
Quark matter conductivity in strong magnetic background

B. Kerbikov1, *

1 State Research Center

Institute for Theoretical and Experimental Physics,

Moscow, Russia

Applying the ideas and methods of condensed matter physics we calculate the

quantum conductivity of quark matter in magnetic �eld. In strong �eld quantum

conductivity is proportional to the square root of the �eld.

After a decade of RHIC performance it has become clear that we are encountering an

unusual form of matter. To decipher its properties methods traditional to condensed matter

physics and hydrodynamics turn out to be e�ective. A very intriguing e�ect observed by

STAR collaboration at RHIC is the electric current induced in the direction of the magnetic

�eld. This is now famous Chiral Magnetic E�ect � see [1, 2] and references therein. The

magnetic �eld created by heavy ion currents at the collision moment is huge, |eB| >∼ m2
π ∼

1019 G [2]. Magnetic �eld of the same order or even higher is expected at LHC. It is therefore

clear that the problem of quark matter conductivity in strong magnetic �eld is an important

albeit a complicated one. In what follows we shall propose a solution which may be traced

back to the well known results of condensed matter physics [3, 4]. Two remarks are in order

before we proceed to the issue. First, is that in the present short contribution details of the

calculations are omitted. Second, is that here we shall not try to establish links to the Chiral

Magnetic e�ect.

Our basic assumptions are the following. We postulate the formation of the Fermi surface

in dense quark matter and assume that transport coe�cients including conductivity are

de�ned by the physical processes occurring in the vicinity of this surface. Next we assume

that a certain level of disorder is present giving rise to the scattering time τ (in condensed

matter physics this is the electron elastic scattering time on impurities). Following [5] we

suppose the quark matter to be in a regime of weak localization [3, 4], i.e. τφ ≫ τ , kF l ∼ 1,

where τφ is the phase-breaking time, kF is the Fermi momentum, l is the mean free path
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(at kF l < 1 transition to Anderson localization takes place). Therefore we shall describe

conductivity as a quantum process in the background of strong �uctuations [5, 6]. Is so, two

physical parameters play the key role phase-breaking time τφ and the di�usion coe�cient

D [3�5]. There is an important di�erence from the typical picture is condensed matter

physics. Namely, quantum contribution to the conductivity is important even in presence

of strong magnetic �eld. This is a subtle point which will be elucidated in detail in the

forthcoming publication. We conceive this conclusion to be true in the three-dimensional

case considered here. Ultra-relativistic ions resemble two-dimensional discs and in this case

quantum conductivity is infrared divergent [3, 4].

The expression for the conductivity reads [3, 4]

σαβ = − lim
ω→0

Qαβ(ω)

iω
, (1)

where Qαβ(ω) is the electromagnetic response operator de�ned for Matsubara frequencies

ων = 2πνT, iων → ω. Since we consider the regime of weak localization fan diagrams enter

into the response operator on equal footing with ladder diagrams [3, 4]. This means that

the response operator has the form

Qαβ(ων) = T
∑
εn

∫
dq

(2π)3
dk

(2π)3
jαG1G2C(q, ων)G3G4jβ, (2)

where Gi(i = 1, 2, 3, 4) are relativistic Matsubara propagators at �nite T and µ [7] with the

following arguments: G1 = G(k, iε̃n), G2 = G(k, iε̃n+ν), G3 = G(q−k, iε̃−n−ν), G4 = G(q−

k, iε̃−n), ε̃ = εn + (2τ)−1sgn εn, εn = π(2n+ 1)T . The quantity C(q, ων) is Cooperon [3, 4]

C−1(q, ων) = 4πντ 2(ων +Dq2 + τ−1
ε ), (3)

where ν = µkf/2π
2 is the relativistic density of states at the Fermi surface, D(v2F , T, τ) is

the di�usion coe�cient [3, 8], the factor 4π is replaced by 2π in nonrelativistic case. Due to

Cooperon di�usion like pole appears in the polarization operator. When we impose magnetic

�eld B along z-axisDq2 is replaced by (Dq2z+Ω(k+1/2)), where Ω = 4eDB, e is the absolute

value of the quark electric charge, 2D replaces the inverse mass in the cyclotron frequency,

k enumerates Landau levels. Next one inserts into (2) a complete set of Landau states and

the normalization factor counting the number of states per unit area of a full Landau level.

Calculation of (2) is a somewhat cumbersome exercise which will be presented elsewhere (for

nonrelativistic case see [3, 4]). Here we list our approximations and present the results. Only
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quark contributions are kept in the propagators Gi (no antiquarks). Integration over k is

replaced by integration around the Fermi surface over ξ =
√

k2 +m2 − µ. Propagators Gi

are taken in the τ -approximation (dirty limit [3]). Current operators jα = eγα are expressed

via the corresponding momenta using Gordon relation. In the static limit the result for

quantum contribution to the conductivity reads

σ = −4e2NfNc|eB|D
∫

dqz
2π

∑
k

1

Dq2z + Ω(k + 1/2) + 1
τφ

, (4)

where we have used the equation for the di�usion coe�cient D = k2
F τ/3µ

2, µ = (k2
F +m2)1/2.

This expression is valid in the dirty limit [8]. It comes as not a surprise that we have

retrieved the non-relativistic result [3, 4] with only minor changes (we remind that antiquark

contribution is omitted). The negative sign in (4) means that quantum e�ects result in

negative magnetoresistence and may drastically suppress the total conductivity.

Next we have to estimate the parameters entering into (4) in order to see what is the

value of the magnetic �eld that kills weak localization. The critical �eld is

|eBc| ≃
π

Dτφ
≫ m2

π, (5)

where for the estimate we used the above expression for the di�usion coe�cient taken in

the chiral limit with τ ≃ 1 fm and took for the phase-breaking time the value τε ≃ 4 fm.

On the other hand the value of the magnetic �eld at RHIC |eB| ∼ m2
π is strong enough

to guarantee the smallness of the dimensionless parameter δ = (4|eB|Dτφ)
−1. In this limit

expression (4) yields in three-dimensional case the square root dependence on the magnetic

�eld, σ ∼ (|eB|)1/2 [3, 4].
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