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and Vitaly A. Rostovtsev1

1 Joint Institute for Nuclear Research, Dubna, Russia,
gooseff@jinr.ru

2 National University of Mongolia, UlaanBaatar, Mongolia
3 Saratov State University, Saratov, Russia

4 Institute of Physics, Maria Curie-Sk�lodowska University, Lublin, Poland
5 Belgorod State University, Belgorod, Russia

Abstract. We present a symbolic algorithm generating finite-element
schemes with interpolating Hermite polynomials intended for solving the
boundary-value problems with self-adjoint second-order differential equa-
tion and implemented in the Maple computer algebra system. Recurrence
relations for the calculation in analytical form of the interpolating Her-
mite polynomials with nodes of arbitrary multiplicity are derived. The
integrals of interpolating Hermite polynomials are used for constructing
the stiffness and mass matrices and formulating a generalized algebraic
eigenvalue problem. The algorithm is used to generate Fortran routines
that allow solution of the generalized algebraic eigenvalue problem with
matrices of large dimension. The efficiency of the programs generated in
Maple and Fortran is demonstrated by the examples of exactly solvable
quantum-mechanical problems with continuous and piecewise continuous
potentials.

1 Introduction

The study of mathematical models that describe tunneling and channeling of
composite quantum systems through multidimensional barriers, photo-ionization
and photo-absorption in molecular, atomic, nuclear, and quantum-dimensional
semiconductor systems, requires high-accuracy efficient algorithms and programs
for solving boundary-value problems (BVPs) [7,5,8,9,13].

In this direction, using the variation-projection BVP formulation and finite
element method (FEM) with Lagrange interpolation elements [12,2,1], the
symbolic-numeric algorithms (SNAs) and programs have been elaborated [5,6,4].
This implementation of FEM using the interpolation Lagrange polynomials
(ILPs) was such that it preserved only the continuity of the solution itself in
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the course of its numerical approximation on a finite-element grid. However, in
the above class of problems, particularly, in quantum-dimensional semiconduc-
tor systems, the continuity should be preserved not only for the solution (wave
function) itself, but also for the probability current [2,10]. The required continu-
ity of the solution derivatives can be preserved in FEM numerical approximation
using the interpolation Hermite polynomials (IHPs) [3,11].

This motivated the aim of the present work, namely, the use of FEM with
IHPs to elaborate SNAs implemented in Maple-Fortran for the solution of the
BVPs with self-adjoint second order differential equation, and the analysis of the
approximate numerical solutions in benchmark calculations.

In this paper, we present a symbolic algorithm implemented in Maple com-
puter algebra system (CAS) that generates finite-element calculation schemes for
solving BVPs for the self-adjoint second-order differential equation using interpo-
lating Hermite polynomials. We derived recurrence relations for the calculation
of the IHPs with nodes of arbitrary multiplicity. The stiffness and mass matrices
are expressed via the integrals of products of the BVP coefficient functions, the
IHPs and their derivatives. The result is used to formulate a generalized algebraic
eigenvalue problem solved in Maple for matrices of small dimension. We use the
symbolic algorithm to generate Fortran routines that allow the solution of the
generalized algebraic eigenvalue problem with matrices of large dimension. We
demonstrate the efficiency of the programs generated in Maple and Fortran for
100 × 100 and higher-order matrices, respectively, in benchmark calculations for
exactly solvable quantum-mechanical problems with continuous and piecewise
continuous potentials.

The paper is organized as follows. In Section 2, the formulation of BVPs
and variational functional is presented. Section 3 describes the algorithm that
generates algebraic problems using the finite element method with interpolation
Hermite polynomials. In Section 4, the benchmark calculations are analysed. The
obtained results and further development of SNA are discussed in Conclusion.

2 Formulation of BVPs

We consider a self-adjoint second-order differential equation with respect to the
unknown solution Φ(z) in the region z ∈ Ωz = (zmin, zmax) [4]

(D − 2E)Φ(z) = 0, D = − 1

f1(z)

∂

∂z
f2(z)

∂

∂z
+ V (z). (1)

If no additional restrictions are explicitly specified, we assume f1(z) > 0, f2(z) >
0, and V (z) to be continuous functions that have derivatives up to the order of
κmax ≥ 1 in the domain z ∈ Ω̄z = [zmin, zmax]. In quantum mechanics, Eq.
(1) is actually the Schrödinger equation that describes a particle with the wave
function Φ(z) and the energy E.

For a discrete-spectrum problem, the eigenfunctions Φ(z) = Φm(z) ∈ H2
2 in

the Sobolev space H2
2 corresponding to the eigenvalues E1 < E2 < . . . < Em <
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. . . are to satisfy the boundary condition of the first (I) and/or the second (II)
and/or the third (III) kind at given values of parameters R(zt)

(I) : Φm(zt) = 0, t = min and/ormax, (2)

(II) : f1(z)
dΦm(z)

dz

∣∣∣
z=zt

= 0, t = min and/ormax, (3)

(III) :
dΦm(z)

dz

∣∣∣∣
z=zt

= R(zt)Φm(zt), t = min and/ormax (4)

along with the normalization and orthogonality condition

〈Φm(z)|Φm′(z)〉 =

∫ zmax

zmin

f1(z)(Φm(z))∗Φm′(z)dz = δmm′ . (5)

The solution of the above BPVs can be reduced to the calculation of stationary
points of a variational functional [12,6]

Ξ(Φ,E, zmin, zmax) ≡
∫ zmax

zmin

Φ∗(z) (D − 2E)Φ(z)dz = Π(Φ,E, zmin, zmax)

−f2(zmax)Φ∗(zmax)R(zmax)Φ(zmax) + f2(zmin)Φ∗(zmin)R(zmin)Φ(zmin), (6)

where the symmetric functional Π(Φ,E, zmin, zmax) is expressed as

Π(Φ,E, zmin, zmax) =

∫ zmax

zmin

[
f2(z)

dΦ∗(z)

dz

dΦ(z)

dz
+ f1(z)Φ∗(z)V (z)Φ(z) (7)

−f1(z)2EΦ∗(z)Φ(z)

]
dz.

Here R(z) → ∞ and R(z) = 0 for discrete spectrum problem with BCs (I) and
BCs (II), Eqs. (2) and (3), respectively.

3 FEM Generation of Algebraic Problems

High-accuracy computational schemes for solving the BVP (1)–(4) can be derived
from the variational functional (6), (7) basing on the FEM. The general idea of
the FEM in one-dimensional space is to divide the interval [zmin, zmax] into many
small domains referred to as elements. The size of the elements can be defined
free enough to account for physical properties or qualitative behavior of the
desired solutions, such as smoothness.

The intervalΔ=[zmin, zmax] is covered by a set ofn elementsΔj =[zmin
j , zmax

j ≡
zmin
j+1] in such a way that Δ =

⋃n
j=1Δj . Thus, we obtain the grid

Ωhj(z)[zmin, zmax]={zmin = zmin
1 , zmax

j = zmin
j + hj, j = 1, . . . , n− 1, (8)

zmax
n = zmin

n + hn = zmax},

where zmin
j ≡ zmax

j−1 , j = 2, . . . , n are the mesh points, and the steps hj =

zmax
j − zmin

j are the lengths of the elements Δj .
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3.1 Interpolation Hermite Polynomials

In each element Δj we define the equidistant sub-grid Ωhj(z)
j [zmin

j , zmax
j ] =

{z(j−1)p = zmin
j , z(j−1)p+r, r = 1, . . . , p − 1, zjp = zmax

j } with the nodal points
zr ≡ z(j−1)p+r determined by the formula

z(j−1)p+r = ((p− r)zmin
j + rzmax

j )/p, r = 0, . . . , p. (9)

As a set of basis functions {Nl(z, z
min
j , zmax

j )}lmax

l=0 , lmax =
∑p

r=0 κ
max
r we will use

the IHPs {{ϕκ
r (z)}pr=0}

κmax
r −1

κ=0 in the nodes zr, r = 0, . . . , p of the grid (9). The
values of the functions ϕκ

r (z) with their derivatives up to the order (κmax
r − 1),

i.e. κ = 0, . . . , κmax
r − 1, where κmax

r is referred to as the multiplicity of the node
zr, are determined by the expressions [3]

ϕκ
r (zr′) = δrr′δκ0,

dκ
′
ϕκ
r (z)

dzκ′

∣∣∣∣
z=z

r′

= δrr′δκκ′ . (10)

To calculate the IHPs we introduce the auxiliary weight function

wr(z) =

p∏
r′=0,r′ �=r

(
z − zr′
zr − zr′

)κmax
r′
, wr(zr) = 1. (11)

The weight function derivatives can be presented as a product

dκwr(z)

dzκ
= wr(z)gκr (z),

where the factor gκr (z) is calculated by means of the recurrence relations

gκr (z) =
dgκ−1

r (z)

dz
+ g1r(z)gκ−1

r (z), (12)

with the initial conditions

g0r(z) = 1, g1r(z) ≡ 1

wr(z)

dwr(z)

dz
=

p∑
r′=0,r′ �=r

κmax
r′

z − zr′
.

We will seek for the IHPs ϕκ
r (z) in the following form:

ϕκ
r (z) = wr(z)

κmax
r −1∑
κ′=0

aκ,κ
′

r (z − zr)κ
′
. (13)

Differentiating the function (13) by z at the point of zr and using Eq. (11), we
obtain

dκ
′
ϕκ
r (z)

dzκ′

∣∣∣∣
z=zr

=

κ′∑
κ′′=0

κ′!

κ′′!(κ′ − κ′′)!g
κ′−κ′′
r (zr)aκ,κ

′′
r κ′′!. (14)
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Hence we arrive at the expression for the coefficients aκ,κ
′

r

aκ,κ
′

r =

⎛⎝dκ′
ϕκ
r (z)

dzκ′

∣∣∣∣
z=zr

−
κ′−1∑
κ′′=0

κ′!

κ′′!(κ′ − κ′′)!g
κ′−κ′′
r (zr)aκ,κ

′′
r κ′′!

⎞⎠ /κ′!. (15)

Taking Eq. (10) into account, we finally get:

aκ,κ
′

r =

⎧⎪⎪⎨⎪⎪⎩
0, κ′ < κ,
1/κ′!, κ′ = κ,

−
κ′−1∑
κ′′=κ

1
(κ′−κ′′)!g

κ′−κ′′
r (zr)a

κ,κ′′
r , κ′ > κ.

Note that all degrees of interpolation Hermite polynomials ϕκ
r (z) do not depend

on κ and equal p′ =
∑p

r′=0 κ
max
r − 1. Below we consider only the IHPs with the

nodes of identical multiplicity κmax
r = κmax, r = 0, . . . , p. In this case, the degree

of the polynomials is equal to p′ = κmax(p+ 1) − 1. We introduce the following
notation for such polynomials:

Nκmaxr+κ(z, zmin
j , zmax

j ) = ϕκ
r (z), r = 0, . . . , p, κ = 0, . . . , κmax − 1. (16)

These IHPs form a basis in the space of polynomials having the degree p′ =
κmax(p+ 1) − 1 in the element z ∈ [zmin

j , zmax
j ] that have continuous derivatives

up to the order κmax − 1 at the boundary points zmin
j and zmax

j of the element
z ∈ [zmin

j , zmax
j ]. The IHPs at κmax = 1, 2, 3 and p = 4 are shown in Fig. 1. It

is seen that the values of IHP Nκmaxp+κ(z, zmin
j , zmax

j ) and Nκ(z, zmin
j+1, z

max
j+1 ) (at

r = p and r = 0) and their derivatives up to the order κmax − 1 coincide at
the mutual point zmax

j = zmin
j+1 of the adjacent elements. Moreover, the boundary

points are nodes (zeros) of multiplicity κmax of other IHPs, irrespective of the
length of elements of [zmin

j , zmax
j ] and [zmin

j+1, z
max
j+1 ]. This allows construction of

a basis of piecewise and polynomial functions having continuous derivatives to
the order of κmax − 1 in any set Δ =

⋃n
j=1Δj = [zmin

j , zmax
j ] of elements Δj =

[zmin
j , zmax

j ≡ zmin
j+1]. The Algorithm 1 of the IHP construction is presented in

Appendix A and implemented in the CAS Maple.

3.2 Generation of Algebraic Eigenvalue Problems

We consider a discrete representation of the solutions Φ(z) of the problem (1),
(5), (4) reduced by means of the FEM to the variational functional (6), (7) on
the finite-element grid,

Ωp
hj(z)

[zmin, zmax] = [z0 = zmin, zl, l = 1, . . . , np− 1, znp = zmax],

with the mesh points zl = zjp = zmax
j ≡ zmin

j+1 of the grid Ωhj(z)[zmin, zmax]
determined by Eq. (8) and the nodal points zl = z(j−1)p+r, r = 0, . . . , p of the
sub-grids Ωhj(z)

j [zmin
j , zmax

j ], j = 1, . . . , n, determined by Eq. (9). The solutions
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a b c

d e f

Fig. 1. The IHP coinciding at κmax = 1 with the ILP (a) and IHPs at κmax =2 (b,
c) and κmax =3 (d, e, f). Here p + 1 = 5 is the number of nodes in the subinterval,
Δj = [zmin

j = −1, zmax
j = 1]. The grid nodes zr are shown by vertical lines.

Φh(z) ≈ Φ(z) are sought for in the form of a finite sum over the basis of local
functions Ng

μ(z) at each nodal point z = zk of the grid Ωp
hj(z)

[zmin, zmax]:

Φh(z) =

L−1∑
μ=0

Φh
μN

g
μ(z), Φh(zl) = Φh

lκmax ,
dκΦh(z)

dzκ

∣∣∣∣
z=zl

= Φh
lκmax+κ (17)

where L = (pn+1)κmax is the number of local functions and Φh
μ at μ = lκmax+κ

are the nodal values of the κth derivatives of the function Φh(z) (including the
function Φh(z) itself for κ = 0) at the points zl.

The local functions Ng
μ(z) ≡ Ng

lκmax+κ(z) are piecewise polynomials of the
given order p′, their derivative of the order κ at the node zl equals one, and
the derivative of the order κ′ �= κ at this node equals zero, while the values of
the function Ng

μ(z) with all its derivatives up to the order (κmax − 1) equal zero

at all other nodes zl′ �= zl of the grid Ωhj(z)
, i.e., dκNl′κmax+κ′

dzκ

∣∣∣
z=zl

= δll′δκκ′ ,

l = 0, . . . , np, κ = 0, . . . , κmax − 1.
For the nodes zl of the grid that do not coincide with the mesh points zmax

j ,
i.e., at l �= jp, j = 1 . . . n− 1, the polynomial Ng

μ at μ = ((j − 1)p+ r)κmax + κ
has the form

Ng
(p(j−1)+r)κmax+κ =

{
Nκmaxr+κ(z, zmin

j , zmax
j ), z ∈ Δj ;

0, z �∈ Δj ,
(18)

i.e., it is defined as the IHP Nκmaxr+κ(z, zmin
j , zmax

j ) in the interval z ∈ Δj and
zero otherwise. Since the points zmin

j and zmax
j are nodes of multiplicity κmax,

such piecewise polynomial functions and their derivatives up to the order κmax−1
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Fig. 2. The structure of matrices BL1L2 and AL1L2 for the potential V (z) = 0, the
number of elements n = 6 in the entire interval (zmin, zmax), and different values of
the multiplicity of nodes κmax and the number of subintervals p. From left to right:
(κmax, p) = (1, 6), (κmax, p) = (2, 3), (κmax, p) = (3, 2). The dimensions of matrices are
L× L, L = κmax(np+ 1): 37× 37, 38× 38, 39× 39.

are continuous in the entire intervalΔ. In Fig. 1 such IHPs are plotted by dotted,
short-dashed and dot-dashed lines.

For the nodal points of the grid zl that coincide with one of the mesh points
zmax
j belonging to two elements Δj and Δj+1, j = 1 . . . n − 1 , i.e., for l = jp,

the polynomial, whose derivative of the order κ equals one at the node zl, has
the form

Ng
pκmaxj+κ =

⎧⎨⎩
Nκmaxp+κ(z, zmin

j , zmax
j ), z ∈ Δj ;

Nκ(z, zmin
j+1, z

max
j+1 ), z ∈ Δj+1;

0, z �∈ Δj ∪Δj+1,
(19)

In other words, it is constructed by joining the polynomialNpκmax+κ(z, zmin
j , zmax

j )

defined in the element Δj with the polynomial Nκ(z, zmin
j+1, z

max
j+1 ) defined in the

element Δj+1. This polynomial is also continuous with all its derivatives of the
order κmax−1 in the interval z ∈ Δ. The corresponding IHPs are plotted in Fig.
1 by solid and long-dashed lines.

The substitution of the expansion (17) into the variational functional (6), (7)
reduces the solution of the problem (1)–(5) to the solution of the generalized
algebraic eigenvalue problem with respect to the desired set of eigenvalues E
and eigenvectors Φh = {Φh

μ}L−1
μ=0 :

(Ã − 2EB)Φh = 0. (20)

Here Ã = A+Mmin−Mmax and B are symmetric L×L stiffness and mass ma-
trices, L = κmax(np+1), Mmax and Mmin are L×L matrices with zero elements
except M11 = f2(zmin)R(zmin) and ML+1−κmax,L+1−κmax = f2(zmax)R(zmax),
respectively. The Algorithm 2 that generates the local functions Ng

μ(z) de-
fined by (18), (19) and the matrices A and B is described in Appendix B and
implemented in the CAS Maple.
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Table 1. Runge coefficients (24) for the eigenvalues (Runge Eigv) and the eigenfunction
(Runge EigF) of the first three lower-energy states calculated for schemes with different
κmax and p up to order p′ = κmax(p+1)− 1 = 8 at h = 0.125 for schemes with p′ = 7,
p′ = 8, and at h = 0.0625 for the rest of the schemes. Theoretical estimates of Runge
coefficient for the convergence of eigenvalues and eigenfunctions are 2p′ and (p′ + 1),
respectively. The execution time Th (in seconds) for the mesh step h = 1/32 is presented
in the last column.

κmax p p′ Runge Eigv 2p′ Runge EigF p′ + 1 Th

1 1 1 2.00 2.00 1.99 2 1.99 1.99 2.00 2 9.36
1 2 2 4.00 3.99 3.99 4 2.99 2.98 3.02 3 19.5
1 3 3 5.99 6.00 5.99 6 3.98 3.99 3.97 4 33.4
2 1 3 5.97 5.96 5.96 6 3.95 3.95 3.94 4 21.8
1 4 4 7.99 8.00 8.00 8 4.99 4.98 5.00 5 48.6
1 5 5 9.99 9.99 9.99 10 5.98 6.01 5.97 6 65.6
2 2 5 9.97 9.97 9.97 10 5.96 5.98 5.95 6 47.6
3 1 5 10.05 10.05 10.06 10 6.01 6.04 6.02 6 38.0
1 6 6 12.00 12.00 12.00 12 6.99 6.97 6.99 7 88.9
1 7 7 13.98 13.98 13.98 14 7.85 8.03 7.85 8 111.
2 3 7 13.88 13.87 13.87 14 7.77 7.95 7.77 8 82.3
4 1 7 13.59 13.58 13.57 14 7.61 7.57 7.59 8 59.6
1 8 8 16.13 16.00 15.99 16 9.00 8.82 9.09 9 139.
3 2 8 15.75 15.75 15.74 16 8.83 8.67 8.86 9 99.1

To solve equation (20) we have chosen the subspace iteration method [12,1]
elaborated by Bathe [1] for the solution of large symmetric banded matrix eigen-
value problems. This method uses a skyline storage mode, which stores the com-
ponents of the matrix column vectors within the nonzero band of the matrix
and, therefore, is perfectly suitable for the banded FEM matrices. The procedure
chooses a vector subspace of the full solution space and iterates upon the succes-
sive solutions in the subspace (for details, see [1]). Using the Rayleigh quotients
for the eigenpairs, the iterations are repeated until the desired set of solutions
in the iteration subspace converges to within the specified tolerance. Generally,
10–24 iterations are enough to converge the subspace to within the prescribed
tolerance. If the matrix Ã in Eq. (20) is not positive-definite, the problem (20)
is replaced with the following problem: ǍΦh = Ěh BΦh, Ǎ = Ã − αB. The
number α (the shift of the energy spectrum) is chosen such that the matrix Ǎ is
positive-definite. The eigenvector of this problem is the same, and Eh = Ěh +α.

The theoretical estimate for the H0 norm of the difference between the exact
solution Φm(z) ∈ H2

2 and the numerical one Φh
m(z) ∈ Hκmax

has the order of

|Eh
m − Em| ≤ c1 h2p

′
,

∥∥Φh
m(z) − Φm(z)

∥∥
0
≤ c2hp

′+1, (21)

where h = max1<j<n hj is the maximal step of the grid [12].
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Fig. 3. Absolute errors σh
1 = |εexact1 − εh1 | and σh

2 = maxz∈Ωh(z) |χexact
1 (z) − χh

1 (z)|
for the ground state vs the grid step h calculated using approximation by IHPs with
different κmax and p

4 Benchmark Calculations

4.1 Modified Pöschl–Teller Potential

As an example, we consider the exactly solvable eigenvalue problem for Schrödin-
ger equation in the units h̄ = m = 1:(

− d2

dz2
+ 2V (z) − 2E

)
Φ(z) = 0, (22)

with the modified Pöschl–Teller potential on the axis z ∈ (−∞,+∞):

V (z) = −α
2

2

λ (λ− 1)

(cosh (α z))2
, (23)

where α > 0 and λ > 0 are real-value parameters. The parameters λ = 11/2 and
α = 1 were chosen such that the discrete spectrum problem for Eq. (22) with the
potential (23) had five eigenvalues 2Em = [−20.25,−12.25,−6.25,−2.25,−0.25]
with the corresponding five eigenfunctions ψm(x) known in the analytical form.

The numerical experiments using the finite-element grid Ωp
hj(z)

[zmin = −40,

zmax = 40] demonstrated strict correspondence to the theoretical estimations
(21) for eigenvalues and eigenfunctions. In particular, we calculated the Runge
coefficients

βl = log2

∣∣∣∣∣ σhl − σh/2l

σ
h/2
l − σh/4l

∣∣∣∣∣ , l = 1, 2, (24)

on three twice condensed grids with the absolute errors

σh1 = |Eexact
m − Eh

m|, σh2 = max
z∈Ωh(z)

|Φexact
m (z) − Φh

m(z)| (25)
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Fig. 4. The solutions and their first and second derivatives for the ground state (solid
curves) and the first excited state (dashed curves) of the rectangular well potential
problem

for the eigenvalues and eigenfunctions, respectively. From Eq. (25) we obtained
the numerical estimations of the convergence order of the proposed numerical
schemes, the theoretical estimates being β1 = 2p′ and β2 = p′ + 1.

In Table 1, we show the Runge coefficients (24) for the eigenvalues (Runge
Eigv) and the eigenfunction (Runge EigF) of the first three lower-energy states
calculated for schemes with different κmax and p up to order p′ = κmax(p+1)−1 =
8. One can see that for the chosen p′ = 1 ÷ 8, the numerical estimates of Runge
coefficients lie within 2p′ ± 0.06 for p′ = 1, . . . , 6 and 2p′ ± 0.56 for p′ = 7, 8 in
the case of eigenvalues and within (p′ + 1) ± 0.2 in the case of eigenfunctions,
which strongly corresponds to the theoretical error estimates (21). In Fig. 3, we
show the dependence of absolute errors σh1 = |εexact1 − εh1 | for eigenvalues and
σh2 = maxz∈Ωh(z) |χexact1 (z) − χh1 (z)| for eigenfunctions of the ground state vs.
the grid step h calculated using approximation by IHPs with different κmax and
p. In the double logarithmic scale, the errors lie on lines with different slopes
that explicitly show the desirable order of approximation p′ = κmax(p + 1) − 1
by IHPs with different κmax and p.

For calculations, we used the program KANTBP 1.1 with the specified accu-
racy of ∼ 10−34 and the relative error tolerance of the eigenvalues ε1 = 4 ·10−34,
implemented in Intel Fortran 77 on the computer 2 x Xeon 3.2 GHz, 4 GB RAM.
The data type QUADRUPLE PRECISION provided 32 significant digits. The
running time Th for h = 1/32 = 0.03125 is presented in the last column of
Table 1.

4.2 Rectangular Well Potential

For piecewise continuous potentials (or potentials with discontinuous deriva-
tives), the approximation by IHPs does not converge to the desired solution
with increasing number of nodes. Within the FEM approach, the following tech-
nique is used. Let the potential have the form V (z) = {Vi(z), z ∈ (ζmin

i , ζmax
i )},

ζmin
i+1 = ζmax

i , where Vi(z) are (p′ + 1)-times differentiable functions. The inter-
val of the problem definition is divided into a set of subintervals [zmin

j , zmax
j ]
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Fig. 5. The difference of numerical and exact eigenfunctions Dκmax,p
swp,0 = ψκmax,p

0 (z) −
ψ0(z) (solid curves) and Dκmax,p

swp,1 = ψκmax,p
1 (z)− ψ1(z) (dashed curves) (upper panels)

and their first derivatives (lower panels) for rectangular well potential for n = 10
elements in the interval (−5, 5) and different values of the multiplicity of nodes κmax

and the number of subinterval divisions p. >From left to right: (κmax, p) = (1, 3),
(κmax, p) = (2, 1), (κmax, p) = (3, 1).

(zmax
j ≡ zmin

j+1), such that every point ζmin
i , in which the second derivative of the

solution is discontinuous, coincides with some boundary point zmin
j .

Consider, e.g., the exactly solvable discrete-spectrum problem for Eq. (22)
with the rectangular well potential 2V (z) = V0, if |z| ≤ a, and 2V (z) = 0
otherwise. At a = 1, 2V0 = −50 the discrete-spectrum problem has five eigen-
functions (see Fig. 4), expressed in the analytical form via five eigenvalues
2Em = [−48.109146,−42.474904,−33.232792,−20.714111,−5.965365].

Since the first two eigenfunctions rapidly decrease, it is sufficient to use the
finite-element grid Ωp

hj(z)
[zmin = −5, zmax = 5]. The calculation error for the

first two eigenvalues is presented in Table 2. It is seen that the scheme with
κmax = 1 and κmax = 2 having the same order of accuracy p′ = 3 and p′ = 5
(p′ = κmax(p + 1) − 1) yield nearly the same error (at n = 20, h = 1/2 the
error is about 10−2 and 4 · 10−6, respectively), while for κmax = 3, the error is
much higher (about 10−2 at n = 20, h = 1/2 ). In Table 2, we show the Runge
coefficients (24) for the eigenvalues of the first two lower-energy states calculated
for schemes with different κmax and p with order p′ = κmax(p + 1) − 1 = 3 and
p′ = κmax(p+1)−1 = 5. One can see that for the chosen p′ = 3, 5, the numerical
estimates of Runge coefficients lie within 2p′ ± 0.5 for schemes with κmax = 1, 2
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Table 2. The absolute errors σh
1 (E0) and σh

1 (E1) of eigenvalues of ground and first
exited state for square well potential for a = 1 and 2V0 = −50. The Runge coefficient
(Ru) from (24) for the eigenvalues at h = 1/4, n = 40 and its theoretical estimates
(2p′) are given in last two columns.

(κmax, p) p′ σh=1
1 (E0) σ

h=1/2
1 (E0) σ

h=1/4
1 (E0) σ

h=1/8
1 (E0) σ

h=1/16
1 (E0) Ru 2p′

(1,3) 3 1.93e-02 1.39e-03 4.44e-05 8.83e-07 1.48e-08 5.65 6
(2,1) 3 5.70e-02 3.15e-03 1.00e-04 2.21e-06 4.14e-08 5.50 6
(1,5) 5 2.47e-04 1.67e-06 3.82e-09 5.26e-12 2.22e-12 10.3 10
(2,2) 5 4.01e-04 2.59e-06 6.12e-09 8.59e-12 2.20e-13 9.51 10
(3,1) 5 1.48e-02 2.66e-03 3.51e-04 4.40e-05 5.50e-06 2.99 10

(κmax, p) p′ σh=1
1 (E1) σ

h=1/2
1 (E1) σ

h=1/4
1 (E1) σ

h=1/8
1 (E1) σ

h=1/16
1 (E1) Ru 2p′

(1,3) 3 9.96e-02 4.38e-03 1.25e-04 2.40e-06 3.96e-08 5.70 6
(2,1) 3 2.92e-01 1.14e-02 3.08e-04 6.33e-06 1.14e-07 5.60 6
(1,5) 5 6.44e-04 3.75e-06 7.93e-09 1.04e-11 2.63e-12 9.99 10
(2,2) 5 9.40e-04 5.66e-06 1.27e-08 1.74e-11 2.06e-13 9.53 10
(3,1) 5 6.70e-02 1.07e-02 1.39e-03 1.74e-04 2.17e-05 3.01 10

which strongly corresponds to the theoretical error estimates (21). While the
scheme with κmax = 3, p = 1 of fifth order p′ = 5 gives Runge coefficient β1 = 3.
Maximal discrepancies arise in the vicinities of discontinuity of the potential well
(at z = ±1) because of a worse approximation of function with discontinuous
second derivative by means of functions with continuous one.

It is due to the fact that the first derivative of the solution has a discontinuity
at z = ±a displayed in Fig 4. To illustrate this fact, we display in Fig. 5 the
discrepancies of eigenfunctions and their first derivatives. It is seen that the
scheme with κmax = 2, p = 1 provides better approximation for eigenfunctions
among schemes of third order p′ = 3. The scheme of fifth order p′ = 5 with
κmax = 3, p = 1 leads to worse approximation in comparison with schemes of
third order.

5 Conclusion

We presented the SNAs for solving the BVPs with self-adjoint second order dif-
ferential equation using the FEM with interpolation Hermite polynomials. The
proposed approach preserves the property of continuity of derivatives of the de-
sired solutions. We demonstrated the efficiency of the programs generated in
Maple and Fortran for 100 × 100 and greater-order matrices, respectively, in
benchmark calculations for exactly solvable quantum-mechanical problems with
continuous and piecewise continuous potentials. The analysis of approximate
numerical solutions in benchmark calculations with smooth potentials shows
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that the order p′ = κmax(p + 1) − 1 of the elaborated FEM schemes strongly
corresponds to the theoretical error estimates. Schemes of higher order p′ allow
high-accuracy results at larger step of the finite-element grid, provided that the
derivative of the p′th order is a smooth function. Schemes with the fixed order
p′ have similar rate convergence, the execution time being smaller for greater
κmax due to smaller dimension of matrices used in the calculations. However,
if the κth derivative of the desired solution has discontinuity points, i.e., for
potentials having a discontinuous derivative of the order κ−2, the schemes with
κmax ≥ κ operate worse, because in this case, the solution having discontinuous
κthth derivatives is approximated by functions having no such discontinuities.

In future, the elaborated calculation schemes, algorithms, and programs will
be applied to the analysis of models of molecular, atomic, and nuclear systems,
as well as to quantum-dimensional systems such as quantum dots, wires, and
wells in bulk semiconductors, and smooth irregular wave-guide structures with
piecewise continuous potentials.

The authors thank Professor V.P. Gerdt for collaboration. The work was par-
tially supported by the Russian Foundation for Basic Research (RFBR) (grants
No. 14-01-00420 and 13-01-00668) and the Bogoliubov–Infeld program.

A Algorithm 1. Generation of IHPs

Input:
zmin, zmax, (formal parameters) the boundary points of the interval;
p is the number of subintervals: p+ 1 is the number of nodes of IHPs;
κmax is the multiplicity of nodes;
f1(z) and f2(z) are coefficient functions from (1);
Output:
Nl1(z, zmin, zmax) are IHPs, l1 = 0, . . . , lmax, i.e. lmax + 1 is number of IHPs;
Al1;l2(zmin, zmax) and Bl1;l2(zmin, zmax) are auxiliary integrals;
Local:
lmax = κmax(p+ 1) − 1 is largest index of IHPs, lmax + 1 is number of IHPs;
zr are nodes in subinterval;
wr(z) are weight functions;
gκr (z) are derivatives of order κ divided by weight function;
aκ,κ

′
r are coefficients of expansion (13);

1: generation of IHPs and calculation of integrals in the interval [zmin, zmax]
1.1.: for r:=0 to p do

zr = ((p− r)zmin + rzmax)/p;
end for;

1.2.: for r:=0 to p do
1.2.1: auxiliary weight function

wr(z) =
∏p

r′=0,r′ �=r

( z−zr′
zr−zr′

)κmax

;
1.2.2: recurrence relation for calculating the function gκr (z)

g0r(z) = 1;
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g1r(z) =
∑p

r′=0,r′ �=r
κmax

z−zr′
;

for κ:=2 to κmax − 1 do
gκr (z) =

dgκ−1
r (z)
dz + g1r(z)gκ−1

r (z);
end for;

1.2.3: recurrence relation for calculation of coefficients aκ,κ
′

r

for κ:=0 to κmax − 1 do
aκ,κr = 1/κ′!;
for κ′:=κ+ 1 to κmax − 1 do
aκ,κ

′
r = −

∑κ′−1
κ′′=κ

1
(κ′−κ′′)!g

κ′−κ′′
r (zr)aκ,κ

′′
r ;

end for;
1.2.4: calculation of IHP

Nκmaxr+κ(z, zmin, zmax) ≡ ϕκ
r (z) = wr(z)

∑κmax−1
κ′=κ aκ,κ

′
r (z − zr)κ

′
;

end for;
end for;
lmax = κmax(p+ 1) − 1;

1.3: calculation of the auxiliary integrals
for l1:=0 to lmax do

for l2:=l1 to lmax do
Al1;l2(zmin, zmax)=

∫ zmax

zmin f2(z)
dNl1

(z,zmin,zmax)

dz

dNl2
(z,zmin,zmax)

dz dz;
Bl1;l2(zmin, zmax)=

∫ zmax

zmin f1(z)Nl1(z, zmin, zmax)Nl2(z, zmin, zmax)dz;
end for;

end for;

Remarks. 1. In commonly used coordinates, the integrals in Step 1.3. are cal-
culated analytically. If f1(z) or f2(z) are such that these integrals cannot be
calculated analytically, then one can apply the expansion over the interpolation
polynomials.

2. The auxiliary integrals Al1;l2(zmin, zmax) and Bl1;l2(zmin, zmax) are sym-
metric with respect to permutations of their indexes.

B Algorithm 2: FEM Generation of Algebraic Eigenvalue
Problem

Input:
n is the number of subintervals Δj = [zmin

j , zmax
j = zmin

j + hj ];
Δj = [zmin

j , zmax
j ] are sets of subintervals (zmax

j ≡ zmin
j+1);

p is the number of divisions of subintervals: p+ 1 is the number of nodes of IHP;
κmax is the multiplicity of nodes;
Nl1(z, zmin, zmax) are IHP;
Al1;l2(zmin, zmax) and Bl1;l2(zmin, zmax) are auxiliary integrals from the Algo-
rithm 1;
V (z) is coefficient function from (1);
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Output:
zl are nodes in the whole interval, l = 0, . . . , np;
Ng

l are piecewise polynomials;
AL1L2 and BL1L2 are matrices of algebraic eigenvalue problem (20);
Local:
lmax = κmax(p+ 1) − 1 where lmax + 1 is number of IHP;
L = κmax(np+ 1) is the dimension of the algebraic eigenvalue problem.

2.1. calculation of grid points
z0 = zmin

1 ;
for j := 1 to n do

for r := 1 to p− 1 do
z(j−1)p+r = ((p− r)zmin

j + rzmax
j )/p;

end for;
zjp = zmax

j ;
end for;

2.2. calculation of piecewise polynomials
for κ := 0 to κmax − 1 do
Ng

κ = {Nκ(z, zmin
1 , zmax

1 ), z ∈ Δ1};
for j := 1 to n do

for r := 1 to p− 1 do
Ng

((j−1)p+r)κmax+κ = {Nκmaxr+κ(z, zmin
j , zmax

j ), z ∈ Δj ; 0, z �∈ Δj};
end for;
if (j < n) then
Ng

jpκmax+κ := {Nκmaxp+κ(z, zmin
j , zmax

j ), z ∈ Δj ;

Nκ(z, zmin
j+1, z

max
j+1 ), z ∈ Δj+1; 0, z �∈ Δj ∪Δj+1};

else
Ng

npκmax+κ := {Nκmaxp+κ(z, zmin
n , zmax

n ), z ∈ Δn; 0, z �∈ Δn};
end if;

end for;
end for;

2.3. Generation of matrices A and B
for j := 1 to n do

for l1 := 0 to lmax − 1 do
L1 = pκmax(j − 1) + l1 + 1;
for l2 from l1 to lmax − 1 do
L2 = pκmax(j − 1) + l2 + 1;
AL1L2 = AL1L2 +Al1;l2(zmin

j , zmax
j )

+
∫ zmax

j

zmin
j

f1(z)dzNL1(z, zmin
j , zmax

j )V (z)NL2(z, zmin
j , zmax

j );

BL1L2 = BL1L2 +Bl1;l2(zmin
j , zmax

j );
end for (j, l1, l2 )
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Remarks. 1. If the coefficients of the equation (1) are given in the tabular form,
then we use the following matrix elements in Step 1.3 of Algorithm 1 and Step
2.3 of Algorithm 2:∫ zmax

j

zmin
j

f1(z)dzNL1(z, zmin
j , zmax

j )V (z)NL2(z, zmin
j , zmax

j )

=

p∑
r=0

κmax−1∑
κ=0

V (κ)(z(j−1)p+r)Vl1 ;l2;κmaxr+κ(zmin
j , zmax

j )), (26)

where Vl1;l2;l3(zmin, zmax) are determined by integrals with IHPs

Vl1;l2;l3(zmin
j , zmax

j ) =

∫ zmax
j

zmin
j

f1(z)Nl1(z, zmin
j , zmax

j )

×Nl2(z, zmin
j , zmax

j )Nl3(z, zmin
j , zmax

j )dz. (27)

The obtained expression will be exact for polynomial potentials of the degree
smaller than p′. Generally this decomposition leads to numerical eigenfunctions
and eigenvalues with the accuracy of order about p′ + 1. If the integrals in Step
1.3 of Algorithm 1 and Step 2.3 of Algorithm 2 cannot be calculated in the
analytical form, then the Gauss integration rule [1,6] with p′ +1 nodes is applied
and held the theoretical estimations (21).

2. Using the local coordinate η ∈ [−1, 1] related to the absolute coordinate z
as z = zmin

j +hj(1+η)/2, dz
dη = hj/2, one should exploit the following expansions

of the function and its first derivative

Φ̂(z) =

p∑
r=0

κmax−1∑
κ=0

Φ̂κmaxr+κNκmaxr+κ(η,−1, 1)

(
dz

dη

)κ

,

dΦ̂(z)

dz
=

p∑
r=0

κmax−1∑
κ=0

Φ̂κmaxr+κ
dNκmaxr+κ(η,−1, 1)

dη

(
dz

dη

)κ−1

.

3. The matrices AL1L2 and BL1L2 are symmetric, their dimension is L × L,
where L = κmax(np + 1). They consist of n sub-matrices with the dimension
κmax(p + 1) × κmax(p + 1). The intersections of these sub-matrices are blocks
having the dimension κmax × κmax. These blocks include elements that equal
zero in both matrices BL1L2 and AL1L2 for V (z) = 0 and become nonzero in the
matrix AL1L2 , when V (z) �= 0. The existence of such elements is a manifestation
of the IHPs symmetry. The total number of elements in all these blocks is (n(p2+
2p) + 1)(κmax)2. Examples of banded matrix structures are shown in Fig. 2.

4. To impose the BC (III) in zmin one should apply A11 =A11+f2(z
min)R(zmin),

while to impose the BC (III) in zmax one should apply AL+1−κmax,L+1−κmax =
AL+1−κmax,L+1−κmax−f2(zmax)R(zmax). To impose the BC (I) in zmin one should
drop first row and first column, while to apply the BC (I) in zmax one should
drop row and column with number L+ 1 − κmax.
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5. For small matrix dimensions ∼ 100, the desired solution of the problem
generated at Step 2.3 is performed using the built-in procedures of the Maple
LinearAlgebra package. For large matrix dimensions ∼ 100 ÷ 1000000, the sub-
space iteration method is used, implemented in the Fortran program SSPACE
[1].
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