

1

Energy Dependence of High-Moments of Net-proton Distributions at RHIC

X.F. Luo, B. Mohanty, H.G. Ritter, N. Xu

QCD Critical Point

Critical Point in LQCD

Fluctuations of conserved quantities indicate nearby singularities

M. Cheng, et al., arXiv:1001.3796

What to measure

Baryon number susceptibility: X_B ~ <(δB)²>
Similar for other conserved quantities,
e.g. charge
→ Connection between lattice and fluctuations of conserved quantities LQCD predictions

Critical fluctuations are Non-gaussian

What to measure

- Non-gaussian fluctuations
- Higher moments sensitive to non-gaussian behavior
 - Kurtosis
 - Skewness
- Higher moments amplify signal

Energy Scan at RHIC

Look for non-monotonic variations of higher moments of conserved quantity distributions as a function of beam energy Challenging measurement Caveats: Critical slowing down Dynamical effects

B. Berdnikov & K. Rajagopal, Phys. Rev. D 61, 105017 (2000) Stephanov, Rajagopal, Shuryak, Phys. Rev. D 60, 114028 (1999)

Skewness and Kurtosis **St. Deviation:** $\sigma = \sqrt{\langle (N - \langle N \rangle)^2 \rangle}$ Mean: $Y = \langle N \rangle$ $\kappa = \frac{\langle (N - \langle N \rangle)^4 \rangle}{\sigma^4} - 3$ **Kurtosis:** $s = \frac{\langle (N - \langle N \rangle)^3 \rangle}{\sigma^3}$ **Skewness:** D, 3 S, 2 L, 1.2 N, 0 C, -0.59376 W, -1 U, -1.2 0.7 0.6 0.5 0.4 0.3 0.2 0.1 Negative Skew Positive Skew

- Skewness describes the asymmetry of the distribution
- Kurtosis describes the peakness of the distribution
- Equal to zero for Gaussian distribution
- Ideal probes for non-Gaussian fluctuations

Moments in AMPT

CLT, many sources

- Multiplicity dependance can be taken out and results plotted as a function of Npart
- Possible observables:
 - Kurtosis x Variance
 - Skewness x St. deviation
- Question: how many sources
- Caveat:
 - Many sources can mask nongaussian behaviour

The data will be compared this way

URQMD

CPOD 2010, Dubna, August 23 - 28

CPOD 2010, Dubna, August 23 - 28

AMPT String Melting

CPOD 2010, Dubna, August 23 - 28

STAR, PRL 105 (2010) 022302

CPOD 2010, Dubna, August 23 - 28

Comparison to LQCD

- Kurtosis and Skewness appear to be promising observables
- Relation to LQCD
- We are establishing the baseline (null-effect)
- STAR with its large acceptance is ideally suited for such studies