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The time evolution of vector meson spectral functions is studied within a BUU

type transport model. Applications focus on ρ and ω mesons being important pieces

for the interpretation of the dielectron invariant mass spectrum. Since the evolution

of the spectral functions is driven by the local density, the inmedium modi�cations

turn out to compete, in this approach, with the known vacuum contributions.

1. INTRODUCTION

Dielectrons serve as direct probes of dense nuclear matter stages during the course of

heavy-ion collisions. The superposition of various sources, however, requires a deconvolution

of the spectra by means of models. Of essential interest are the contributions of the light

vector mesons ρ and ω. The spectral functions of both mesons are expected to be modi�ed

in a strongly interacting environment. Measurements with HADES [1, 2] start to explore

systematically the dilepton production at beam energies in the few AGeV region.

Our transport model the time evolution of single particle distribution functions of various

hadrons are evaluated within the framework of a kinetic theory. The ρ meson is already a

broad resonance in vacuum, while the ω meson may acquire a noticeable width in nuclear

matter [3]. Therefore, one has to propagate properly the spectral functions of the ρ and ω

mesons. This is the main goal of our paper.
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2. OFF-SHELL TRANSPORT OF BROAD RESONANCES

Recently theoretical progress has been made in describing the in-medium properties of

particles starting from the Kadano�-Baym equations for the Green functions of particles.

Applying �rst-order gradient expansion after a Wigner transformation [4, 5] one arrives at

a transport equation for the retarded Green function. In the medium, particles acquire a

selfenergy Σ(x, p) which depends on position and momentum as well as the local properties

of the surrounding medium. Their properties are described by the spectral function being

the imaginary part of the retarded propagator

A(p) = −2ImGret(x, p) =
Γ̂(x, p)

(E2 − p2 −m2
0 − ReΣret(x, p))2 + 1

4
Γ̂(x, p)2

, (1)

where the resonance widths Γ and Γ̂ are related via Γ̂(x, p) = −2ImΣret ≈ 2m0Γ, and m0 is

the vacuum pole mass of the respective particle.

To solve numerically the Kadano�-Baym equations one may exploit the test-particle

ansatz for the retarded Green function [4, 5]. This function can be interpreted as a product

of particle number density multiplied with the spectral function A.

The relativistic version of the equation of motion have been derived in [4]:

dx

dt
=

1

1− C

1

2E

(
2p+∇pReΣ

ret +
m2 −m2

0 − ReΣret

Γ̂
∇pΓ̂

)
, (2)

dp

dt
= − 1

1− C

1

2E

(
∇xReΣ

ret +
m2 −m2

0 − ReΣret

Γ̂
∇xΓ̂

)
, (3)

dE

dt
=

1

1− C

1

2E

(
∂tReΣ

ret +
m2 −m2

0 − ReΣret

Γ̂
∂tΓ̂

)
, (4)

with the renormalization factor

C =
1

2E

(
∂EReΣ

ret +
m2

n −m2
0 − ReΣret

Γ̂
∂EΓ̂

)
. (5)

In the above, m =
√

E2 − p2 is the mass of an individual test-particle. The selfenergy Σret

is considered to be a function of density n, energy, and momentum.

The change of the test-particle mass m can be more clearly seen combining Eqs. (3) and

(4) to
dm2

dt
=

1

1− C

(
d

dt
ReΣret +

m2 −m2
0 − ReΣret

Γ̂

d

dt
Γ̂

)
(6)

with the comoving derivative d/dt ≡ ∂t + p/E∇x. This equation means that the square of

the particle mass tends to reach a value shifted by the real part of the selfenergy within a



3

range of the value of Γ̂. Thus, the vacuum spectral function is recovered when the particle

leaves the medium.

The equation of motions of the test-particles have to be supplemented by a collision term

which couples the equations for the di�erent particle species. It can be shown [5] that this

collision term has the same form as in the standard BUU treatment.

In our calculations we employ a simple form of the selfenergy of a vector meson V :

ReΣret
V = 2mV∆mV

n

n0

, (7)

ImΣret
V = mV

(
Γvac
V +

nvσV√
1− v2

)
. (8)

Eq. (7) causes a �mass shift� ∆m =
√

m2
V +ReΣret

V −mV characterized by ∆mV and roughly

being proportionally to the density n of the surrounding matter. The imaginary part contains

the vacuum width Γvac
V . The second term in Eq. (8) results from the collision broadening.

If a ρ meson is generated at normal density its mass is distributed in accordance with the

spectral function. If the meson propagates into a region of higher density then the mass will

be lowered according to the action of ReΣret in Eq. (6). However if the meson comes near

the threshold the width Γ̂ becomes very small and the second term of the right hand side of

Eq. (6) dominates, so reverses this trend leading to an increase of the mass.

In Fig. 1 we show how the masses of test-particles for ω mesons are developing in a heavy

ion collisions. For the end of the collisions the masses reach the vacuum value ful�lling our

main expectations.

3. DIELECTRON PRODUCTION

The dielectrons come from di�erent sources, the detailed description can be found in [6�

8]. Direct vector meson decays V → e+e− is calculated by integrating the local decay

probabilities along their trajectories.

We also include into our simulations a bremsstrahlung contribution which is guided by

a one-boson exchange model adjusted to pp virtual bremsstrahlung and transferred to pn

virtual bremsstrahlung [9].

An essential dielectron contribution comes from the Dalitz decay of the π0, η, ω mesons

and the excited baryonic resonances emitting a dielectron together with a photon [10].
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The bremsstrahlung contribution and the Dalitz decay of baryon resonances are very

uncertain [8].

On the left panel in Fig. 2 we compare our calculations with the HADES data. The

agreement is very good. On the right panel we show the result with vacuum spectral function

and with the dotted line the total cross ection calculated with in-medium vector mesons.

The di�erence is very small giving no hope to observe these medium e�ects on the vector

mesons in the dilepton spectra for light systems. However, for heavy systems the di�erence

is larger, giving a reasonable chance for observing it.
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Figure 1. Time evolution of the masses of several test-particles of ω mesons in a central AuAu collision

at 2 AGeV kinetic beam energy at an impact parameter of 1.5 fm. In the lower panel we show the

corresponding densities experiencing by the ω's.
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Figure 2. Dielectron invariant mass spectra for C(2 AGeV) + C calculated with the inmedium spectral

function. The various sources of the dielectron invariant mass spectrum are indicated. Right panel shows

the spectra after applying the experimental �lter compared to HADES data [1].
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FIGURE CAPTIONS

Fig. 1: Time evolution of the masses of several test-particles of ω mesons in a central AuAu

collision at 2 AGeV kinetic beam energy at an impact parameter of 1.5 fm. In the

lower panel we show the corresponding densities experiencing by the ω's.

Fig. 2: Dielectron invariant mass spectra for C(2 AGeV) + C calculated with the inmedium

spectral function. The various sources of the dielectron invariant mass spectrum are in-

dicated. Right panel shows the spectra after applying the experimental �lter compared

to HADES data [1].


