Dedicated to the memory of Alexei Sissakian

NICA / MPD -status & perspectives JINR accelerator facility to study DBM

V.Kekelidze at CPOD 2010 23 August 2010

Introduction

 The JINR Committee of Plenipotentiary (CP) accepted the Seven-Year Plan for the Development of JINR in 2010-2016, based on concentration of resources for updating the accelerator and reactor base of the Institute, and approved this plan taking into account the recommendations of the PACs and the Scientific Council

The CP also supported the efforts being taken towards integration of the JINR basic facilities into the common European research infrastructure

NICA / MPD is the JINR flagship project in HEP It was initiated and led by

A.N.Sissakian

V.Kekelidze at CPOD 2010

Introduction

The NICA/MPD project (Nuclotron based Ion Collider fAcility and Multi Purpose Detector)

> is aimed to study of hot & dense baryonic matter at A=1-197, $\sqrt{S_{NN}} = 4 - 11$ GeV/u and spin physics with polarized protons and deutrons

NICA physics program

Creation of the deconfined QGP state in HI collisions, study of fundamental properties of QCD in various regions of QCD PD

QCD phase diagram

NICA energy region

J.Cleymans, M. Gazdzicki, M. Gorenstein , A. Sissakian, A. Sorin, V. Toneev, G. Zinovjev & others: an optimal way to reach the highest possible baryon density

heavy ion collision at $\sqrt{S_{NN}} = 4 - 11 \text{ GeV/u}$

Baryon density in A+A collisions [J.Randrup, J.Cleymans PR C74 (2006)047901]

Veksler & Baldin Laboratory of High Energy Physics

V.Kekelidze at CPOD 2010

23 August 2010

Nuclotron

Parameter	Design	Obtained
Accelerated ions	1 <z<92< td=""><td>1<z<42< td=""></z<42<></td></z<92<>	1 <z<42< td=""></z<42<>
Energy, GeV/amu	6(A/Z=2)	5.2
Magnetic field, T	2.0	1.8
Inj. Energy, MeV/amu	5	5
acuum pressure,Torr	1·10 ⁻⁷	2·10 ⁻⁹
cold chamber	1·10 ⁻¹⁰	1·10 ⁻¹⁰
Repetition rate, (Hz)	0,5	0,2
Field ramp rate, (T/s)		
stand testing	4	2
in the ring	4,1	1,0

 JINR HEP basic facility, *in operation* **1993** based on the unique technology of super-conducting fast cycling magnets *developed in JINR* provides proton, polarized deuteron & multi charged ion beams

Nuclotron development plans:

Nuclotron-M (vac., PS, orbit corr.) 2010
 Nuclotron-N (Krion-6, LU-20, RF) 2012
 Nuclotron-N* (New Linac, Booster) 2013

V.Kekelidze at CPOD 2010

	Nuclotron beam intensity (particle per cycle)				
Beam	Current	lon source type	New ion source + booster (2013)		
р	3·10 ¹⁰	Duoplasmotron	5·10 ¹²		
d	3·10 ¹⁰	,,	5·10 ¹²		
⁴ He	8·10 ⁸	,,	1.10 ¹²		
d↑	2·10 ⁸	ABS ("Polaris")	1⋅10 ¹⁰ <i>(SPI)</i>		
⁷ Li	8.10 ⁸	Laser	5·10 ¹¹		
^{11,10} B	1·10 ^{9,8}	,,			
¹² C	1.10 ⁹	,,	2 ⋅10 ¹¹		
²⁴ Mg	2·10 ⁷	,,			
¹⁴ N	1·10 ⁷	ESIS ("Krion-2")	5·10 ¹⁰		
²⁴ Ar	1.10 ⁹	,,	2 ⋅10 ¹¹		
⁵⁶ Fe	2·10 ⁶	,,	5·10 ¹⁰		
⁸⁴ Kr	1·10 ⁴	,,	1·10 ⁹		
¹²⁴ Xe	1·10 ⁴	,,	1.10 ⁹		
¹⁹⁷ Au	_	,,	1.10 ⁹		

V.Kekelidze at CPOD 2010

23 August 2010

The plan of Nuclotron and experimental zones

V.Kekelidze at CPOD 2010

23 August 2010

Nuclotron beam slow extraction

Parameter	Design	Obtained
Energy range, (GeV/amu)	0,2-6,0	0,2-2,2
Duration, (s) up to	10	10
Extraction efficiency, %		
at 0,2 GeV/amu	90	95
at 2,2 GeV/amu	95	95
Extraction angles, (mrad)		
horizontal	5	5
vertical	96±6	96±1
Nominal ES voltage, (kV)	200	200
Exploitation ES voltage, (kV)	up to 200	up to 150
LM supply current, (kA)	up to 6,3	6,3
Repetition rate, (Hz)	1,0	1,0

Baryonic Matter @ Nuclotron (BMN)

Schedule (preliminary)

Start of project preparation	2010
presentation for the consideration at PAC	2011
Experimental area preparation major subdetector for the starting kit are prototyped and mounted	2012
DMN starting kit commissioning	2013
Physics runs start up	2014

Collider-general parameters

Ring circumference, [m]	~ 450
Β ρ max [T⋅m]	45.0
lon kinetic energy (Au79+), [GeV/u]	1.0 ÷ 4.56
Dipole field (max), [T]	2.0
Free space at IP (for detector)	9 m
Beam crossing angle at IP	0
Vacuum, [Torr]	10 ⁻¹¹
Luminosity per one IP, cm ⁻² ·s ⁻¹	0.75÷11 ·10^26

NICA: works schedule

	2010	2011	2012	2013	2014	2015	2016
ESIS KRION							
LINAC + channel							
Booster + channel							
Nuclotron-M							
Nuclotron-M→NICA							
Channel to collider							
Collider							
Diagnostics							
Powes supply							
Control systems							
Cryogenics							
MPD							
Infrastructure							
R & D Design m	manufacture Mount.+commis. commis/opr operatio				ration		
V.Kekelidze at CPOD 2010 23 August 2010							

V.Kekelidze at CPOD 2010

Accelerator faci

- Machine advisory comm
 - Boris Sharkov, ITE
 - Pavel Beloshitsky, C
 - Sergei Ivanov, IHEI
 - Thomas Roser, BNL
 - Alexei Fedotov , BNI

ECFA session in Dubna, 11 October 2009

<image><caption><image>

Particle multiplicities in hadronic model (HSD)

O. Linnyk, E.L. Bratkovskaya, W. Cassing, H. Stöcker, Nucl.Phys.A786:183-200,2007

Particle yields in Au+Au collisions $\sqrt{s_{NN}} = 7.1 \text{ GeV} (10\% \text{ central})$

Luminosity $L = 10^{27} \text{cm}^{-2} \text{s}^{-1}$ Event rate (central) 700 Hz

Particle	Multi-	decay	yield	yield
(mass)	plicity	mode	(S ⁻¹)	10w
K+ (494)	55		7.7·10 ³	4.6·10 ¹⁰
K ⁻ (494)	16		2.2 ⋅ 10 ³	1.3·10 ¹⁰
ρ (770)	23.6	e+e-	1.6·10 ⁻²	9.4·10 ⁴
ω (782)	14.2	e+e-	1.4·10 ⁻²	8.6·10 ⁴
φ (1020)	2.7	e+e-	1.1·10 ⁻²	6.8·10 ⁴
Ξ ⁻ (1321)	2.4	Λπ-	67	4.0·10 ⁸
Ω ⁻ (1672)	0.16	∧K-	1.5	9.2·10 ⁶
D ⁰ (1864)	7.5.10-4	K+π-	2.0.10-4	1200
J/ψ (3097)	3.8 ⋅10 ⁻⁵	e+e-	8.0·10 ⁻⁵	480

V.Kekelidze at CPOD 2010

List of Tasks for MPD

.. To measure a large variety of signals systematically changing collision parameters (energy, centrality, system size).

Reference data (i.e. p+p) will be taken at the same experimental conditions.

- **u** bulk observables (hadrons): 4π particle yields (OD, EOS)
- multi-strange hyperon production : yields & spectra (OD, EOS)
- electromagnetic probes (CSR, OD)
- □ azimuthal charged-particle correlations (LPV)
- event-by-event fluctuation in hadron productions (CEP)
- **Correlations involving** π , K, p, Λ (OD)
- □ directed & elliptic flows for identified hadron species (EOS,OD)

_

- **OD** Onset of Deconfinement
- **CEP** Critical End Point
- **CSR** Chiral Symmetry Restoration
- **LPV** Local Parity Violation in strong interaction
- **EOS** Equation Of State

NICA White Paper (http://nica.jinr.ru) Round Table materials (http://jinr.ru/theor/)

MPD working packages

> Magnet
> TPC (+prototyping)
> ECal
≻ TOF
> ZCal
≻ FFD
> CPC
> Straw wheels

EC DC
IT
DAQ
Slow Control
Infrastructure & Integration
Soft ware
Physics performance

The CBM-MPD SSD consortium: GSI - JINR - IHEP - ... in IT silicon module development is well progressing

Timetable MPD

	Stage/Year	2009	2010	2011	2012	2013	2014	2015	2016
1	MPD Conceptual Design Report								
2	MPD TDR								
3	R&D program								
	TPC								
	TOF								
	ZDC								
	Si inner tracker								
	EMC								
	Straw Tracker								
	DAQ								
4	Production and tests (the 1 st stage dete	ctors)							
	Superconducting Magnet of MPD								
	TPC								
	EMC								
	ZDC								
	TOF barrel								
	Slow Control								
	DAQ								
	Installation& Commissioning								
	Si inner tracker								
5	Production and tests (the 2 nd stage dete	ectors)							
	TOF(EndCap)								
	Straw Tracker								♥
	DAQ								
	Slow Control								
	Installation								
6	Production and tests (the 3 rd stage, Fo	orward Spe	ctrometer)						
	Toroidal Magnet construction								
	Coordinate detectors production								
	Coordinate detector testing								
	Installation& Commissioning								

V.Kekelidze at CPOD 2010

Status of MPD project & physics MPD LoI - the first version • February 2008 MPD CDR - the first version • June 2009 Version 1.1. the last update version 1.1 in July 2010 The MultiPurpose Detector - MPD to study Heavy Ion Collisions at NICA **Conceptual Design Report** White Book ٠ (89 authors from 39 centers) the first version June 2009 MPD project (1st stage) was ٠ considered at PAC of PP (107 session in January 2010) & recommended for approval Dubna, 2009

V.Kekelidze at CPOD 2010

23 August 2010

MPD Collaboration

+ Nuclotron-M/NICA/MPD/SPD cooperation

Joint Institute for Nuclear Research

- □ Institute for Nocear Research, RAS, CAF
- Bogolyubo Ottsetute stit Otesretica Physics, NAS, Ukraine
- Nuclear Physics Institute of MSU, RF
- □ Institute Theoretical & Experimental Physics, RF
- □ St.Petersburg State University, RF
- Institute of Applied Physics, AS, Moldova
- Institute for Munstit Reesafoor No No deau Etries BAS, Sofia, Bulgaria
- Institute for Scintillation Materials, Kharkov, Ukraine
- □ State Enterprise Scientific & Technolog
- Research Institute for Apparatus construction, Kharkov, Ukraine
- Particle Physics Center of Belarusian State University, Belarus
- DepartmenthefCodiaborration/sspermementhyversowinejing, China
- D Physics Institute Az.AS, Azerbaidjan

New participants – are welcome

V.Kekelidze at CPOD 2010

23 August 2010

Summary

NICA/MPD project to study hot & dense baryonic matter is well progressing

The 1st stage of MPD conception is completed & the project is recommended for realization

- The scientific program in DBM will be extended for low energy region by FT facility - BMN
- Project schedules are properly followed

for both NICA & MPD

28

The MPD Collaboration is growing New members are welcome ! Detailed information on the NICA / MPD projects will be presented at the conference by

I. Meshkov & O. Rogachevsky

V.Kekelidze at CPOD 2010

23 August 2010

Thank you

V.Kekelidze at CPOD 2010

31

Spares

V.Kekelidze at CPOD 2010

Resources for NICA & MPD, in k\$

Extracted beam	Max T _{kin} , GeV/u	Max √S _{NN} , GeV/u
proton (Z/A=1)	11.0	5.0
deutron (Z/A=1/2)	5.1	3.6
Au (Z/A=0.4)	3.9	3.3

V.Kekelidze at CPOD 2010

STAR Run10 Physics Programs

Beam Energy (GeV)	29 cryo-week	STAR BUR In days	Physics
200	11 1/2 - 3/18	56	
62.4	4 3/20 - 4/17	0	
39	1.5 4/8-4/21	5 (24M)	
27		15 (33M)	BES programs
18		16 (15M)	(1) QCD T _E
11.5	2 6/7 - 21	19 (5M)	(2) QCD phase
7.7	4 4/21 - 5/31	56 (5M)	boundary
5.5	0.5 6/2 - 5	5 (0.1M)	

Weekly planning info: http://www.c-ad.bnl.gov/esfd/RMEM_10/rhic_planning.htm

CBM Physics Workshop, GSI, April 14th, 2010

14/20

V.Kekelidze at CPOD 2010

23 August 2010

Round Table IV & the NICA White Paper

Nuclotron slow extraction

Parameter	@	Units	Value	Beam profiles at the F_5 focus. Deuterons, $p_{beam} = 4.3$ GeV/c, $\sigma_x = 2.6$ mm, $\sigma_y = 3.0$ mm
Momentum range	Z/A = 1/2	Gev/c/amu	0.6 - 6.8	
Momentum spread, σ		%	0.04 - 0.08	
Extraction time		sec	10	
Beam emittance	P _{max}	mm∙mr	2π	
Beam size in a waist, σ	P _{max}	mm	<u><</u> 1	
Extraction efficiency		%	> 90	
Beams	p, d, d↑, α, ^{6,7} Li, ^{10,11} B, ¹² C, ¹⁴ N, ²⁴ Mg, ⁵⁶ Fe			-32 -16 0 16 32 -32 -16 0 16 32

36

Slide from P.Rukoyatkin

Fixed Target Experiment Area (bld. 205)

V.Kekelidze at CPOD 2010

23 August 2010

Femtoscopy correlation studies @ NICA

play a crucial role in the study of space-time aspects of the system:
high statistics, uniform acceptance, excellent PID required
multidimensional fit technique has to be applied

STAR

□ 4 · 10⁶ min. bias events (200k central) in 2010 LES run \rightarrow 10% precision for $\pi\pi$ correlation

MPD/NICA

- 10⁹ min. bias events/week (10⁸ central) best precision for:
- femtoscopy with respect to RP
- correlation of multistrange particles

	π^+	π^{-}	π^0	K^+	K^-	K^0	p	n	Λ	$\overline{\Lambda}$	Ξ
π^+	+	+	+	+	+	+	+	+	+	+	+
π^{-}		+	+	+	+	+	+	+	+	+	+
π^0			+	+	+	+	+	+	+	+	+
K^+				+	+	+	+	+	+		
K^{-}					+	+	+	+	+		
K^0						+	+	+	+		
p							+	+	+		
n								+	+		
Λ									+		
$\overline{\Lambda}$											
Ξ											

Table 1.3: Two-particle systems which, in principle, can be measured in the NICA energy range.

V.Kekelidze at CPOD 2010

Relativistic Nuclear Physics

V.Kekelidze at CPOD 2010

23 August 2010

Thresholds accessible at proton accelerators

□ ECAL provides extra suppression factor

Hyperon reconstruction

Eff. ≈ 3.8% S / B (±3σ) = 245 / 18 ≈ 13.7 S / √(S+B) ≈ 15.1

Eff. ≈ 2.1% S / B (±3σ) = 286 / 59 ≈ 4.9 S / √(S+B) ≈ 15.4

Excellent capabilities for hyperon measurements!

n/γ separation efficiency

by using information on X-Y(transverse) and Z (longitudinal) shapes of profiles of the cluster in the ECal

	Nuclotron beam intensity (particle per cycle)										
Beam	Current	lon source type	Nuclotron-M (2010)	Nuclotron-N (2012)	New ion source + booster (2013)						
р	3·10 ¹⁰	Duoplasmotron	8.10 ¹⁰	5 ⋅ 10 ¹¹	5·10 ¹²						
d	3.10 ¹⁰	,,	8.10 ¹⁰	5·10 ¹¹	5·10 ¹²						
⁴ He	8.10 ⁸	,,	3.10 ⁹	3·10 ¹⁰	1.10 ¹²						
d↑	2·10 ⁸	ABS ("Polaris")	2 ⋅10 ⁸	1·10 ¹⁰ (SPI)	1·10 ¹⁰ (SPI)						
⁷ Li	8.10 ⁸	Laser	5.10 ⁹	3·10 ¹⁰	5·10 ¹¹						
^{11,10} B	1·10 ^{9,8}	,,	2·10 ^{9,8}	2 ⋅10 ^{10,9}							
¹² C	1.10 ⁹	,,	3.10 ⁹	2·10 ¹⁰	2·10 ¹¹						
²⁴ Mg	2·10 ⁷	,,	2 ⋅10 ⁸	1.10 ⁹							
¹⁴ N	1·10 ⁷	ESIS ("Krion-2")	3 ⋅10 ⁷	3.10 ⁸	5·10 ¹⁰						
²⁴ Ar	1.10 ⁹	,,	3·10 ⁹	2 ⋅10 ¹⁰	2 ⋅ 10 ¹¹						
⁵⁶ Fe	2·10 ⁶	,,	6·10 ⁶	1.10 ⁸	5·10 ¹⁰						
⁸⁴ Kr	1·10 ⁴	,,	10 ⁵	1·10 ⁷	1.10 ⁹						
¹²⁴ Xe	1.104	,,	10 ⁵	1.10 ⁷	1.10 ⁹						
¹⁹⁷ Au	_	,,		1·10 ⁷	1.10 ⁹						

V.Kekelidze at CPOD 2010