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An extension of the standard concept of the statistical ensembles is suggested.

Namely, the statistical ensembles with extensive quantities �uctuating according to

an externally given distribution is introduced. Applications in the statistical models

of multiple hadron production in high energy physics are discussed.

1. INTRODUCTION

A successful application of the statistical model to description of mean hadron multiplic-

ities in high energy collisions (see, e.g., Ref. [1]) has stimulated investigations of properties

of statistical ensembles. Whenever possible, one prefers to use the grand canonical ensemble

(GCE) due to its mathematical convenience. The canonical ensemble (CE) [2] was ap-

plied when the number of carriers of conserved charges is small (of the order of 1), such as

strange hadrons [3], anti-baryons [4], or charmed hadrons [5]. The micro-canonical ensemble

(MCE) [6] has been used to describe small systems with �xed energy, e.g. mean hadron

multiplicities in proton-antiproton annihilation at rest. In all these cases, calculations per-

formed in di�erent statistical ensembles yield di�erent results. This happens because the

systems are `small' and they are `far away' from the thermodynamic limit (TL). The mean

multiplicity of hadrons in relativistic heavy ion collisions ranges from 102 to 104, and mean

multiplicities (of light hadrons) obtained within GCE, CE, and MCE approach each other.

One refers here to the thermodynamical equivalence of statistical ensembles and uses the

GCE for the hadron yields.

Measurements of i-th hadron multiplicity distributions P (Ni) open a new �eld of applica-

tions of the statistical models. Note that hadron species i may correspond to a special type of

hadrons like π−,K+ etc., or to a group of hadrons like negatively (positively) charged hadrons

etc. The particle multiplicity �uctuations are usually quanti�ed by the ratio of variance to

mean value of multiplicity distributions P (Ni), the scaled variance, ωi ≡ (⟨N2
i ⟩−⟨Ni⟩2)/⟨Ni⟩,

and are a subject of current experimental activities. In statistical models there is a qual-
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itative di�erence in the properties of ⟨Ni⟩ and ωi. It was recently found [7�12] that even

in the TL the results for ωi are di�erent in di�erent ensembles. Hence the equivalence of

ensembles holds for mean values in the TL, but does not extend to �uctuations. It was

shown in Ref. [12] that the form of the multiplicity distributions derived within GCE, CE,

and MCE approaches the Gauss distribution:

P (Ni) ∼=
1√

2π ωi ⟨Ni⟩
exp

[
−(Ni − ⟨Ni⟩)2

2 ωi ⟨Ni⟩

]
, (1)

at ⟨Ni⟩ ≫ 1. The widths of the Gaussians
√
ωi ⟨Ni⟩ depend on the choice of the statistical

ensemble, while the expectation values ⟨Ni⟩ remain the same.

2. MULTIPLICITY FLUCTUATIONS IN NUCLEUS-NUCLEUS COLLISIONS

In this section we present the results of the hadron-resonance gas for the scaled variances

in the GCE, CE, and MCE along the chemical freeze-out line in central PbPb (AuAu)

collisions for the whole energy range from SIS to LHC. The model parameters are the volume

V , temperature T , baryonic chemical potential µB, and the strangeness saturation parameter

γS (see details in Ref. [11]). Once a suitable set of thermodynamical parameters is determined

for each collision energy, the scaled variance of negatively and positively charged particles

can be calculated in the GCE, CE, and MCE. The ω− and ω+ in di�erent ensembles are

presented in Fig. 1 as the functions of the center of mass energy
√
sNN of the nucleon pair.

A comparison between the data and predictions of statistical models should be performed

for results which correspond to nucleus-nucleus collisions with a �xed number of nucleon

participants. In Fig. 2 our predictions are compared with the NA49 data for the 1% most

central PbPb collisions at 20�158 AGeV [13] selected by the number of the projectile partic-

ipants. In the experimental study of nuclear collisions at high energies only a fraction of all

produced particles is registered. If detected particles are uncorrelated, the scaled variance

for the accepted particles can be obtained as: ωacc = 1−q+q ·ω, where q is the probability of

a single particle to be accepted. From Fig. 2 it follows that the NA49 data for ω± extracted

from 1% of the most central PbPb collisions at all SPS energies are best described by the

results of the hadron-resonance gas model calculated within the MCE.
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3. EXTENSION OF THE CONCEPT OF STATISTICAL ENSEMBLES

A statistical system is characterized by the extensive quantities: volume V , energy E,

and conserved charge(s) Q. In statistical description of hadron or quark-gluon systems, these

conserved charges are usually the net baryon number, strangeness, and electric charge. The

MCE is de�ned by the postulate that all micro-states with given V , E, and Q have equal

probabilities of being realized. This is the basic postulate of the statistical mechanics. The

MCE partition function just calculates the number of microscopic states with given �xed

(V,E,Q) values. In the CE the energy exchange between the considered system and `in�nite

thermal bath' is assumed. Consequently, a new parameter, temperature T is introduced. To

de�ne the GCE, one makes a similar construction for the conserved charge Q. An `in�nite

chemical bath' and the chemical potential µ are introduced. The CE introduces the energy

�uctuations. In the GCE, there are additionally the charge �uctuations. The MCE, CE,

and GCE are most familiar statistical ensembles. In the textbooks (see, e.g., Ref. [14]), the

pressure (or isobaric) canonical ensemble has been also discussed. The `in�nite bath of the

�xed external pressure' p0 is then introduced. This leads to the volume �uctuations around

the average value.

In general, there are 3 pairs of variables (V, p0), (E, T ), (Q,µ) and, thus, the 8 statistical

ensembles can be constructed. For several conserved charges the number of standard sta-

tistical ensembles is even larger, as each charge can be treated either canonically or grand

canonically. The ensembles with �uctuating volume have been discussed in Ref. [15].

A more general concept of the statistical ensembles was suggested in Ref. [16]. The

statistical ensemble is de�ned by an externally given distribution of extensive quantities,

Pα(E, V,Q). The construction of distribution of any variableX in such an ensemble proceeds

in two steps. Firstly, the MCE X-distribution, Pmce(X;A), is calculated at �xed values of

the extensive quantities A = (V,E,Q). Secondly, this result is averaged over the external

distribution Pα(A) [16],

Pα(X) =

∫
dA Pα(A) Pmce(X;A) . (2)

Fluctuations of extensive quantities A around their average values depend not on the sys-

tem's physical properties, but rather on external conditions. One can imagine a huge variety

of these conditions, thus, the standard statistical ensembles discussed above are only some
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special examples. Thermodynamics relates the average quantities of the statistical ensem-

ble. Thus, it may work in these new ensembles. The ensembles de�ned by Eq. (2), the

α-ensembles, include the standard statistical ensembles as particular cases.

4. MCE WITH SCALING VOLUME FLUCTUATIONS

In collisions at relativistic energies many new particles are produced. Their number,

masses and charges as well as their momenta vary from event to event. Most of the experi-

mental results concern single particle production properties averaged over many interactions.

It is well established that some of these properties, namely, mean particle multiplicities and

transverse momentum spectra, follow simple rules of statistical mechanics. In proton-proton

pp collisions the single particle momentum distribution has an approximately Boltzmann

form in the local rest frame of produced matter: dN/(p2dp) ∼ exp
(
−

√
p2 +m2/T

)
,

where T , p and m are the temperature parameter, the particle momentum and its mass, re-

spectively. At large momentum, p≫ m, this gives: dN/(p2dp) ∼ exp (− p/T ) . Integration

over momentum yields the mean particle multiplicity, ⟨N⟩, which is also governed by the

Boltzmann factor for m ≫ T : ⟨N⟩ ∼ (mT )3/2 exp (− m/T ) . The approximate validity

of the exponential distributions is con�rmed at low transverse momentum (pT ≤ 2 GeV)

and the low mass (m ≤ 2 GeV) domains. However, the temperature parameter T extracted

from the data on pp interactions is in the range 160�190 MeV. Thus, almost all particles are

produced at low pT and with low masses.

Along with evident successes there are obvious problems of the statistical approach. The

probability P (N) to create N particles in pp collisions obeys the so called KNO scaling [17],

namely: P (N) = ψ(z)/⟨N⟩ , where the KNO scaling function ψ(z) only depends on

z ≡ N/⟨N⟩. The mean multiplicity increases with increasing collision energy, whereas the

KNO scaling function remains unchanged. The latter implies that the scaled variance ω

grows linearly with the mean multiplicity: ω ∝ ⟨N⟩ . A qualitatively di�erent behavior is

predicted within the existing statistical models where the scaled variance is expected to be

independent of the mean multiplicity: ω ≈ const ≈ 1 . This contradiction between the data

and the statistical models constitutes the �rst problem. The second and the third problems

which will be addressed here concern particle production at high (transverse) momenta

and with high masses, respectively. In these regions the single particle energy distribution



5

seems to obey a power law behavior [18]: dN/(p2dp) ∼
(√

p2 +m2
)−K

. At p ≫ m

this gives: dN/(p2dp) ∼ p−Kp , with Kp = K. Integration over particle momentum

yields the mean multiplicity which follows a power law dependence on the particle mass:

⟨N⟩ ∼ m−Km , with Km = Kp − 3. The above power laws describe the data on spectra of

light particles at large (transverse) momenta (p ≥ 3 GeV) and on the mean multiplicity of

heavy (m ≥ 3 GeV) particles, respectively. The parameters �tted to the data are Kp
∼= 8 and

Km
∼= 5 [18]. One observes a growing disagreement between the exponential behavior and

power law dependence with increasing (transverse) momentum and/or mass. At p = 10 GeV

or m = 10 GeV the statistical models underestimate the data by more than 10 orders of

magnitude.

In Ref. [19] we made an attempt to extend the statistical model to the hard domain of

high transverse momenta and/or high hadron masses. The proposal is inspired by statistical

type regularities [18] in the high transverse mass region, as well as by the recent work on the

statistical ensembles with �uctuating extensive quantities [16]. We postulate that the volume

of the system created in pp collision changes from event to event (see also Refs. [15, 20]).

The volume probability distribution is given by the scaling function, Pα(V ) = ϕα(V/V )/V ,

where V is the scaling parameter. The energy of the system is assumed to be �xed. The

model based on these assumptions will be referred as the Micro-Canonical Ensemble with

scaling Volume Fluctuations, the MCE/sVF.

The MCE partition function for the system with N Boltzmann massless neutral particles

reads [8]:

WN(E, V ) =
1

N !

(
gV

2π2

)N ∫ ∞

0

p21dp1 . . .

∫ ∞

0

p2NdpN δ(E −
N∑
i=1

pi) =
1

E

AN

(3N − 1)!N !
, (3)

where E and V are the system energy and volume, respectively, g is the degeneracy fac-

tor, and A ≡ gV E3/π2. The MCE multiplicity distribution is given by Pmce(N ;E, V ) =

WN(E, V )/W (E, V ) , where W (E, V ) is the total MCE partition function W (E, V ) ≡∑∞
N=1WN(E, V ). The mean multiplicity equals to ⟨N⟩mce ≡

∑∞
N=1N Pmce(N ;E, V ) ∼=

(A/27)1/4 at A ≫ 1, and Pmce(N ;E, V ) can be approximated by the normal distribution

(1) with ωmce
∼= 1/4.

The numerical calculations presented in Fig. 3 are performed for g = 1 and the energy

density which corresponds to the temperature parameter T = 160 MeV. The latter relates

the values of E and V via equation: E = 3V T 4/π2 . The mean multiplicity ⟨N⟩mce in
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the MCE is then approximately equal to the GCE value: N = V T 3/π2 . This re�ects the

thermodynamic equivalence of the MCE and GCE. However, the value of ωmce is four times

smaller than ωgce = 1.

The single particle momentum spectrum in the GCE reads,

Fgce(p) ≡ 1

N

dN

p2dp
=

V

2π2 N
exp

(
− p

T

)
=

1

2T 3
exp

(
− p

T

)
, (4)

whereas the corresponding spectrum in the MCE is given by [19]:

Fmce(p) ≡
⟨N⟩−1

mcedN

p2dp
=

⟨N⟩−1
mce

2E3

∞∑
N=2

N (3N − 1)!

(3N − 4)!

(
1− p

E

)3N−4

Pmce(N ;E, V ) . (5)

Both (4) and (5) are normalized such that
∫∞
0
p2dp Fgce(p) = 1 and

∫ E

0
p2dp Fmce(p) = 1.

The distribution of any quantity X can be calculated as:

Pα(X;E) =

∫ ∞

0

dV Pα(V ) Pmce(X;E, V ) , (6)

where Pmce(X;E, V ) is the distribution of the quantity X in the MCE with �xed E and

V . The MCE/sVF de�ned by Eq. (6) is a special case of α-ensembles (2). The multiplicity

distribution in the MCE/sVF calculated with (6) can be presented as [19], Pα(N ;E) ∼=

ψα(z)/⟨N⟩α , where z ≡ N/⟨N⟩α , and the scaling function ψα(y) will be required to satisfy

two normalization conditions:
∫∞
0
dy ψα(y) = 1 ,

∫∞
0
dy y ψα(y) = 1 . The �rst condition

guarantees the proper normalization of the volume probability density function. The second

condition keeps the mean multiplicity in the MCE/sVF equal to the MCE mean multiplicity,

⟨N⟩α ∼= N . For convenience, a simple analytical form of the scaling function will be used:

ψα(y) = [k Γ−1(k)]k yk−1 exp(−k y) , where Γ(k) is the Euler gamma function. This

function with k = 4 approximately describes the experimental data on KNO scaling in pp

interactions. Note, that both normalization conditions for ψ(z) are satis�ed for any k > 0.

For N ≫ 1 one gets: ωα
∼= κ ⟨N⟩α , where κ =

∫∞
0
dy (y − 1)2 ψα(y) = k−1 > 0 .

In Fig. 3a the multiplicity distributions obtained within the MCE and the MCE/sVF for

N = 50 are compared. The scaled variance of the MCE/sVF distribution for N = 50 is about

12.5, whereas the scaled variance of the MCE distribution is 1/4. This large di�erence in the

width of the MCE/sVF and the MCE distributions is clearly seen in the �gure. The volume

�uctuations in the MCE/sVF signi�cantly increase the width of the multiplicity distribution.

They are also expected to modify the single particle momentum spectrum. This is because

for a �xed system energy, the volume of the system determines the energy density, and
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consequently, the e�ective temperature of particles. The single particle momentum spectrum

within the MCE/sVF can be directly calculated from Eq. (6) and it reads [19]:

Fα(p) =
⟨N⟩−1

α

2E3

∞∑
N=2

N (3N − 1)!

(3N − 4)!

(
1 − p

E

)3N−4

Pα(N ;E) . (7)

The formal structure of the expression (7) is similar to the structure of the corresponding

expression derived within the MCE (5). The only, but the crucial, di�erence is that the

narrow MCE multiplicity distribution used for averaging the particle spectrum in Eq. (5)

is replaced by the broad MCE/sVF multiplicity distribution in Eq. (7). The single particle

momentum spectrum (7) is shown in Fig. 3b. At p≪ E it has the following analytical form:

Fα(p) ∼=
kk Γ(k + 4)

2 Γ(k)
T

k+1
(p+ Tk)−k−4 ∼= 11.27 GeV5 (p + 4T)−8 , (8)

where T = 160 MeV and k = 4 are set in the last expression. A rapid decrease of the

spectrum starts at p ≥ 20 GeV, when the threshold value p = 24 GeV is approached.

5. CONCLUSIONS

We have suggested to extend the concepts of statistical ensembles. The class of ensembles

de�ned by external distributions of extensive quantities was introduced. This construction

was motivated by the statistical approach to the particle number �uctuations in high energy

collisions. As an example the new statistical ensemble MCE/sVF was constructed. The

particle number distributions and momentum spectra in the MCE/sVF resemble features

of hadrons produced in high energy pp interactions. In Ref. [21] the selected properties

of semi-inclusive events have been studied within statistical models: the GCE, CE, MCE,

and MCE/sVF. In particular, the mean multiplicity of neutral particles and momentum

spectra of charged particles are considered at a �xed charged particle multiplicity. Di�erent

statistical ensembles lead to qualitatively di�erent results for these semi-inclusive quantities.

We also hope that the concept of statistical ensembles with �uctuating extensive quantities

may be appropriate in many other situations too.
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Figure 1. The scaled variances ω− (a) and ω+ (b), both primordial and �nal, along the chemical

freeze-out line for central PbPb (AuAu) collisions. Di�erent lines present the GCE, CE, and MCE results.

Symbols at the lines for �nal particles correspond to the speci�c collision energies. The arrows show the

e�ect of resonance decays.
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Figure 2. The scaled variances for negative (a) and positive (b) hadrons along the chemical freeze-out

line for central PbPb collisions at the SPS energies. The points show the data of NA49 [13]. Lines show

the GCE, CE, and MCE results calculated with the NA49 experimental acceptance.
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Figure 3. The system energy is E = 3N T = 24 GeV. (a) A comparison of the multiplicity distributions

of massless neutral particles calculated with the MCE/sVF (solid line) and the MCE (dashed line). (b)

The momentum spectrum of massless neutral particles calculated within the MCE/sVF (7), solid line, and

the GCE (4), dotted line. The approximation (8) of the MCE/sVF spectrum is shown by the

dashed-dotted line.
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FIGURE CAPTIONS

Fig. 1: The scaled variances ω− (a) and ω+ (b), both primordial and �nal, along the chemical

freeze-out line for central PbPb (AuAu) collisions. Di�erent lines present the GCE,

CE, and MCE results. Symbols at the lines for �nal particles correspond to the speci�c

collision energies. The arrows show the e�ect of resonance decays.

Fig. 2: The scaled variances for negative (a) and positive (b) hadrons along the chemical

freeze-out line for central PbPb collisions at the SPS energies. The points show the

data of NA49 [13]. Lines show the GCE, CE, and MCE results calculated with the

NA49 experimental acceptance.

Fig. 3: The system energy is E = 3N T = 24 GeV. (a) A comparison of the multiplicity

distributions of massless neutral particles calculated with the MCE/sVF (solid line)

and the MCE (dashed line). (b) The momentum spectrum of massless neutral particles

calculated within the MCE/sVF (7), solid line, and the GCE (4), dotted line. The

approximation (8) of the MCE/sVF spectrum is shown by the dashed-dotted line.


