations.

(*)

In the case of experimental data integral is replaced by sum:
M
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Monte Carlo check of the relation (*)

Points represent Monte Carlo simulations for different types of correlations, of mass
resolution and of particle yields.
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Operating 1994-2002;  p+p, C+C, Si+Si and Pb+Pb interactions 
at center of mass energy 6.3 – 17.3 GeV for N+N pair

Key features:

• hadron spectrometer
4 large volume TPCs (two of   
them in B field)

• good particle identification
by dE/dx, TOF, decay
topology, invariant mass

• Centrality determination: 
Forward Calorimeter 
(energy of projectile   
spectators)
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Example of application of identity method

In real data information about particle’s mass is provided via dE/dx information.

Nh, ρh, ρ 

NA49 dE/dx information is stored in 
bins with specific q, ptot, pT, and φ. 
For every bin four Gaussian 
functions are fitted (ρe, ρπ, ρK, ρp).

wh

Energy 40A GeV, example bin in q, ptot, pT, φ :  

Charge +; <ptot> = 4.82 GeV/c; 
<pT> = 0.3 GeV/c; <φ> = 1,375π
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• using inclusive yields calculate statistical variance for no mass resolution 

• for each particle calculate its probability of being h (‘identity’)

• from all particles in all events using inclusive yields calculate statistical variance for 
experimental mass resolution

• using the wh calculate

• correct Ψres for the bias due to the experimental mass resolution:

),p,p,qdx/dE(

),p,p,qdx/dE(
),p,p,qdx/dE(w

Ttoti
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M
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Identity method applied to NA49 data:
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First look at the NA49 data

p fluctuations for Pb+Pb collisions at 40A GeV. Sample: 4k events. 

M = 661581

N = 165.40

Np = 42.16 – value calculated from dE/dx fit

VarB = 0.1899 

Varres = 0.0223 

Ψres ∙ 1000= -17.3823 ± 3.44916

correction Ψcorr /Ψres = 1.2832

Ψcorr ∙ 1000 =  -22.3048 ± 4.4259

Ranges of kinetic variables:
• q: neg. and pos. charge
• ptot: 0-40 GeV/c
• pT: 0-2 GeV/c
• φ from 0 to 2π
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Advantages of the identity method:

• Ψ is independent of volume and volume fluctuations for independent source 
models (strongly intensive fluctuation measure )

• event-by-event fits are not used (instead particle identity is used)

• mixed events are not used (Ψmixed = 0)

• correction for finite mass resolution is independent of event properties and has a 
simple analytical form
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Thank you
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Additional slides
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ςdyn and νdyn measures 

ςdyn is defined the following way:

2
mixed

2
data

2
mixed

2
datadyn )(sign

where ςdata is  relative width (standard deviation divided by the mean) of the K/π 
distribution for the data and ςmixed is relative width of the K/π distribution for mixed 
events.

NN
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where Nπ is the number of π in each event and NK is the number of kaons in each event.

νdyn is defined the following way:
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φx measure
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Φ is calculated as:

where      and      are single particle variable and average over single-particle inclusive 
distribution

where summation runs over particles in a given event

,xxzx

x
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*M. Gaździcki and St. Mrówczyoski, A method to study `equilibration' in nucleus-nucleus 
collisions, Zeischrift für Physik C54 (1992) 127 

x

hi0

hi1
x

where i is a particle and h is particle’s 
type selected for analysis.

single particle variable

φx measure
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Let us quantify the experimental resolution of the mass measurements by the

mean square deviation between the true number of particles h and the measured

one using the identity method.

First divide the whole mass interval into M small intervals dMi, i=1,..,M (for a

moment i will be used instead of m).

The h type particles identity in an interval i is denoted:

The expected number of particles in this interval is:
ii dMN

Mixing between particles in this interval leads to binomial fluctuations (if particle id

would be generated according to the identity value) around the real value of h

type particles with variance:

)w1(wNVar hihiii

The bin-by-bin fluctuations due to particle mixing are independent and thus the

variance for the whole event is equal to:

0
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Variance of the statistical fluctuation due to finite resolution
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Let us consider Var in two limiting cases

A. perfect separation between particles, Δm →∞

B. no separation between particles, mi = m and σi = σ

Thus

)i(const
N

N
ww h

hih

)w1(wNVar)B(Var hhB

is equal to the variance of the binomial distribution.

Variance of the statistical fluctuation due to finite resolution

0)A(Var0Var
0

1
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Toy model to study chemical fluctuations

We consider only two types of particles K and π. Their masses are noted mK and mπ. The 
mass distribution after resolution effect is Gaussian shape defined as: 

For K:

),2/)mm(exp(
2
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For π:

where mi is measured mass.
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Toy models in Monte Carlo check

For blue(B), green(GR), grey(G), black(BL), pink(P) and dark blue(N) number of kaons and 
pions in an event is constant. For B, GR, G, BL it is 80 π and 20 K. For P and N it is 50 π and 
50 K.  σ parameter represents mass resolution in Gausian distributions (previous slide).
In Dark Pink(DP) total multiplicity N is generated from Poisson distirbution with N=100. 
20% of generated particles are kaons.  

Different Monte Carlo 
simulations are named 
after its color in the 
legend.



For every particle we can define quantity that it is a given type particle basing on its 

measured mass mi:

,
)m()m(

)m(
)m(w

iiK

iK
i

where ρK(mi) and ρπ(mi) are normalized K and π distributions for measured mass mi.  

Identity for toy model 
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w distribution for toy model 

from slide nr 12.
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Method to study effect resolution

In order to study effect resolution we change distance between K and π masses, keeping 
constant ς.

mmm K

For Δm=0 wh distributions for toy model 
defined on slide 8 is:

For Δm=∞ wh distributions is:
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Ψres for mixed events

For mixed events Ψres

(noted as Ψmixed) is 
consistent with 0.
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First look at the NA49 data

K fluctuations for Pb+Pb collisions at 40A GeV. Sample: 4k events. 

M = 661581

N = 165.40

NK = 11.62 – value calculated from dE/dx fit

VarB = 0.065

Varres = 0.031

Ψres ∙ 1000= 1.91111± 0.88088

correction Ψcorr /Ψres = 3.65

Ψcorr ∙ 1000 = 6.98 ± 3.22

Ranges of kinetic variables:
• q: neg. and pos. charge
• ptot: 0-40 GeV/c
• pT: 0-2 GeV/c
• φ from 0 to 2π


