History, status and future of multi-particle production in high energy collisions

M. Gazdzicki Frankfurt,Kielce

Disclaimer on history:

"Histories of science are as far from objective truth as can be imagined (as those given to the population in George Orwell's 1984)."

Thomas Samuel Kuhn (1922-1996)

Template:

19..

Experimental discoveries

19..

19.. "statistical" models of particle production in high energy collisions "dynamical" models of particle production in high energy collisions

. . .

Problems: define all possible final(micro)-states define probability distribution

≈ 1950	Discoveries of hadrons				
≈1950/60	statistical hadron production		≈1950/70	S-matrix theory	
≈1960/70	Discoveries of quarks and gluons				
≈ 1980/00	statistical QGP hadronization statistical parton production		≈1970/00	pQCD-based models QCD-inspired models	
≈1990/00	Discoveries of strongly interacting matter and its phase transition				
2010+	future		2010+	future	

≈1950 Discoveries of hadrons

Pioneering discoveries with cosmic-rays:

- -1947: **pion** (emulsion, *Powell et al.*)
- -1947: **kaon and ∧** (cloud chamber, *Rochester, Butler*)

Systematic studies with accelerators:

-1953:	Cosmotron at BNL -	3 GeV
-1954:	Bevatron at LBL -	3 GeV
-1959:	PS at CERN -	28 GeV
-1960:	AGS at BNL	33 GeV
-1976:	Main Ring at FNAL	500 GeV
-1976:	SPS at CERN	400 GeV

2010: about 1000 hadronic states

Pioneering ideas/models:

- -1941: W. Heisenberg S-matrix theory as a theory of particle interactions
- ≈1960: T. Regge + G. Chew, S. Frautschi, J. Collins **Regge theory**
- ≈1970: G. Veneziano, S. Mandelstam string model
- -1976: A. Bialas, M. Bleszynski, W. Czyz wounded nucleon model

$$\langle N \rangle_{AB} = W_{AB}/2 \circ \langle N \rangle_{NN}$$

\approx 1960/70 Discoveries of quarks and gluons

Pioneering ideas/experiments:

- -1964: M. Gell-Mann, G. Zweig quark model of hadron classification
- -1965: D. Ivanenko, D. Kurdgelaidze quark matter in superdense star cores
- -1968: SLAC experiments: deep inelastic scattering discovery of partons (now q, q and g)
- -1972: M. Gell-Mann, H. Fritzsch, D. Gross, F. Wilczek, D. Politzer qunatum chromodynamics as theory of strong interactions

U

d

- -1978: E. Shuryak QCD quark-gluon plasma (T_c ≈ 500 MeV)
- -1979: experiments at DESY: three-jet events discovery of gluons

Pioneering ideas/models:

-1980: R. Hagedorn, J. Rafelski $T_c = T_H \approx 160 \text{ MeV}$

```
-1991: J. Rafelski statistical QGP hadronization
```

≈1995: M.G., M. Gorenstein statistical production of partons at T > T_c and of hadrons at T < T_c

 $f(m_{T}) \sim m_{T}^{-P}$

Pioneering ideas/models:

-1977: R. Field, R. Feynman pQCD-based model of high p₋ phenomena

≈1980: J. Rafelski, B. Mueller, T. Matsui, H. Satz QCD-inspired models of QGP signals, strangeness enhancement and J/ψ suppression

-1991: K. Geiger, B. Mueller, J. Ellis QCD-inspired parton cascade and hadronization model

≈1990/00 Discoveries of strongly interacting matter and its phase transition

Pioneering ideas/experiments:

-1980/00: AGS/SPS/RHIC experiments with heavy ions discovery of strongly interacting matter (large volume, in ≈equilibrium)

≈2000: M.G., M. Gorenstein statistical model predictions of the phase transition at the SPS energies

≈2000: NA49 at the CERN SPS discovery of phase transition of strongly interacting matter

AGS

SPS

RHIC

≈ 1950	Discoveries of hadrons				
≈ 1950/60	statistical hadron production		≈1950/70	S-matrix theory	
≈1960/70	Discoveries of quarks and gluons				
≈1980/00	statistical QGP hadronization statistical parton		≈1970/00	pQCD-based models OCD-inspired	
	production			models	
≈1990/00	Discoveries of strongly interacting matter and its phase transition				
2010+			2010+		
	future			future	

Disclaimer on status:

"CERN was built in order to find out how strong interactions work. After 50 years we still do not know the answer."

Lucien Montanet (1930-2003), the sixth physicists to be employed at CERN

Sketch of the experimental m_ spectrum

String and Wounded Nucleon Models

SOFT/DYNAMICAL

QCD-inspired models of QGP signals: strangeness enhancement

SOFT/DYNAMICAL

Discoveries of strongly interacting matter (A) SOFT/STATISTICAL

success of hadron-resonance gas model in describing hadron yield systematics from AGS, SPS and RHIC

Discoveries of strongly interacting matter (B) SOFT/STATISTICAL

Florkowski

at RHIC

success of hydrodynamical models in describing hadron spectra/(anisotropic flow) systematics from AGS, SPS and RHIC

Discoveries of strongly interacting matter (C)

SOFT/STATISTICAL

non-statistical effects (e.g. collective flow) are large and sensitive to properties of the early stage (e.g. phase transition)

Discoveries of the phase transition (A) SOFT/STATISTICAL

rapid changes in energy dependence of hadron production properties provide evidence for the phase transition

Discoveries of the phase transition (B) SOFT/STATISTICAL

rapid changes in energy dependence of hadron production properties provide evidence for the phase transition

Properties of the transition line (A)

SOFT/STATISTICAL

Properties of the transition line (B) SOFT/STATISTICAL

Properties of the transition line (C) SOFT/STATISTICAL

Towards unified description (A)

SOFT+HARD/STATISTICAL/DYNAMICAL

Towards unified description (A) SOFT+HARD/STATISTICAL/DYNAMICAL

Towards unified description of multi-particle production in high energy collisions:

- solve QCD or develop quantitative approximations in the soft region
- extend statistical approach to the hard region
- new ideas

Towards unified description (B)

Volume fluctuations in micro-canonical statistical ensemble SOFT+HARD/STATISTICAL

Towards unified description (C) SOFT+HARD/STATISTICAL/DYNAMICAL

LHC: a powerful tool to test various ideas

Towards unified description (D) SOFT+HARD/STATISTICAL

e.g.: MCE/sVF: transverse mass spectra, $f(m_{T})$, of different hadrons are the same as suggested by the Tevatron data

30

History, status and future of multi-particle production in high energy collisions

BNL AGS → CERN SPS → BNL RHIC → CERN LHC

E895

NA61

STAR

ALICE

rich experimental data: from p+p to Pb+Pb from several GeV to several TeV

$\approx \! 1950$	Discoveries of hadrons				
≈ 1950/60	statistical hadron production	≈ 1950/70	S-matrix theory		
~1960/70	Discoveries of quarks and gluons				
≈1980/00	statistical QGP hadronization	≈1970/00	pQCD-based models		
	production		models		
≈1990/00	\approx 1990/00 Discoveries of strongly interacting matter and its phase transition				
2010+	Still many, ma	2010+	o do		
32	Jun marry, ma				

Additional slides