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We argue that a so far neglected dimensionless scale, the number of neighbors in

a closely packed system, is relevant for the convergence of the large Nc expansion

at high chemical potential. It is only when the number of colors is large w.r.t. this

new scale (∼ O (10)) that a convergent large Nc limit is reached. This provides

an explanation as to why the large Nc expansion, qualitatively successful in vacuum

QCD, fails to describe high baryo-chemical potential systems, such as nuclear matter.

It also means that phenomenological claims about high density matter based on large

Nc extrapolations should be treated with caution. This work is based on [1].

1. INTRODUCTION: QCD MATTER AT LARGE NC

Strongly interacting matter at moderate (∼ the confinement scale) quark chemical po-

tential µq and moderate temperature T has recently received a considerable amount of both

theoretical and experimental interest. Such matter can hopefully be produced in heavy ion

collisions [2–5], and is thought to exhibit a rich phenomenology: critical points [6], instabil-

ities [7], precursors to color superconductivity [8], separation between chiral symmetry and

confinement [9–11], chirally inhomogeneous phases [12, 13], new phases [14] etc.

These conjectures are, however, extraordinarily difficult to quantitatively explore in a

rigorous manner. The quark chemical potential µq is nowhere near the asymptotic freedom

limit where perturbative QCD can be used [15]. It is, however, way too high for existing

lattice-based approaches, dependent on µq/T � 1, to work [16].

Perhaps the only relevant quantity with can be uncontroversially be called “a small pa-

rameter” (albeit not so small in the real world!) is 1/Nc, where Nc is the number of colors

[17, 18]. While the large asymptotically Nc theory shares with QCD asymptotic freedom for
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hard processes and confinement for soft ones (separated by an energy scale ΛQCD ∼ 250 MeV

[19], independent of Nc) , the Nc scaling of different observables can be used to establish a

model-independent hierarchy. Thus, the shape of the phase diagram can be said with relative

certainty to look like Fig. 1: phases I and III are, respectively, the familiar confined chirally

broken Hadron gas (where pressure ∼ N0
c ) and the deconfined chirally-restored quark-gluon

plasma (where pressure ∼ N2
c ). Since at large Nc gluon loops dominate over quark loops,

the critical temperature ∼ N0
cΛQCD, and the critical chemical potential necessary for decon-

finement is very high, µq ∼ N2
cΛQCD.

Consequently, in the large Nc limit, the phase transition line becomes horizontal for

moderate µq. In this limit the transition between zero baryonic density and finite baryonic

density matter is infinitely sharp at Ncµq ∼ mB ∼ NcΛQCD [14], since the baryon density

∼ exp [−Nc (ΛQCD − µq)] goes to zero exponentially with Nc for chemical potentials less than

the baryonic mass. Thus, a new phase (II) emerges where the nuclear density is O (1)Λ3
QCD,

parametrically much less then that required for deconfinement, O (Nc) Λ
3
QCD, but much more

then the density of vacuum QCD O (exp [−Nc]) Λ
3
QCD.

Naively, since µq ∼ ΛQCD is nowhere near the chemical potential required for deconfine-

ment, this phase should just be that of dense nuclear liquid (the large Nc limit of the nuclear

liquid, well-studied theoretically and experimentally [20–23]), where nucleons are close to

touching each other, yet confinement is still there and degrees of freedom are baryons and

mesons. When this phase is considered at variable Nc, it is naively expected that the en-

ergy density ∼ Nc (since the mass of each baryon ∼ Nc), but pressure and entropy density

∼ N0
c , since the energy is locked in ground-state and lower-excitation baryons rather then

in color-degenerate objects.

However, at this chemical potential the distance between quarks of neighboring baryons

can be arbitrarily small in configuration space (∼ 1/Nc), leading to the apparently paradox-

ical situation of quarks close enough to interact perturbatively (due to asymptotic freedom,

with the scale given by configuration space inter-quark separation) in a confined medium.

[14] proposed to solve this conundrum by postulating that in the new phase the quarks

below the Fermi surface act as free objects but the Fermi surface excitations are confined.

While the new phase is confined, the entropy density and pressure feels the quark degrees of

freedom and ∼ Nc, as the energy density.

The “naive” picture of this matter is that of overlapping nuclei where quarks can be freely
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exchanged by long-wavelength interactions, which also ensure color-neutrality at the scale

of the nucleon size. This would mean that the “percolation” picture of confinement [24, 25]

is wrong at high chemical potential: a new state of matter exists where the “percolation

length” order parameter for each quark diverges, yet the more conventional order parameters

of confinement such as the Polyakov loop [26, 27] remain close to zero. This new state of

matter, called quarkyonic in [14], should also be realized in our Nc = 3 world and reachable

in heavy ion collisions [28] since large Nc is at least qualitatively true in our world.

A great deal of investigation has gone on to see weather quarkyonic matter appears in any

effective theory of QCD. While a phase transition does seem to exist which has some of the

characteristics described above [11], it is not clear weather the most interesting properties

(P ∼ Nc and chiral symmetry restoration in the confined medium) are physically realized,

as we do not have a model realistic enough but still computable. Other approaches have

found no evidence for any such transition [29, 30], or have claimed the “quarkyonic” phase

to have different properties for those claimed in [14] (e.g. [31] conjectures a chirally broken

but deconfined constituent quark plasma).

As discussed in the introduction, the main difficulty of theoretical investigation in this

regime is that there is no reliable approximation technique which is capable of distinguishing

between models. The results obtained with these models, however, are highly dependent on

the assumptions made in them, assumptions which can not be rigorously shown to derive

uniquely from QCD. In case of the critical point [32], different models were shown to give

very different answers. Additionally, none of these models contain features unique to non-

perturbative QCD, such as exact quark confinement. As a consequence, the crucial aspect

of the quarkyonic hypothesis, scaling of entropy density with Nc in the quarkyonic phase,

can not be adequately tested with models such as PNJL [11].

A possible way out are techniques deriving from gauge-string duality [33]. While no string

theory with a dual looking like QCD is known, several models were developed which share

with QCD some of its more notable non-perturbative characteristics, such as confinement

and chiral symmetry breaking [34]. These models can be used to extrapolate to regions

inaccessible to pQCD and the lattice, while retaining qualitative aspects of non-perturbative

QCD such as its strongly coupled nature and dynamical confinement.

A finite chemical potential study [35, 36] within the Sakai-Sugimoto model [34] has shown

that the basic structure of the phase diagram is the same as Fig. 1, and, just as in [14], a
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new phase II emerges, with the transition line at µq ∼ O (1)N0
cΛQCD and the nuclear density

as the order parameter, just like in [14]. There are, however, profound differences: [35] finds

that both phases I and II are confining and chiral-broken. No evidence exists that the scaling

of the pressure changes between I and II. In fact, the only difference between I and II seems

to be a discontinuity in the Baryonic density. The authors of [35] interpret phase II as the

well studied nuclear gas-liquid phase transition [20–23], rather than as a new undiscovered

phase. If this interpretation is correct, than searching for the quarkyonic phase and/or the

triple point separating I, II, III at upcoming low energy experiments [2–5] would be fruitless,

as in our Nc = 3 world the liquid-gas phase has been extensively studied theoretically and

pinpointed experimentally, and its transition line is understood to lie well below Tc, so that

no triple point exists.

These ambiguities reflect the persistent difficulties the large Nc expansion has had in

describing baryonic matter. From the seminal work of [18], it was understood that the baryon

in the large Nc limit is a semiclassical non-perturbative state, analogous to a skyrmion,

where 1/Nc then plays the role of a non-perturbative “coupling constant”. Nuclear matter,

in this picture, becomes a “skyrme crystal” of tightly bound solitons [37, 38]. The problem

with this and subsequent works is that the resulting binding energy for nuclear matter is ∼

O (NcΛQCD) ∼ O (m)baryon. This misses the realistic binding energy of nuclear matter by two

orders of magnitude, making this picture of nuclear matter (a liquid) not even qualitatively

correct.

This fact naively puts any extrapolations of nuclear matter based on large Nc arguments

under suspicion. Simply saying such arguments are incorrect, however, is deeply unsatis-

fying: Nc = 3 is large in the sense that N2
c � Nc, so one expects the large Nc picture

to be qualitatively correct with O (30%) quantitative corrections. Indeed, at zero chemical

potential this seems to work remarkably well [17, 18], and much better then expected when

precision (lattice) calculations are performed [39, 40]. It is therefore simply not good enough

to say that “large Nc does not work” unless a convincing physical reason is offered as for

why. This work aims to conjecture such a reason.
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2. THE “LARGE NC LIMIT” IN A DENSELY PACKED SYSTEM

We conjecture that the large Nc description of nuclear matter is flawed because Nc = 3,

while roughly � 1, is smaller than the other dimensionless scale relevant at high density:

NN , the number of neighbors a nucleon has in a tightly packed nuclear material. The more

neighbors, the more Pauli blocking of valence quarks must be important, and the more the

presence of neighbors will disturb the configuration space part of the quark wavefunction

inside the nucleons.

Since, due to the uncertainty principle, any such disturbance of the nuclear wavefunction

adds an energy of the order of the confinement scale ∼ ΛQCD, the nuclear repulsive core will

be larger than the inverse of the nuclear separation up to the deconfinement temperature. If

the number of colors is larger than NN , this problem will not exist since it will be possible to

arrange the color part of the wavefunction so the nearest quarks of neighboring baryons will

be of different colors. In this limit baryons can be tightly packed (interbaryonic separation

∼ ΛQCD) without the configuration space part of the baryonic wavefunction being disturbed.

Thus, the limit in which exciting baryonic resonances is “cheap” (∆E ∼ 1/Nc), first

suggested in [18] and used in [14] to argue why entropy density scales as energy density

∼ Nc in dense baryonic matter, is only valid when Nc � NN . NN , of course, is a function

not of Nc, but the (fixed) number of dimensions d and “packing scheme”, NN ∼ k(d)N0
c . The

exact form of the “kissing number” function k(d) in arbitrary dimensions is unknown [41],

but seems to be approximated by k(d) ∼ 2αd, with a transcendental α ' 0.22. k(1, 2, 3) is,

respectively, 2, 6 and 12.

If our conjecture is correct, it becomes plausible that, while the “quarkyonic phase” is

reasonable in an Nc � k(3) system, it is not so in our world. If Nc � k(d), as in our world,

the Pauli exclusion principle keeps the nuclear excluded volume at a value significantly larger

than Λ3
QCD. In this case, confinement suppresses the exchange of colored degrees of freedom

between the nuclei, so the entropy carried by inter-nuclear forces ∼ N0
c . It would also mean

that the percolating phase transition studied in [24, 25] coincides with deconfinement.

In a Nc � k(d) world, however, nuclei touch each other, and colored degrees of freedom

can freely percolate between them. The entropy carried by these percolating degrees of

freedom ∼ Nc, and in the large color limit ends up overwhelming the total entropy of the

system, in much the same way that the electron gas carries most of the entropy of a metal
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(Note that the equilibrium entropy of colored objects ∼ Nc even if interaction cross-section

between these objects is Nc-suppressed. The timescale of equilibration gets longer, but the

equilibrium entropy stays the same). In this limit, the percolation transition [24, 25] does not

represent deconfinement but the quarkyonic transition, and the two, in chemical potential,

are separated by ∆µ ∼ NcΛQCD.

While this conjecture is reasonable, testing it in a systematic manner is an upcoming

research project that will take some time to complete [42]. As a first step [1], we can show

that, when the parameters of the Van Der Waals gas model are varied with Nc according

to the prescription given here, the phase diagram interpolates between the usually accepted

nuclear matter phase diagram and one which is very similar to Fig. 1.

In the large Nc limit, the only Nc-invariant scale of the theory is ΛQCD, the scale at which

the ’t Hooft coupling constant becomes λ ∼ O (1). While a precise value of this scale depends

on the scheme used to calculate it, its roughly ΛQCD ∼ N0
c ' 200–300 MeV [19]. It is therefore

natural to expect that any physical quantity is ∼ f(Nc)Λ
d
QCD, a dimensionless function of

Nc times a power of ΛQCD set by the dimensionality d of the quantity. Henceforward we

shall adopt this assumption, and, for brevity, set ΛQCD to unity in the equations. The reader

should multiply any dimensionful quantity in the equations by the appropriate power of

ΛQCD (for example, the baryon mass is ∼ NcΛQCD in the text, and ∼ Nc in the equations).

In this notation, the Van Der Waals parameters a, b and the curvature correction become

dimensionless α, β, γ times the appropriate power of ΛQCD (3 for α, 2 for β, 4 for γ), and

the VdW equation [43] becomes

(

ρ−1
− α

) (

P + βρ2 − γρ3
)

= T. (1)

The considerations in our previous paragraph lead us to assume that

α ∼ O

(

NN

Nc

)

+ 1 ∼ O

(

k(d)

Nc

)

+ 1 ∼ O

(

10

Nc

)

+ 1

∣

∣

∣

∣

d=3

. (2)

The coefficients β, γ should, according to [18, 37, 38] go as Nc. Recent work [44], however,

has cast doubt on this assumption and proposed they go as ∼ N0
c or ∼ lnNc.

The chemical potential can be obtained [43] by the textbook thermodynamic relation

ρ = (dP/dµ)T . Inverting, and writing in terms of µq = µB/Nc we have

µq = 1 +
1

Nc

[
∫ ρ

0

f(ρ′, T )dρ′ + F (T )

]

, (3)
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where the first term is the nucleon mass and

f(ρ, T ) =

(

dP

dρ

)

T

1

ρ
=

T

ρ(1− αρ)2
+ 2β. (4)

ρ and P are the density at the phase transition, which could be liquid ρl or gas ρg (if the cal-

culation is performed correctly the same chemical potential should come out). ρl,g are in turn

the solutions to the equation 1 in the region where this equation has two solutions. Obtain-

ing all such solutions is trivial at the mathematical level through algebraically cumbersome.

The reader can get the detailed results in [1].

The result is shown in Fig. 2. As can be seen, for Nc � NN , the phase diagram

looks qualitatively similar to the liquid-gas phase transition in our world, [20–23], with the

phase transition line close to horizontal and Tc � ΛQCD. In the opposite limit, Nc � NN ,

TcO (ΛQCD) and the phase diagram becomes nearly vertical provided β, γ ∼ N0
c or ∼ lnNc.

If β, γ ∼ Nc, the curvature of the phase transition does not go to zero and Tc ∼ NcΛQCD,

which makes it go above the deconfinement transition. This signals that, if β, γ ∼ Nc the Van

Der Waals approach breaks down at large Nc, a result natural if the description in [37, 38] is

correct in this limit. In this case too, through, the low Nc limit is parametrically close to the

nuclear liquid-gas world (Tc � ΛQCD and ρg, ρl � Λ3
QCD), and as Nc increases ρg,l goes to

its critical value Λ3
QCD where nuclei overlap. While in this limit the curvature of the phase

transition does not go to zero, this might be an artifact of a badly broken approximation.

In conclusion, we reported on the ambiguities in our understanding of nuclear matter

at moderate temperature and chemical potential (∼ ΛQCD), particularly in regards to the

extrapolations at large Nc. We have argued that some of this ambiguity comes from the

large differences between the expectation of large Nc QCD and the experimental nuclear

ground state. We have conjectured that this is due to the fact that the true “large Nc limit”

for dense matter comes when Nc � O (10), the number of neighbors in a closely packed

system, and shown that when this conjecture is implemented in the Van Der Waals nuclear

gas, limits looking like the real world and the large Nc limit seem to emerge. To explore this

conjecture in rigorous and systematic way requires further work.
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Figure 1. The phase diagram for large Nc. See text for a description of the phases I, II, III in various

models.
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Figure 2. The phase diagram in T − µ space (a) and T − ρ space (a) as a function of Nc

(Nc = 3, 5, 8, 10, 30, 100, with increasing color corresponding to a line with higher T, µ, ρ) Top panels

assume nuclear interactions ∼ N0

c
or ∼ lnNc, bottom panels as ∼ Nc
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FIGURE CAPTIONS

Fig. 1: The phase diagram for large Nc. See text for a description of the phases I, II, III in

various models.

Fig. 2: The phase diagram in T − µ space (a) and T − ρ space (b) as a function of Nc (Nc =

3, 5, 8, 10, 30, 100, with increasing color corresponding to a line with higher T, µ, ρ) Top

panels assume nuclear interactions ∼ N0
c or ∼ lnNc, bottom panels as ∼ Nc


