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Renormdynamic equations of motion and their solutions are given. New equation

for NBD distribution and Riemann zeta function invented.

1. RENORMDYNAMICS

In quantum �eld theory (QFT) [1] existence of a given theory means, that we can control

its behavior at some scales (short or large distances) by renormalization theory [1, 2]. If the

theory exists, than we want to solve it, which means to determine what happens on other

(large or short) scales. This is the problem (and content) of Renormdynamics. The result

of the Renormdynamics, the solution of its discrete or continual motion equations, is the

e�ective QFT on a given scale (di�erent from the initial one). We can invent scale variable

λ and consider QFT on D + 1 + 1 dimensional space-time-scale. For the scale variable

λ ∈ (0, 1] it is natural to consider q-discretization, 0 < q < 1, λn = qn, n = 0, 1, 2, ... and

p-adic, nonarchimedian metric, with q−1 = p � prime integer number. The �eld variable

φ(x, t, λ) is complex function of the real, x, t, and p-adic, λ, variables. The solution of the

UV renormdynamic problem means, to �nd evolution from �nite to small scales with respect

to the scale (time) τ = lnλ/λ0 ∈ (0,−∞). Solution of the IR renormdynamic problem

means to �nd evolution from �nite to the large scales, τ = lnλ/λ0 ∈ (0,∞). This evolution

is determined by Renormdynamic motion equations with respect to the scale-time.

2. RENORMDYNAMICS OF QCD

The Renormdynamic (RD) equations play an important role in our understanding of

Quantum Chromodynamics (QCD) and the strong interactions. The beta function is the
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most prominent object for QCD RD equations. The calculation of the one-loop β-function in

QCD has lead to the discovery of asymptotic freedom in this model and to the establishment

of QCD as the theory of strong interactions [3�5].

RD equation for the coupling constant of QCD belongs to the following class of equations,

ȧ = β1a+ β2a
2 + ... =

∑
n≥1

βna
n. (1)

The Eq. (1) can be reparametrized,

a(t) = f(A(t)) = A+ f2A
2 + ...+ fnA

n + ... =
∑
n≥1

fnA
n,

Ȧ = b1A+ b2A
2 + ... =

∑
n≥1

bnA
n, (2)

ȧ = Ȧf ′(A) = (b1A+ b2A
2 + ...)(1 + 2f2A+ ...+ nfnA

n−1 + ...)

= β1(A+ f2A
2 + ...+ fnA

n + ...) + β2(A
2 + 2f2A

3 + ...) + ...+ βn(A
n + nf2A

n+1 + ...) + ...

= β1A+ (β2 + β1f2)A
2 + (β3 + 2β2f2 + β1f3)A

3 + ...+ (βn + (n− 1)βn−1f2 + ...+ β1fn)A
n + ...

=
∑

n,n1,n2≥1

Anbn1n2fn2δn,n1+n2−1 =
∑

n,m≥1;m1,...,mk≥0

Anβmf
m1
1 ...fmk

k f(n,m,m1, ...,mk),

f(n,m,m1, ...,mk) =
m!

m1!...mk!
δn,m1+2m2+...+kmk

δm,m1+m2+...+mk
, (3)

b1 = β1, b2 = β2 + f2β1 − 2f2b1 = β2 − f2β1,

b3 = β3 + 2f2β2 + f3β1 − 2f2b2 − 3f3b1 = β3 + 2(f 2
2 − f3)β1,

b4 = β4 + 3f2β3 + f2
2β2 + 2f3β2 − 3f4b1 − 3f3b2 − 2f2b3, ...

bn = βn + ...+ β1fn − 2f2bn−1 − ...− nfnb1, ... (4)

So, by reparametrization, beyond the critical dimension (β1 ̸= 0) we can change any coe�-

cient but β1. We can �x any higher coe�cient with zero value, if we take

f2 =
β2
β1
, f3 =

β3
2β1

+ f2
2 , ... , fn =

βn + ...

(n− 1)β1
, ... (5)

In this case we have exact classical dynamics in the (external) space-time and simple scale

dynamics,

g =

(
µ

µ0

)D−4
2

g0 = e−ετg0;φ(τ, t, x) = e−(D−2)/2τφ0(t, x), ψ(τ, t, x) = e−(D−1)/2τψ0(t, x)(6)

We will consider in applications also the case when only one of the higher coe�cients is

nonzero.
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In the critical dimension of space-time β1 = 0 and we can change by reparametrization

any coe�cient but β2 and β3. From the relations (4), we can de�ne the minimal form of the

RD equation

Ȧ = β2A
2 + β3A

3, (7)

e.g. b4 = 0 when

f3 =
β4
β2

+
β3
β2
f2 + f 2

2 , (8)

f2 remains arbitrary and we can take, e.g. f2 = 0.

We can solve (7) as implicit function,

uβ3/β2e−u = ceβ2t, u =
1

A
+
β3
β2
, (9)

than, as in the noncritical case, explicit solution will be given by reparametrization repre-

sentation (2). If we know somehow the coe�cients βn, e.g. for �rst several exact and for

others asymptotic values (see, e.g. [6]) than we can construct reparametrization function (2)

and �nd the dynamics of the running coupling constant.

3. NBD AND RIEMANN ZETA FUNCTION

Negative binomial distribution (NBD)

P (n) =
Γ(r + n)

Γ(r)n!
(1− p)rpn =

Γ(r + n)

Γ(r)n!

(
r

< n > +r

)r (
< n >

< n > +r

)n

,
∑
n≥0

P (n) = 1, (10)

provides a very good parametrization for multiplicity distributions in e+e− annihilation; in

deep inelastic lepton scattering; in proton-proton collisions; in proton-nucleus scattering.

Hadronic collisions at high energies (LHC) lead to charged multiplicity distributions whose

shapes are well �tted by a single NBD in �xed intervals of central (pseudo)rapidity η [7].

The generating function for NBD is

F (h) =
(
1 +

< n >

r
(1− h)

)−r

=

(
r

< n > +r

)r

(1− ph))−r =
∑
n≥0

P (n)hn. (11)

An useful property of NBD with parameters < n > and r is that it is the distribution

of a sum of r independent random variables with a Bose-Einstein distribution1 and mean

1 A Bose-Einstein, or geometrical, distribution is a thermal distribution for single state systems.
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< n > /r,

p(n) =
1

< n > +1
(
< n >

< n > +1
)n = (eβ~ω/2 − e−β~ω/2)e−β~ω(n+1/2),∑

np(n) =< n >=
1

eβ~ω − 1
, f(x) =

∑
n

xnp(n) = (1+ < n > (1− x))−1

T =
~ω

ln(1 + 1
<n>

)
≃ ~ω < n >, < n >≫ 1. (12)

Temperature de�ned in (12) gives an estimation of the Glukvar temperature when it radiates

hadrons. We see that universality of NBD in hadron-production is similar to the universality

of black body radiation. We can put

F (r,< n >)m = F (mr,m < n >) (13)

in the closed nonlocal form

QqF = F q, Qq = qD, D =
rd

dr
+
< n > d

d < n >
=
x1d

dx1
+
x2d

dx2
. (14)

Note that F (x1, x2) may be any function of the type

F (x1, x2) = f

(
x1
x2

)x2

= φ

(
x1
x2

)x1

, φ(x) = f(x)
1
x . (15)

We can consider also n-dimensional generalization

Dn =
x1d

dx1
+ ...+

xnd

dxn
, F (x1, ..., xn) = f

(
xi
xj

)xk

. (16)

By construction we know the solution of the nice equation (14) as GF of NBD, F. We obtain

corresponding di�erential equations, if we consider q = 1 + ε, for small ε,

(D(D − 1)...(D −m+ 1)− (lnF )m)Ψ = 0, (
Γ(D + 1)

Γ(D + 1−m)
− (lnF )m)Ψ = 0,

(Dm − Φm)Ψ = 0, m = 1, 2, 3, ..., Dm =
Γ(D + 1)

Γ(D + 1−m)
,Φ = lnF, (17)

with the solution Ψ = F = exp(Φ).

Let us consider the values q = n, n = 1, 2, 3, ... and take sum of the corresponding equa-

tions (14), we �nd

ζ(−D)F =
F

1− F
. (18)

Now we invent a Hamiltonian H with spectrum corresponding to the set of nontrivial

zeros of the zeta function, in correspondence with Riemann hypothesis,

−Dn =
n

2
+ iHn, Hn = i(

n

2
+Dn), Dn = x1∂1 + x2∂2 + ...+ xn∂n,



5

H+
n = Hn =

n∑
m=1

H1(xm), H1(x) = i(
1

2
+ x∂x) = −1

2
(xp̂+ p̂x), p̂ = −i∂x . (19)

The Hamiltonian H = Hn is hermitian, its spectrum is real. The case n = 1 corresponds to

the Riemann hypothesis. The case n = 2 corresponds to NBD,

ζ(1 + iH2)F =
F

1− F
, F (x1, x2;h) = (1 +

x1
x2

(1− h))−x2 . (20)

Let us scale x2 → λx2 and take λ→ ∞ in (20), we obtain

ζ(
1

2
+ iH(x))e−(1−h)x =

1

e(1−h)x − 1
, H(x) = i(

1

2
+ x∂x) = −1

2
(xp̂+ p̂x),

H(x)ψE = EψE, ψE = cx−s, s =
1

2
+ iE, c = 1/

√
2π,∫ ∞

0

dxψE(x)
∗ψE′(x) = δ(E − E ′), (21)

ζ(−D)e−x = ζ(
1

2
+ iH(x))e−x =

1

ex − 1
, (22)∫ ∞

0

dxxs−1ζ(
1

2
+ iH(x))e−x =< xs−1|ζ(1

2
+ iH(x))e−x >=

∫ ∞

0

dxxs−1 1

ex − 1
= Γ(s)ζ(s),

< xs−1|ζ(1
2
+ iH(x))e−x >=< ζ(

1

2
− iH(x))xs−1|e−x >

= ζ(
1

2
− iE) < xs−1|e−x >= ζ(

1

2
− iE)Γ(s), ζ(

1

2
− iE) = ζ(s). (23)

A slightly di�erent consideration is the following. If we rescale x → xy in (22), multiply

by ys−1 and integrate by y, we obtain usual integral formula for zeta-function

ζ(−D)

∫ ∞

0

ys−1e−xydy =

∫ ∞

0

dy
ys−1

exy − 1
,

ζ(−D)x−sΓ(s) = x−s

∫ ∞

0

dy
ys−1

ey − 1
,

ζ(s) =
1

Γ(s)

∫ ∞

0

dy
ys−1

ey − 1
. (24)

The equation (22) can be obtained by the same consideration without reduction,

F (nx) = F n(x) ⇒ ζ(−D)F (x) = (F−1(x)− 1)−1, F (x) = eax. (25)
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