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Abstract—A model for quantum tunnelling of a cluster comprised of A identical particles, interacting
via oscillator-type potential, through short-range repulsive barrier potentials is introduced for the first
time in symmetrized-coordinate representation and numerically studied in the s-wave approximation. A
constructive method for symmetrizing or antisymmetrizing the (A − 1)-dimensional harmonic oscillator
basis functions in the new symmetrized coordinates with respect to permutations of coordinates of A
identical particles is described. The effect of quantum transparency, manifesting itself in nonmonotonic
resonance-type dependence of the transmission coefficient upon the energy of the particles, their number
A = 2, 3, 4 and the type of their symmetry, is analyzed. It is shown that the total transmission coefficient
demonstrates the resonance behavior due to the existence of barrier quasi-stationary states, embedded in
the continuum.
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1. INTRODUCTION

During a decade the mechanism of quantum pen-
etration of two bound particles through repulsive bar-
riers, manifested in [1], attracts attention from both
theoretical and experimental viewpoints in relation
with such problems as near-surface quantum diffu-
sion of molecules [2–5], fragmentation in producing
very neutron-rich light nuclei [6–9], and heavy-ion
collisions through multidimensional barriers [10–16].
In a general formulation of the scattering problem
for ions having different masses a benchmark model
with long-range potentials was proposed in [17, 18].
The generalization of the two-particle model over a
quantum system of A identical particles is of great
importance for appropriate description of molecular
and heavy-ion collisions as well as a microscopic
study of tetrahedral-symmetric nuclei [19, 20]. The
aim of this paper is to present a suitable formula-
tion of the problem stated above and calculation
methods for solving it.

We consider the penetration of A identical quan-
tum particles, coupled by short-range oscillator-like
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interaction, through a repulsive potential barrier. We
assume that the spin part of the wave function is
known, so that only the spatial part of the wave
function is to be considered, which may be symmetric
or antisymmetric with respect to a permutation of
A identical particles [21–24]. The initial problem is
reduced to penetration of a composite system with
the internal degrees of freedom, describing an (A −
1) × d-dimensional oscillator, and the external de-
grees of freedom, describing the center-of-mass mo-
tion of A particles in d-dimensional Euclidean space.
For simplicity, we restrict our consideration to the
so-called s-wave approximation [1], corresponding
to one-dimensional Euclidean space (d = 1). It is
shown that the reduction is provided by using ap-
propriately chosen symmetrized coordinates, rather
than the conventional Jacoby coordinates. The main
goal of introducing the symmetrized coordinates is
to provide invariance of the Hamiltonian with respect
to permutations of A identical particles. This allows
construction not only of basis functions, symmetric or
antisymmetric under permutations of A − 1 relative
coordinates, but also of basis functions, symmetric
(S) or antisymmetric (A) under permutations of A
Cartesian coordinates. We refer the expansion of the
solution in the basis of such type as symmetrized
coordinate representation (SCR).

We seek for the solution in the form of Galerkin
or Kantorovich expansions [25] with unknown co-
efficients having the form of matrix functions of the
center-of-mass variables in the SCR. As a result, the
problem is reduced to a boundary-value problem for a
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system of ordinary second-order differential equations
with respect to the center-of-mass variable. Conven-
tional asymptotic boundary conditions are imposed
on the desired matrix solution. The results of calcu-
lations are analyzed with particular emphasis on the
effect of quantum transparency that manifests itself
as nonmonotonic energy dependence of the trans-
mission coefficient due to resonance tunnelling of the
bound particles in S (A) states through the repulsive
potential barriers.

The paper is organized as follows. In Section 2
we present the statement of the problem in con-
ventional Jacobi and symmetrized coordinates. In
Section 3 we introduce the SCR of the solution of
the considered problem. In Section 4 we formu-
late the boundary-value problem for close-coupling
equations in Galerkin and Kantorovich forms using
conventional and parametric SCRs, respectively. In
Section 5 we analyze the results of a numerical ex-
periment on resonance transmission of a few coupled
identical particles in S (A) states. In Conclusion we
sum up the results and discuss briefly the perspectives
of application of the developed approach.

2. THE STATEMENT OF THE PROBLEM

The problem of penetration of A identical quantum
particles with the mass m and a set of the Cartesian
coordinates xi ∈ Rd in d-dimensional Euclidean
space, considered as vector x̃ = (x̃1, . . . , x̃A) ∈ RA×d

in A × d-dimensional configuration space, coupled
by the pair potential Ṽ pair(x̃ij) of relative coordi-
nates, x̃ij = x̃i − x̃j , similar to a harmonic oscillator

Ṽ hosc(x̃ij) = mω2

2 (x̃ij)2 with frequency ω, through
the repulsive potential barriers Ṽ (x̃i) is described by
the Schrödinger equation⎡

⎣− �
2

2m

A∑
i=1

∂2

∂x̃2
i

+
A∑

i,j=1;i<j

Ṽ pair(x̃ij)

+
A∑

i=1

Ṽ (x̃i) − Ẽ

]
Ψ̃(x̃1, . . . , x̃A) = 0,

where Ẽ is the total energy of the system of A particles
and P̃ 2 = 2mẼ/�

2, P̃ is the total momentum of the
system of A particles. Using the oscillator units

xosc =
√

�/(mω
√

A), posc =
√

(mω
√

A)/� = x−1
osc,

and Eosc = �ω
√

A/2 to introduce the dimension-
less coordinates xi = x̃i/xosc, xij = x̃ij/xosc =
xi − xj , E = Ẽ/Eosc = P 2, P = P̃ /posc = P̃ xosc,
V pair(xij) = Ṽ pair(xijxosc)/Eosc, V hosc(xij) =
Ṽ hosc(xijxosc)/Eosc = 1

A(xij)2, and V (xi) =
Ṽ (xixosc)/Eosc, one can rewrite the above equation
in the form⎡

⎣−
A∑

i=1

∂2

∂x2
i

+
A∑

i,j=1;i<j

1
A

(xij)2 (1)

+
A∑

i,j=1;i<j

Upair(xij) +
A∑

i=1

V (xi) − E

⎤
⎦

× Ψ(x1, . . . , xA) = 0,

where Upair(xij) = V pair(xij) − V hosc(xij), i.e., if
V pair(xij) = V hosc(xij), then Upair(xij) = 0.

Our goal is to find the solutions Ψ(x1, . . . , xA)
of Eq. (1), totally symmetric (or antisymmetric) with
respect to the permutations of A particles that belong
to the permutation group Sn. The permutation of
particles is nothing but a permutation of the Cartesian
coordinates xi ↔ xj , i, j = 1, . . . , A.

First, we introduce the Jacobi coordinates follow-
ing one of the possible definitions [7]

y0 =
1√
A

(
A∑

t=1

xt

)
, (2)

ys =
1√

s(s + 1)

(
s∑

t=1

xt − sxs+1

)
,

s = 1, . . . , A − 1.

In the matrix form Eqs. (2) read as

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y0

y1

y2

y3

...

yA−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= J

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2

x3

...

xA−1

xA

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1/
√

A 1/
√

A 1/
√

A 1/
√

A · · · 1/
√

A

1/
√

2 −1/
√

2 0 0 · · · 0

1/
√

6 1/
√

6 −2/
√

6 0 · · · 0

1/
√

12 1/
√

12 1/
√

12 −3/
√

12 · · · 0
...

...
...

...
. . .

...
1√

(A−1)A

1√
(A−1)A

1√
(A−1)A

1√
(A−1)A

· · · − A−1√
(A−1)A

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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The inverse coordinate transformation is imple-
mented using the transposed matrix J−1 = JT , i.e.
J is an orthogonal matrix with pairs of complex
conjugate eigenvalues, the absolute values of which
are equal to one.

The Jacobi coordinates have the property∑A−1
i=0 (yi · yi) =

∑A
i=1(xi · xi) = r2. Consequently,

A∑
i,j=1

(xij)2 = 2A
A−1∑
i=0

(yi)2

− 2

(
A∑

i=1

xi

)2

= 2A
A−1∑
i=1

(yi)2,

so that Eq. (1) takes the form
[
− ∂2

∂y2
0

+
A−1∑
i=1

(
− ∂2

∂y2
i

+ (yi)2
)

+ U(y0, . . . , yA−1) − E

]
Ψ(y0, . . . , yA−1) = 0,

U(y0, . . . , yA−1)

=
A∑

i,j=1;i<j

Upair(xij(y1, . . . , yA−1))

+
A∑

i=1

V (xi(y0, . . . , yA−1)),

which, as follows from Eq. (2), is not invariant with
respect to permutations yi ↔ yj at i, j =1, . . . , A − 1.

The construction of desirable solutions of Eq. (1)
in the form of linear combinations of the solu-
tions of Eq. (3), totally symmetric (antisymmetric)
with respect to permutations of coordinates xi ↔
xj (at i, j = 1, . . . , A) of A identical particles is
implemented using various special procedures (see,
e.g., [26–35]).

Symmetrized Coordinates

As will be shown below, a simple and clear way to
construct the states keeping the symmetry (antisym-
metry) under the permutations of A initial Cartesian
coordinates, which we refer as S (A) states, is to use
the symmetrized relative coordinates rather than the
Jacobi coordinates.

The transformation from the Cartesian coordi-
nates to one of the possible choices of symmetrized
ones ξi has the form:

ξ0 =
1√
A

(
A∑

t=1

xt

)
, (3)

ξs =
1√
A

(
x1 +

A∑
t=2

a0xt +
√

Axs+1

)
,

s = 1, . . . , A − 1,

x1 =
1√
A

(
A−1∑
t=0

ξt

)
,

xs =
1√
A

(
ξ0 +

A−1∑
t=1

a0ξt +
√

Aξs−1

)
,

s = 2, . . . , A,

or, in the matrix form,⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξ0

ξ1

ξ2

...

ξA−2

ξA−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= C

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2

x3

...

xA−1

xA

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2

x3

...

xA−1

xA

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= C−1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξ0

ξ1

ξ2

...

ξA−2

ξA−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

C =
1√
A

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 · · · 1 1

1 a1 a0 a0 · · · a0 a0

1 a0 a1 a0 · · · a0 a0

1 a0 a0 a1 · · · a0 a0

...
...

...
...

. . .
...

...

1 a0 a0 a0 · · · a1 a0

1 a0 a0 a0 · · · a0 a1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where a0 = 1/(1 −
√

A) < 0, a1 = a0 +
√

A. The
inverse coordinate transformation is performed using
the same matrix C−1 = C, C2 = I, i.e. C = CT is
a symmetric orthogonal matrix with the eigenvalues
λ1 = −1, λ2 = 1, . . . , λA = 1 and detC = −1. At
A = 2 the symmetrized variables (4) are similar up
to normalization factors to the symmetrized Jacobi
coordinates (2) considered in [36], while at A = 4
they correspond to another choice of symmetrized co-
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ordinates (ẍ4, ẍ1, ẍ2, ẍ3)T = C(x4, x1, x2, x3)T con-
sidered in [26, 37], and mentioned earlier in [38]. We
could not find a general definition of symmetrized
coordinates for A identical particles like (4) in the
available literature, so we believe that in the present
paper it is introduced for the first time.

With the relations a1 − a0 =
√

A, a0 − 1 = a0

√
A

taken into account, the relative coordinates xij ≡
xi − xj of a pair of particles i and j are expressed in
terms of the internal A − 1 symmetrized coordinates
only:

xij ≡ xi − xj = ξi−1 − ξj−1 ≡ ξi−1,j−1, (5)

xi1 ≡ xi − x1 = ξi−1 + a0

A−1∑
i′=1

ξi′ ,

i, j = 2, . . . , A.

So, if only the absolute values of xij are to be con-
sidered, then there are (A − 1)(A − 2)/2 old relative
coordinates transformed into new relative ones and
A − 1 old relative coordinates expressed in terms of
A − 1 internal symmetrized coordinates. These im-
portant relations essentially simplify the procedures of
symmetrization (or antisymmetrization) of the oscil-
lator basis functions and the calculations of the cor-
responding pair-interaction integrals V pair(xij). Note
that the symmetrized coordinates are related with the
Jacobi ones as⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y0

y1

y2

...

yA−2

yA−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= B

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξ0

ξ1

ξ2

...

ξA−2

ξA−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, B = JC

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 · · · 0 0

0 b0
1 b−1 b−1 b−1 · · · b−1 b−1

0 b+
2 b0

2 b−2 b−2 · · · b−2 b−2

0 b+
3 b+

3 b0
3 b−3 · · · b−3 b−3

0 b+
4 b+

4 b+
4 b0

4 · · · b−4 b−4
...

...
...

...
...

. . .
...

...

0 b+
A−1 b+

A−1 b+
A−1 b+

A−1 · · · b+
A−1 b0

A−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where b+
s = 1/((

√
A − 1)

√
s(s + 1)), b−s =√

A/((
√

A − 1)
√

s(s + 1)), and b0
s = (1 + s −

s
√

A)/((
√

A − 1)
√

s(s + 1)). One can see that

for the center of mass the symmetrized and Jacobi
coordinates are equal, y0 = ξ0, while the relative
coordinates are related via the (A − 1) × (A − 1)
matrix M with the elements Mij = Bi+1,j+1 and
detM = (−1)A×d, i.e. the matrix, obtained by
cancelling the first row and the first column. The
inverse transformation is given by the matrix B−1 =
(JC)−1 = CJT = BT , i.e., B is also an orthogonal
matrix.

Note, that for A = 3 and d = 1 the relation be-
tween the Jacobi coordinates

y1 = 1/
√

2(x1 − x2), y2 = 1/
√

6(x1 + x2 − 2x3)

and the symmetrized ones

ξ1 = 1/
√

3(x1 + 1/2(
√

3 − 1)x2 − 1/2(
√

3 + 1)x3),

ξ2 = 1/
√

3(x1 − 1/2(
√

3 + 1)x2 + 1/2(
√

3 − 1)x3)

is given by the orthogonal matrix M :

M =

⎛
⎝b0

1 b−1

b+
2 b0

2

⎞
⎠ (6)

=

⎛
⎝(

√
6 −

√
2)/4 (

√
6 +

√
2)/4

(
√

6 +
√

2)/4 −(
√

6 −
√

2)/4

⎞
⎠

=

⎛
⎝sin φ1 cos φ1

cos φ1 − sin φ1

⎞
⎠

=

⎛
⎝0 1

1 0

⎞
⎠

⎛
⎝cos φ1 − sin φ1

sinφ1 cos φ1

⎞
⎠

=

⎛
⎝ cos φ1 sin φ1

− sinφ1 cos φ1

⎞
⎠

⎛
⎝0 1

1 0

⎞
⎠

= M1(φ1)M0.

This transformation is a product of the permutation of
coordinates (ξ1, ξ2) → (ξ2, ξ1) and the counterclock-
wise rotation by the angle φ1 = π/12. A schematic
3D image in the left panel of Fig. 1 shows the co-
ordinate planes (marked with 1 , 2 , 3 ) and the
center-of-mass plane in R3 (its visible part having
the shape of a hexagon), together with the lines of
intersection of these planes with pair-collision planes
(xi = xj), which correspond to pair-collision lines
({xi = xj , x1 + x2 + x3 = 0}) (marked with 12, 23,
13) in the center-of-mass plane x1 + x2 + x3 = 0,
belonging to R2. Different projections of this ge-
ometry clarify the nature of the Jacobi (y1, y2) and
the symmetric (ξ1, ξ2) coordinates (middle and right
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Fig. 1. (Left panel) The coordinate planes 1, 2, 3, labelled with boxes, the center-of-mass plane in R3, and the lines of
intersection of these planes with the pair-collision planes xi = xj , corresponding to pair-collision lines {xi = xj , x1 + x2 +

x3 = 0} (labelled 12, 23, 13) in the center-of-mass plane x1 + x2 + x3 = 0, belonging to R2. (Middle and right panels)
The equilateral triangle showing the isomorphism between the group of its symmetry operations D3 in R2 and the group of
permutations S3 of three objects 1, 2, 3, labelled with circles. The symmetric (ξ1, ξ2) and Jacobi (y1, y2) coordinates, related
via the transformation (6) in the center-of-mass plane R2, respectively.

panels, respectively), related by the above transfor-
mation in the center-of-mass plane R2. This illus-
trates the isomorphism between the symmetry group
of an equilateral triangle D3 in R2 and the 3-body
permutation group S3 (A = 3), discussed in [34, 39,
40] in a different context.

At A = 4 and d = 1 the relation between the Ja-
cobi coordinates

y1 = 1/
√

2(x1 − x2),

y2 = 1/
√

6(x1 + x2 − 2x3),

y3 = 1/
√

12(x1 + x2 + x3 − 3x4)

and the symmetrized ones
ξ1 = 1/2(x1 + x2 − x3 − x4),
ξ2 = 1/2(x1 − x2 + x3 − x4),
ξ3 = 1/2(x1 − x2 − x3 + x4)

is given by the orthogonal matrix M :

M =

⎛
⎜⎜⎜⎝

b0
1 b−1 b−1

b+
2 b0

2 b−2

b+
3 b+

3 b0
3

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

0
√

2/2
√

2/2
√

6/3 −
√

6/6
√

6/6
√

3/3
√

3/3 −
√

3/3

⎞
⎟⎟⎟⎠ .

One of the possible decompositions M = M3(φ3) ×
M2(φ2)M1(φ1) of this matrix is

M =

⎛
⎜⎜⎜⎝

1 0 0

0 cos φ3 sin φ3

0 − sinφ3 cos φ3

⎞
⎟⎟⎟⎠ (7)

×

⎛
⎜⎜⎜⎝

cos φ2 sin φ2 0

− sinφ2 cos φ2 0

0 0 1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0

0 cos φ1 sin φ1

0 − sin φ1 cos φ1

⎞
⎟⎟⎟⎠ .

This transformation is a product of three counter-
clockwise rotations: the first of them by the angle
φ1 = 3π/4 about the first old axis, the second one
by the angle φ2 = π − arctan(

√
2) ≈ 16π/23 about

the third new axis, and the third one by the angle
φ3 = π/3 about the first new axis. Note, that the
second angle φ2 is supplementary to the angle be-
tween an edge and a face of a regular tetrahedron, as-
sociated with the system of symmetrized coordinates
{ξ1, ξ2, ξ3} ∈ R3. This transformation illustrates the
isomorphism between the tetrahedron group Td in
R3 and the 4-particle permutation group S4 (A = 4),
discussed in [26] in the case of d = 3. The three
transformations M = M3(φ3)M2(φ2)M1(φ1) are il-
lustrated in Fig. 2.

Note, that the transformations from the initial
coordinates to Jacobi coordinates are rotations in
A× d-configuration space, while the transformations
from the initial coordinates to the symmetrized ones
involve also permutations or reflections. The trans-
formations between Jacobi and symmetrized coordi-
nates in the center-of-mass hyperplane are rotations
in the (A − 1) × d-configuration space, but for odd
A × d they involve also a permutation or reflection.
The key point of using the symmetrized coordinates is
that in these coordinates the symmetry with respect
to a permutation of two identical particles coincides
with the symmetry with respect to a geometrical re-
flection in the (A − 2) × d-dimensional plane ξi −
ξj = 0. For example, at A = 3 and d = 1, such ((A −
2)× d = 1)-dimensional objects are lines ξi − ξj = 0,
see Fig. 1, while at A = 4 and d = 1, such ((A −
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Fig. 2. (Left panel) Intersections in R4 of the coordinate spaces R3 (labelled 1, 2, 3, 4) and the spaces R3 of pair collisions
(labelled 12, etc.) with the sphere S2 in the center-of-mass space R3. (Middle and right panels) The tetrahedron showing the
isomorphism between the group of its symmetry operations Td in R3 and the group of permutations S4 of four objects 1, 2, 3,
4, labelled with circles. The two systems of coordinates, (y1, y2, y3) and (ξ1, ξ2, ξ3), are related via the transformation (7), i.e.
via three counterclockwise rotations by the angles φ1 = 3π/4, φ2 = π − arctan

√
2, and φ3 = π/3 about the axes ξ1, ξ′3, and

y1 = ξ′′1 , respectively, are used in the text.

2) × d = 2)-dimensional objects are 2D planes. The
lines in R4, corresponding to the intersection of the
coordinate spaces R3 (labelled 1, 2, 3, 4) and the
pair-collision spaces R3 (labelled 12, etc.) with the
sphere S2 in the center-of-mass space R3 are shown
in Fig. 2.

In the symmetrized coordinates Eq. (1) takes the
form [

− ∂2

∂ξ2
0

+
A−1∑
i=1

(
− ∂2

∂ξ2
i

+ (ξi)2
)

(8)

+ U(ξ0, . . . , ξA−1) − E

]
Ψ(ξ0, . . . , ξA−1) = 0,

U(ξ0, . . . , ξA−1)

=
A∑

i,j=1;i<j

Upair(xij(ξ1, . . . , ξA−1))

+
A∑

i=1

V (xi(ξ0, . . . , ξA−1)),

which is invariant under permutations ξi ↔ ξj at
i, j = 1, . . . , A − 1, as follows from Eq. (4), i.e., the
invariance of Eq. (1) under permutations xi ↔ xj

at i, j = 1, . . . , A survives. This remarkable fact is
one of the most prominent features of the proposed
approach.

Here and below we use the oscillator units intro-
duced above.

Asymptotic Boundary Conditions
For simplicity we restrict our consideration to

the so-called s-wave approximation [1], i.e., one-

dimensional Euclidean space (d = 1). The asymp-
totic boundary conditions for the solution Ψ(ξ0, ξ) =
{Ψio(ξ0, ξ)}No

io=1 (ξ0, ξ = {ξ1, . . . , ξA−1}) have the
form

Ψ�
io

(ξ0 → ±∞, ξ) (9)

→ Φ̃io(ξ)
exp (∓ı (pioξ0))√

pio

+
No∑
j=1

Φ̃j(ξ)
exp (±ı (pjξ0))√

pj
R�

jio
(E),

Ψ�
io

(ξ0 → ∓∞, ξ)

→
No∑
j=1

Φ̃j(ξ)
exp (∓ı (pjξ0))√

pj
T�

jio
(E),

Ψ�
io

(ξ0, |ξ| → ∞) → 0.

Here, v =←,→ indicates the initial direction of
the particle motion along the ξ0 axis, No is the
number of open channels at the fixed energy E
and relative momentum p2

io = E − Eio > 0 of the
cluster; R←

jio
= R←

jio
(E), R→

jio
= R→

jio
(E) and T←

jio
=

T←
jio

(E), T→
jio

= T→
jio

(E) are unknown amplitudes of
the reflected and transmitted waves. We can rewrite
Eqs. (9) in the matrix form Ψ = ΦTF, describing the
incident wave and outgoing waves at ξ+

0 → +∞ and
ξ−0 → −∞ as

⎛
⎝F→(ξ+

0 ) F←(ξ+
0 )

F→(ξ−0 ) F←(ξ−0 )

⎞
⎠ (10)
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=

⎛
⎝ 0 X(−)(ξ+

0 )

X(+)(ξ−0 ) 0

⎞
⎠

+

⎛
⎝ 0 X(+)(ξ+

0 )

X(−)(ξ−0 ) 0

⎞
⎠S,

where the unitary and symmetric scattering matrix S

S =

⎛
⎝R→ T←

T→ R←

⎞
⎠ , S†S = SS† = I (11)

is composed of the matrices, whose elements are
reflection and transmission amplitudes that enter
Eqs. (9). These matrices possess the following
properties (see [41] for details):

T→
†T→ + R→

†R→ = Ioo (12)

= T←
†T← + R←

†R←,

T→
†R← + R→

†T← = 0 = R←
†T→ + T←

†R→,

T→
T = T←, R→

T = R→, R←
T = R←.

If V pair(xij) = V hosc(xij), then the basis functions
of (A − 1)-dimensional oscillator Φj(ξ) correspond-
ing to the energy Ei = (2

∑A−1
k=1 ik + A − 1) have the

form: (
− ∂2

∂ξ2
+ ξ2 − Ej

)
Φj(ξ) = 0, (13)

+∞∫

−∞

Φi(ξ)Φj(ξ)dA−1ξ = δij .

In the next section we describe the procedure of
constructing the required sets of basis functions that
depend on A − 1 symmetrized internal coordinates
and are symmetric (S) or antisymmetric (A) with
respect to permutation of the initial A Cartezian coor-
dinates of A identical particles and the corresponding
eigenvalues for a cluster of A identical particles in
the center-of-mass system (CMS), which we refer as
symmetrized coordinates representation.

3. SYMMETRIZED COORDINATES
REPRESENTATION

For simplicity, consider the solutions of Eq. (8)
in the internal symmetrized coordinates {ξ1, . . . ,
ξA−1} ∈ RA−1, xi ∈ R1, in the case of 1D Euclidean
space (d = 1). The relevant equation describes
an (A − 1)-dimensional oscillator with the eigen-
functions Φj(ξ1, . . . , ξA−1) and the energy eigenval-
ues Ej : [

A−1∑
i=1

(
− ∂2

∂ξ2
i

+ (ξi)2
)
− Ej

]
(14)

× Φj(ξ1, . . . , ξA−1) = 0,

Ej = 2
A−1∑
k=1

ik + A − 1,

where the numbers ik, k = 1, . . . , A − 1, are inte-
ger, ik = 0, 1, 2, 3, . . . The eigenfunctions Φj(ξ1, . . . ,
ξA−1) can be expressed in terms of the conventional
eigenfunctions of individual 1D oscillators as

Φj(ξ1, . . . , ξA−1) (15)

=
∑

2
∑A−1

k=1 ik+A−1=Ej

βj[i1,i2,...,iA−1]

× Φ̄[i1,i2,...,iA−1](ξ1, . . . , ξA−1),

Φ̄[i1,i2,...,iA−1](ξ1, . . . , ξA−1) =
A−1∏
k=1

Φ̄ik(ξk),

Φ̄ik(ξk) =
exp(−ξ2

k/2)Hik (ξk)
4
√

π
√

2ik
√

ik!
,

where Hik(ξk) are Hermite polynomials [42]. Gener-
ally, the energy level Ef = 2f + A− 1, f =

∑A−1
k=1 ik,

of an (A − 1)-dimensional oscillator is known [43]
to possess the degeneracy multiplicity p = (A + f −
2)!/f !/(A − 2)! with respect to the conventional
oscillator eigenfunctions Φ̄[i1,i2,...,iA−1](ξ1, . . . , ξA−1).
This degeneracy allows further symmetrization by

choosing the appropriate coefficients β
(j)
[i1,i2,...,iA−1]

.

Degeneracy multiplicity p of all states with the given
energy Ej is defined by formula

p =
∑

2
∑A−1

k=1 ik+A−1=Ej

Nβ, (16)

Nβ = (A − 1)!
/ Nυ∏

k=1

υk!,

where Nβ is the number of multiset permutations
(m.p.) of [i1, i2, . . . , iA−1], and Nυ ≤ A − 1 is the
number of different values ik in the multiset
[i1, i2, . . . , iA−1], and υk is the number of repetitions
of the given value ik.

Step 1. Symmetrization with Respect
to Permutation of A − 1 Particles

For the states Φs
j(ξ1, . . . , ξA−1) ≡ Φs

[i1,i2,...,iA−1]
×

(ξ1, . . . , ξA−1), symmetric with respect to permuta-
tion of A − 1 particles i = [i1, i2, . . . , iA−1], the coef-
ficients βi[i′1,i′2,...,i′A−1]

in Eq. (15) are

βi[i′1,i′2,...,i′A−1]
(17)
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Table 1. The eigenvalues Es
j = Es

[i1,i2,...,iN−1]
for the first oscillator symmetric eigenfunctions Φs

j(ξ1, . . . , ξN−1) =

|[i1, i2, . . . , iA−1]〉 = Φs
[i1,i2,...,iA−1]

(ξ1, . . . , ξA−1) with Es
j − Es

1 = 2
∑A−1

k=1 ik ≤ 10, Es
1 = A − 1 and corresponding

number Nβ of a multiset permutations [i1, i2, . . . , iA−1] of quantum numbers i1, i2, . . . , iA−1 from (16) (see (17))

A = 3 A = 4 A = 5 A = 6
Es

j − Es
1

j |[i1, i2]〉 Nβ j |[i1, i2, i3]〉 Nβ j |[i1, i2, i3, i4]〉 Nβ j |[i1, i2, i3, i4, i5]〉 Nβ

1 |[0, 0]〉 1 1 |[0, 0, 0]〉 1 1 |[0, 0, 0, 0]〉 1 1 |[0, 0, 0, 0, 0]〉 1 0

2 |[0, 1]〉 2 2 |[0, 0, 1]〉 3 2 |[0, 0, 0, 1]〉 4 2 |[0, 0, 0, 0, 1]〉 5 2

3 |[0, 2]〉 2 3 |[0, 0, 2]〉 3 3 |[0, 0, 0, 2]〉 4 3 |[0, 0, 0, 0, 2]〉 5

4 |[1, 1]〉 1 4 |[0, 1, 1]〉 3 4 |[0, 0, 1, 1]〉 6 4 |[0, 0, 0, 1, 1]〉 10 4

5 |[0, 3]〉 2 5 |[0, 0, 3]〉 3 5 |[0, 0, 0, 3]〉 4 5 |[0, 0, 0, 0, 3]〉 5

6 |[1, 2]〉 2 6 |[0, 1, 2]〉 6 6 |[0, 0, 1, 2]〉 12 6 |[0, 0, 0, 1, 2]〉 20 6

7 |[1, 1, 1]〉 1 7 |[0, 1, 1, 1]〉 4 7 |[0, 0, 1, 1, 1]〉 10

7 |[0, 4]〉 2 8 |[0, 0, 4]〉 3 8 |[0, 0, 0, 4]〉 4 8 |[0, 0, 0, 0, 4]〉 5

8 |[1, 3]〉 2 9 |[0, 1, 3]〉 6 9 |[0, 0, 1, 3]〉 12 9 |[0, 0, 0, 1, 3]〉 20

9 |[2, 2]〉 1 10 |[0, 2, 2]〉 3 10 |[0, 0, 2, 2]〉 6 10 |[0, 0, 0, 2, 2]〉 10 8

11 |[1, 1, 2]〉 3 11 |[0, 1, 1, 2]〉 12 11 |[0, 0, 1, 1, 2]〉 30

12 |[1, 1, 1, 1]〉 1 12 |[0, 1, 1, 1, 1]〉 5

10 |[0, 5]〉 2 12 |[0, 0, 5]〉 3 13 |[0, 0, 0, 5]〉 4 13 |[0, 0, 0, 0, 5]〉 5

11 |[1, 4]〉 2 13 |[0, 1, 4]〉 6 14 |[0, 0, 1, 4]〉 12 14 |[0, 0, 0, 1, 4]〉 20

12 |[2, 3]〉 2 14 |[0, 2, 3]〉 6 15 |[0, 0, 2, 3]〉 12 15 |[0, 0, 0, 2, 3]〉 20

15 |[1, 1, 3]〉 3 16 |[0, 1, 1, 3]〉 12 16 |[0, 0, 1, 1, 3]〉 30 10

16 |[1, 2, 2]〉 3 17 |[0, 1, 2, 2]〉 12 17 |[0, 0, 1, 2, 2]〉 30

18 |[1, 1, 1, 2]〉 4 18 |[0, 1, 1, 1, 2]〉 20

19 |[1, 1, 1, 1, 1]〉 1

=

⎧
⎪⎪⎨
⎪⎪⎩

1√
Nβ

, if [i′1, i
′
2, . . . , i

′
A−1] is a multiset

permutation of [i1, i2, . . . , iA−1];
0, otherwise.

In Table 1 we demonstrate the rules of correspon-
dence between the multisets of quantum numbers
[i1, i2, . . . , iA−1] and the numbers j of the eigen-
functions Φs

j(ξ1, . . . , ξA−1) for symmetric states of
an (A − 1)-dimensional harmonic oscillator with
the energy eigenvalues Es

j , enumerated in nonde-
creasing order, Es

1 = A − 1 < Es
2 ≤ Es

3 ≤ Es
4 ≤ . . .,

for A particles with the degenerate spectrum Es
j =

2
∑A−1

k=1 ik + A − 1. The corresponding isolines of
the first eight symmetric oscillator eigenfunctions
Φs

[i1,i2](ξ1, ξ2) for A = 3 are shown in Fig. 3.

With increasing A for given E′ = Es
j − Es

1 the
multiplicity of degeneracy, i.e., the number ps ≤ p

of symmetric eigenfunctions, corresponding to the
same eigenvalue, sharply increases and reaches a
plateau. At fixed A with increasing E′ the multiplicity
increases faster, when A is larger. For example, the
eigenvalue E′ = 6 at A = 2 is nondegenerate (ps =
1), at A = 3 it is doubly degenerate (ps = 2), and
at large A ≥ 4 it is triply degenerate (ps = 3). For
A = 4, when the eigenvalue increases from E′ = 8
to E′ = 10, the multiplicity increases from ps = 4 to
ps = 5, while for A = 6 under the same conditions the
multiplicity increases from ps = 5 to ps = 7.

For example, we can construct the states, an-
tisymmetric with respect to permutation of A − 1
particles with spin 1/2, in a conventional way as a
product of two determinants of K × K and [(A −
1)K] × [(A − 1)K] matrices, involving K and [(A −
1)K] states of pairs of particles with compensated
and noncompensated spins, respectively, such that
the total spin equals (A − 1)/2 − K [22, 23]. For
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Fig. 3. Profiles of the first eight oscillator s eigenfunctions Φs
[i1,i2](ξ1, ξ2), at A = 3 in the coordinate frame (ξ1, ξ2). The lines

correspond to pair collision x2 = x3, x1 = x2 and x1 = x3 of projection (x1, x2, x3) → (ξ1, ξ2) marked only in the left upper
panel by 23, 12, and 13, respectively. The additional lines are nodes of the eigenfunctions Φs

[i1,i2](ξ1, ξ2).

simplicity we consider a restricted case. The states
Φa

j (ξ1, . . . , ξA−1) ≡ Φa
[i1,i2,...,iA−1](ξ1, . . . , ξA−1), an-

tisymmetric with respect to permutation of A− 1 par-
ticles, are constructed in a conventional way

Φa
[i1,i2,...,iA−1]

(ξ1, . . . , ξA−1) =
1√

(A − 1)!
(18)

×

∣∣∣∣∣∣∣∣∣∣∣∣

Φ̄i1(ξ1) Φ̄i2(ξ1) · · · Φ̄iA−1
(ξ1)

Φ̄i1(ξ2) Φ̄i2(ξ2) · · · Φ̄iA−1
(ξ2)

...
...

. . .
...

Φ̄i1(ξA−1) Φ̄i2(ξA−1) · · · Φ̄iA−1
(ξA−1)

∣∣∣∣∣∣∣∣∣∣∣∣

,

i.e., the coefficients βi[i′1,i′2,...,i′A−1]
in Eq. (15) are ex-

pressed as βi[i′1,i′2,...,i′A−1] = εi′1,i′2,...,i′A−1
/
√

(A − 1)!,
where εi′1,i′2,...,i′A−1

is a totally antisymmetric tensor.
This tensor is defined as follows: εi′1,i′2,...,i′A−1

=
+1(−1) if i′1, i

′
2, . . . , i

′
A−1 is an even (odd) per-

mutation of the numbers i1 < i2 < . . . < iA−1 and
εi′1,i′2,...,i′A−1

= 0 otherwise, i.e., when some two num-

bers in the set i′1, i
′
2, . . . , i

′
A−1 are equal. Therefore,

for antisymmetric states the indices ik in Eq. (14)
take the integer values ik = k − 1, k, k + 1, . . .; k =
1, . . . , A − 1.

Table 2 demonstrates the rules of correspon-
dence between the multisets of quantum numbers
[i1, i2, . . . , iA−1] and the numbers j of the eigen-
functions Φa

j (ξ1, . . . , ξA−1) for antisymmetric states
of an (A − 1)-dimensional harmonic oscillator with
the energy eigenvalues Ea

j , enumerated in nonde-
creasing order, Ea

1 = (A − 1)2 < Ea
2 ≤ Ea

3 ≤ Ea
4 ≤

. . ., for A particles with the degenerate spectrum

Ea
j = 2

∑A−1
k=1 ik + A − 1. For given E′ = Ea

j − Ea
1

the number pa < p of degenerate antisymmetric
eigenfunctions is seen to equal the number pA−1

s ≤ p
of symmetric eigenfunctions with the same E′ =
Es

j − Es
1. Note, that the multisets, characterizing

symmetric states, are related with the sets, char-
acterizing antisymmetric states, by the following
rule: the first number is left unchanged, from the
second number we subtract one, from the third one
we subtract two, and so on. The corresponding
isolines of the first eight oscillator antisymmetric
eigenfunctions Φa

[i1,i2]
(ξ1, ξ2) for A = 3 are shown in

Fig. 4.
Here and below the indexes s and a are used for

the functions, symmetric (antisymmetric) under per-
mutations of A − 1 relative coordinates, constructed
at the first step of the procedure. On the contrary,
indexes S and A are used for functions, symmetric
(asymmetric) under permutations of A initial Carte-
sian coordinates. This is actually a symmetry with
respect to permutation of identical particles them-
selves; in this sense S and A states may be attributed
to boson- and fermion-like particles. However, we
prefer to use the S (A) notation as more rigorous.

Step 2. Symmetrization with Respect
to Permutation of A Particles

For A = 2 the symmetrized coordinate ξ1 corre-
sponds to the difference x2 − x1 of Cartesian coordi-
nates, so that a function even (odd) with respect to ξ1

appears to be symmetric (antisymmetric) with respect
to the permutation of two particles x2 ↔ x1. Hence,
even (odd) eigenfunctions with corresponding eigen-
values Es

j = 2(2n) + 1 (Ea
j = 2(2n + 1) + 1) describe

S (A) solutions.
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Table 2. The eigenvalues Ea
j = Ea

[i1,i2,...,iA−1] for the first oscillator antisymmetric eigenfunctions Φa
j (ξ1, . . . , ξA−1) =

|[i1, i2, . . . , iA−1]〉 = Φa
[i1,i2,...,iA−1]

(ξ1, . . . , ξA−1) from (18) with Ea
j − Ea

1 ≤ 10, Ea
1 = (A − 1)2

A = 3, Ea
1 = 4 A = 4, Ea

1 = 9 A = 5, Ea
1 = 16

Ea
j − Ea

1

j |[i1, i2]〉 j |[i1, i2, i3]〉 j |[i1, i2, i3, i4]〉

1 |[0, 1]〉 1 |[0, 1, 2]〉 1 |[0, 1, 2, 3]〉 0

2 |[0, 2]〉 2 |[0, 1, 3]〉 2 |[0, 1, 2, 4]〉 2

3 |[1, 2]〉 3 |[0, 2, 3]〉 3 |[0, 1, 3, 4]〉

4 |[0, 3]〉 4 |[0, 1, 4]〉 4 |[0, 1, 2, 5]〉 4

5 |[1, 3]〉 5 |[1, 2, 3]〉 5 |[0, 2, 3, 4]〉

6 |[0, 4]〉 6 |[0, 2, 4]〉 6 |[0, 1, 3, 5]〉 6

7 |[0, 1, 5]〉 7 |[0, 1, 2, 6]〉

7 |[2, 3]〉 8 |[1, 2, 4]〉 8 |[1, 2, 3, 4]〉

8 |[1, 4]〉 9 |[0, 3, 4]〉 9 |[0, 2, 3, 5]〉

9 |[0, 5]〉 10 |[0, 2, 5]〉 10 |[0, 1, 4, 5]〉 8

11 |[0, 1, 6]〉 11 |[0, 1, 3, 6]〉

12 |[0, 1, 2, 7]〉

10 |[2, 4]〉 12 |[1, 3, 4]〉 13 |[1, 2, 3, 5]〉

11 |[1, 5]〉 13 |[1, 2, 5]〉 14 |[0, 2, 4, 5]〉

12 |[0, 6]〉 14 |[0, 3, 5]〉 15 |[0, 2, 3, 6]〉 10

15 |[0, 2, 6]〉 16 |[0, 1, 4, 6]〉

16 |[0, 1, 7]〉 17 |[0, 1, 3, 7]〉

18 |[0, 1, 2, 8]〉

For A ≥ 3 the functions symmetric (antisymmet-
ric) with respect to permutations of Cartesian coordi-
nates xi+1 ↔ xj+1, i, j = 0, . . . , A − 1:
ΦS(A)(. . . , xi+1, . . . , xj+1, . . .) ≡ ΦS(A)(ξ1(x1, . . . ,

xA), . . . , ξA−1(x1, . . . , xA)) = ±ΦS(A)(. . . , xj+1, . . . ,
xi+1, . . .) become symmetric (antisymmetric) with
respect to permutations of symmetrized coordi-
nates ξi ↔ ξj , i, j = 1, . . . , A − 1: ΦS(A)(. . . , ξi, . . . ,

ξj , . . .) = ±ΦS(A)(. . . , ξj , . . . , ξi, . . .), as follows from
Eq. (5). However, the converse statement is not valid,
Φs(a)(. . . , ξi, . . . , ξj, . . .) = ±Φs(a)(. . . , ξj , . . . , ξi,

. . .) �⇒ Φs(a)(x1, . . . , xi+1, . . .) = ±Φs(a)(xi+1, . . . ,
x1, . . .), because we deal with a projection map
(ξ1, . . . , ξA−1)T = Ĉ(x1, . . . , xA)T , which is imple-
mented by the (A − 1) × A matrix Ĉ with the matrix
elements Ĉij = Ci+1,j , obtained from (4) by can-
celling the first row. Hence, the functions, symmetric
(antisymmetric) with respect to permutations of

symmetrized coordinates, are divided into two types,
namely, the S (A) solutions, symmetric (antisym-
metric) with respect to permutations x1 ↔ xj+1 at
j = 1, . . . , A − 1:

ΦS(A)(x1, . . . , xi+1, . . .)

≡ ΦS(A)(ξ1(x1, . . . , xA), . . . , ξA−1(x1, . . . , xA))

= ±ΦS(A)(xi+1, . . . , x1, . . .),

and the other s (a) solutions, Φs(a)(x1, . . . , xi+1,

. . .) �= ±Φs(a)(xi+1, . . . , x1, . . .), which should be
eliminated. These requirements are equivalent to
only one permutation x1 ↔ x2, as follows from (5),
which simplifies their practical implementation. With
these requirements taken into account in the Gram–
Schmidt process, implemented in a symbolic algo-
rithm SCR, we obtained the required characteristics
of S and A eigenfunctions

ΦS(A)
i (ξ1, . . . , ξA−1) (19)

PHYSICS OF ATOMIC NUCLEI Vol. 77 No. 3 2014



RESONANT TUNNELING OF A FEW-BODY CLUSTER 399
 

12 23

13

 

1

5

2

6

3

7

4

8

Fig. 4. The same as in Fig. 3, but for the first eight oscillator a eigenfunctions Φa
[i1,i2](ξ1, ξ2), at A = 3.
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Fig. 5. The same as in Fig. 3, but for the first eight oscillator S eigenfunctions ΦS
[i1,i2](ξ1, ξ2), at A = 3.

=
∑

2
∑A−1

k=1 ik+A−1=E
s(a)
i

α
S(A)
i[i1,i2,...,iA−1]

× Φs(a)
[i1,i2,...,iA−1]

(ξ1, . . . , ξA−1)

with respect to permutations of A identical particles,
the examples of which are presented in Tables 3 and 4.
Note, that for A = 4 the first four states from Table 3
are similar to those of the translation-invariant model
without excitation of the center-of-mass variable [37].
This SCR algorithm was implemented in Maple and
published in [44].

As an example, in Figs. 5 and 6 we show isolines
of the first eight S and A oscillator eigenfunctions
ΦS

[i1,i2](ξ1, ξ2) and ΦA
[i1,i2](ξ1, ξ2) for A = 3, calculated

at the second step of the algorithm. One can see
that the S (A) oscillator eigenfunctions are symmetric
(antisymmetric) with respect to reflections from three
straight lines. The first line (labelled 23) corresponds

to the permutation (x2, x3) and is rotated by π/4
counterclockwise with respect to the axis ξ1. The sec-
ond and the third lines (labelled 12 and 13) correspond
to the permutations (x1, x2) and (x1, x3) and are
rotated by π/3 clockwise and counterclockwise with
respect to the first line. These lines divide the plane
into six sectors, while the symmetric (antisymmetric)
oscillator eigenfunctions, calculated at the first step
of the algorithm, which are symmetric (or antisym-
metric) with respect to reflections from the first line,
generate the division of the plane into two parts.

The Jacobi coordinates (y1, y2) are related to the
symmetrized coordinates (ξ1, ξ2) via the orthogonal
transformation (6), i.e., the permutation of coordi-
nates (ξ1, ξ2) → (ξ2, ξ1) and the clockwise rotation
by the angle φ1 = π/12. Therefore, in the Jacobi
coordinates the lines, corresponding to pair collisions
of the particles (x2, x3), (x1, x2), and (x1, x3), will
be also clockwise rotated by the angle φ1 = π/12.
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Fig. 6. The same as in Fig. 3, but for the first eight oscillator A eigenfunctions ΦA
[i1,i2](ξ1, ξ2), at A = 3.

Counterclockwise rotation of the coordinate system
(ξ2, ξ1) to (y1, y2) by the angle φ1 = π/12 induces
a unitary transformation of the corresponding (A =
2)-oscillator functions 〈ξ2, ξ1|i2, i1〉 = Φ̄[i2,i1](ξ2, ξ1)
with j = (i2 + i1)/2:

〈j + m′, j − m′|y1, y2〉

=
m=j∑

m=−j

〈j + m′, j − m′|G21(φ1)|j + m, j − m〉

× 〈j + m, j − m|ξ2, ξ1〉.

The matrix elements 〈j + m′, j − m′|G21(φ1)|j +
m, j − m〉 are expressed as the integrals [45]:

〈j + m′, j − m′|G21(φ)|j + m, j − m〉

= dj
m′m(2φ1) =

∞∫

−∞

∞∫

−∞

dξ2dξ1〈j + m′,

j − m′|ξ2 cos φ1 + ξ1 sin φ1,

−ξ2 sin φ1 + ξ1 cos φ1〉
× 〈ξ2, ξ1|j + m, j − m〉,

where

dj
m′m(2φ1) = N j

m′m sin|m′−m| φ1

× cos|m
′+m| φ1P

|m′−m|,|m′+m|
j−(|m′−m|+|m′+m|)/2(cos(2φ1))

are Wigner functions [46], N j
m′m are the normaliza-

tion factors, Pμν
s (x) are Jacobi polynomials [42]. This

is the simplest integral representation of the oscilla-
tor Wigner functions [47].

Figure 7 shows examples of profiles of S and A
oscillator eigenfunctions ΦS,A

[i1,i2,i3]
(ξ1, ξ2, ξ3) for A =

4. Note that four maxima (black) and four minima

(grey) of the S eigenfunction ΦS
[1,1,1](ξ1, ξ2, ξ3) are po-

sitioned at the vertices of two tetrahedrons forming a
stella octangula, with the edges shown by black and
grey lines, respectively. Eight maxima and six outer
minima for S eigenfunction ΦS

[0,0,4](ξ1, ξ2, ξ3) are po-
sitioned at the vertices of a cube and an octahedron,
the edges of which are shown by black and grey lines,
respectively. The positions of twelve maxima of the
A oscillator eigenfunction, ΦA

[0,2,4](ξ1, ξ2, ξ3) coincide
with the vertices of a polyhedron with 20 triangle faces
(only 8 of them being equilateral triangles) and 30
edges, 6 of them having the length 2.25 and the other
having the length 2.66.

For A = 4 the 3D rotation (7), reducing the
coordinate system (ξ1, ξ2, ξ3) to (y1, y2, y3, ), can be
presented as a product of three counterclockwise
rotations M = M3(φ3)M2(φ2)M1(φ1) in separate
coordinate planes: by the angle φ1 = 3π/4 about the
first old axis, ξ1, by the angle φ2 = π − arctan(

√
2) ≈

16π/23 about the third new axis, ξ′3, and by the
angle φ3 = π/3 about the first new axis, y1 = ξ′′1 (see
Fig. 2). This 3D rotation induces a unitary trans-
formation of the corresponding (A = 3)-oscillator
functions 〈ξ1, ξ2, ξ3|i1, i2, i3〉 = Φ̄[i1,i2,i3](ξ1, ξ2, ξ3),
n = i1 + i2 + i3:

〈j′ + m′, j′ − m′, n − 2j′|y1, y2, y3〉

=
n/2∑
j=0

m=j∑
m=−j

〈j′ + m′, j′ − m′,

n − 2j′|G(3)|j + m, j − m,n − 2j〉
× 〈j + m, j − m,n − 2j|ξ1, ξ2, ξ3〉.

Here the matrix elements 〈j′ + m′, j − m′,
n− 2j′|G(3)|j + m, j −m,n− 2j〉 are defined as [45]

〈j′ + m′, j′ − m′,
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Fig. 7. (Upper panels) Profiles of the oscillator S eigenfunctions ΦS
[1,1,1](ξ1, ξ2, ξ3), ΦS

[0,0,4](ξ1, ξ2, ξ3) and A eigenfunction

ΦA
[0,2,4](ξ1, ξ2, ξ3), at A = 4 (left, middle, and right panels, respectively ). (Lower panels) Some maxima and minima positions

of these functions are connected by black and gray lines and duplicated: two tetrahedrons forming a stella octangula
for ΦS

[1,1,1](ξ1, ξ2, ξ3), a cube and an octahedron for ΦS
[0,0,4](ξ1, ξ2, ξ3), and a polyhedron with 20 triangle faces (only 8 of

them being equilateral triangles) and 30 edges, 6 of them having the length 2.25 and the other having the length 2.66 for
ΦA

[0,2,4](ξ1, ξ2, ξ3).

n − 2j′|G2,3(φ3)G1,2(φ2)G2,3(φ1)|j + m,

j − m,n − 2j〉

=
min(j,j′)∑

t

dj′

t−j′,m′(2φ3)d
(n−t)/2
2j′−(n+t)/2,2j−(n+t)/2

× (2φ2)d
j
m,t−j(2φ1),

where the values of t are such that the absolute values
of all t-dependent subscripts in the Wigner d func-
tions do not exceed those of the superscripts.

In the general case, the transformations of (A −
1)-dimensional oscillator functions induced by per-
mutation of coordinates and (A − 1)-dimensional
finite rotation, presented as a product of (A − 1)(A −
2)/2 rotations in separate coordinate planes, can
be constructed using the diagram method, which
reduces the analytic calculations of the (A − 1)-
dimensional oscillator Wigner functions to simple
geometric operations [47].

The degeneracy multiplicity (16), i.e., the number
p of all states with the given energy Ej , the num-
bers ps (pa) of the states, symmetric (antisymmetric)
under permutations of A − 1 relative coordinates to-
gether with the total numbers pS (pA) of the states,
symmetric (antisymmetric) under permutations of A

initial Cartesian coordinates are summarized in Ta-
ble 5 for the bottom part of the energy spectrum.

Note that the S and A states with E′ = ES,A
1 + 2

do not exist. The numbers ps (pa) are essentially
smaller than the total number p of all states, which
simplifies the procedure of constructing S (A) states
with possible excitation of the center-of-mass degree
of freedom and allows the use of a compact basis
with the reduced degeneracy pS (pA) of the S (A)
states in our final calculations. For clarity, in the case
A = 3, d = 1, the S (A)-type functions generated by
the SCR algorithm, in polar coordinates ξ1 = ρ cos ϕ,
ξ2 = ρ sin ϕ are expressed as:

ΦS(A)
k,m (ρ, ϕ) = Ckm(ρ2)3m/2 (20)

× exp(−ρ2/2)L3m
k (ρ2)

cos
sin

(3m(ϕ + π/12)),

where Ckm is the normalization constant, L3m
k (ρ2)

are the Laguerre polynomials [42], k = 0, 1, . . ., m =
0, 1, . . . for S states, while m = 1, 2, . . . for A states,
that are classified by irreducible representations of the
D3m symmetry group. The corresponding energy

levels E
S(A)
k,m = 2(2k + 3m + 1) = E

s(a)
[i1,i2]

= 2(i1 +
i2 + 1) have the degeneracy multiplicity K + 1, if

the energy E
S(A)
k,m − E

S(A)
1 = 12K + K ′, where K ′ =
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Table 3. The first few eigenvalues ES
j and the oscillator S eigenfunctions (19) at ES

j − ES
1 ≤ 10, ES

1 = A − 1 (We use
the notations |[i1, i2, . . . , iA−1]〉 ≡ Φs

[i1,i2,...,iA−1](ξ1, . . . , ξA−1) from Eqs. (15) and (17), i.e. [i1, i2, . . . , iA−1] assumes

the summation over permutations of [i1, i2, . . . , iA−1] in the layer 2
∑A−1

k=1 ik + A − 1 = E
s(a)
i )

A = 2 A = 3 A = 4 A = 5
ES

j − ES
1

j ΦS
j (ξ1) j ΦS

j (ξ1, ξ2) j ΦS
j (ξ1, ξ2, ξ3) j ΦS

j (ξ1, ξ2, ξ3, ξ4)

1 |[0]〉 1 |[0, 0]〉 1 |[0, 0, 0]〉 1 |[0, 0, 0, 0]〉 0

2 |[2]〉 2 |[0, 2]〉 2 |[0, 0, 2]〉 2 |[0, 0, 0, 2]〉 4

3 1
2 |[0, 3]〉 −

√
3

2 |[1, 2]〉 3 |[1, 1, 1]〉 3 ≈ −0.27|[0, 0, 0, 3]〉+ 0.27|[0, 0, 1, 2]〉 6

− 0.93|[0, 1, 1, 1]〉

3 |[4]〉 4
√

3
2 |[0, 4]〉 + 1

2 |[2, 2]〉 4 |[0, 0, 4]〉 4
√

2
2 |[0, 0, 0, 4]〉+

√
2

2 |[0, 0, 2, 2]〉

5 |[0, 2, 2]〉 5 ≈ −0.32|[0, 0, 0, 4]〉 − 0.39|[0, 0, 1, 3]〉 8

+ 0.32|[0, 0, 2, 2]〉+ 0.67|[0, 1, 1, 2]〉

− 0.44|[1, 1, 1, 1]〉

5
√

5
4 |[0, 5]〉 − 3

4 |[1, 4]〉 6 |[1, 1, 3]〉 6, 7 Two functions 10

−
√

2
4 |[2, 3]〉

Table 4. The first few eigenvalues EA
j and the oscillator A eigenfunctions (19) at EA

j − EA
1 ≤ 10, EA

1 = A2 − 1 (We
use the notations |[i1, i2, . . . , iA−1]〉 ≡ Φa

[i1,i2,...,iA−1](ξ1, . . . , ξA−1) from Eq. (18), i.e. [i1, i2, . . . , iA−1] assumes the

summation over the multiset permutations of [i1, i2, . . . , iA−1] in the layer 2
∑A−1

k=1 ik + A − 1 = E
s(a)
i )

A = 2, EA
1 = 3 A = 3, EA

1 = 8 A = 4, EA
1 = 15

EA
j − EA

1

j ΦA
j (ξ1) j ΦA

j (ξ1, ξ2) j ΦA
j (ξ1, ξ2, ξ3)

1 |[1]〉 1 1
2 |[0, 3]〉 +

√
3

2 |[1, 2]〉 1 |[0, 2, 4]〉 0

2 |[3]〉 2
√

5
4 |[0, 5]〉+ 3

4 |[1, 4]〉 −
√

2
4 |[2, 3]〉 2 |[0, 2, 6]〉 4

3 1
4 |[0, 6]〉 −

√
15
4 |[2, 4]〉 3 |[1, 3, 5]〉 6

3 |[5]〉 4
√

21
8 |[0, 7]〉+ 3

√
3

8 |[1, 6]〉 − 1
8 |[2, 5]〉 +

√
5

8 |[3, 4]〉 4 |[0, 4, 6]〉

5 |[0, 2, 8]〉 8

5
√

2
4 |[0, 8]〉 −

√
14
4 |[2, 6]〉 6 |[1, 3, 7]〉 10

0, 4, 6, 8, 10, 14. For example, in Figs. 5 and 6 we

show the wave functions ΦS
3,0(ρ, ϕ) and ΦS

0,2(ρ, ϕ)

(or ΦA
3,1(ρ, ϕ) and ΦA

0,3(ρ, ϕ)) labelled with 6 and 7,

corresponding to the energy levels E
S(A)
k,m − E

S(A)
1 =

12 with the degeneracy K = 2, while the functions
labelled with 1, 2, 3, 4, 5, 8 are nondegenerate (K =
1). From our calculation we conclude that the
eigenfunctions of the A identical particle system in
one dimension are degenerate like in [48], and this
result disagrees with [49]. The latter can be presented

as a linear combination of the above S (A)-type
functions.

The Parametric Symmetrized Coordinates
Representation

Now let us introduce the basis of orthonormal-
ized eigenfunctions Φ̃i(ξ; ξ0), ξ = {ξ1, . . . , ξA−1} of
a parametric (A − 1)-dimensional oscillator with the
energy eigenvalues ε̃i(ξ0):[

A−1∑
i=1

(
− ∂2

∂ξ2
i

+ (ξi)2
)

+ U(ξ0, ξ) (21)
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− ε̃i(ξ0)

]
Φ̃i(ξ; ξ0) = 0,

U(ξ0, ξ) =
A∑

i,j=1;i<j

Upair(xij(ξ)) +
A∑

i=1

V (xi(ξ0, ξ)).

We choose the parametric SCR (PSCR) basis func-
tions as linear combinations of the S and A eigen-

functions ΦS(A)
j′ (ξ) constructed above:

Φ̃i(ξ; ξ0) =
j′max∑
j′=1

α̃
(i)
j′ (ξ0)Φ

S(A)
j′ (ξ). (22)

Thus, the eigenvalue problem (21) is reduced to a
parametric linearized version of the Hartree–Fock
algebraic eigenvalue problem

j′max∑
j′=1

(δij′Ei + Uij′(ξ0) (23)

− δij′ ε̃i(ξ0))α̃
(i)
j′ (ξ0) = 0,

j′max∑
j′=1

α̃
(i′)
j′ (ξ0)α̃

(i)
j′ (ξ0) = δii′ ,

where the effective potentials Uij′(ξ0) = U
pair
ij′ +

Vij′(ξ0) are expressed in terms of the integrals

U
pair
ij′ =

∫
dA−1ξΦS(A)

i (ξ) (24)

×

⎛
⎝

A∑
k,k′=1;k<k′

Upair(xkk′(ξ))

⎞
⎠ΦS(A)

j′ (ξ),

Vij′(ξ0) =
∫

dA−1ξΦS(A)
i (ξ)

×
(

A∑
k=1

V (xk(ξ0, ξ))

)
ΦS(A)

j′ (ξ).

Taking Eqs. (15) and (19) into account, inte-
grals (24) are expressed via basis integrals

U
pair
ij (25)

=
∑

i′[i′′1 ,...,i′′A−1][j′′1 ,...,j′′A−1]j
′

α
S(A)
ii′ β

s(a)
i′[i′′1 ,...,i′′A−1]

× Ū
pair
[i′′1 ,..,i′′A−1][j

′′
1 ,..,j′′A−1]

β
s(a)
j′[i′′1 ,...,i′′A−1]

α
S(A)
jj′ ,

Vij(ξ0)

=
∑

i′[i′′1 ,...,i′′A−1][j
′′
1 ,..,j′′A−1]j

′

α
S(A)
ii′ β

s(a)
i′[i′′1 ,...,i′′A−1]

× V̄[i′′1 ,..,i′′A−1][j
′′
1 ,...,j′′A−1]

(ξ0)β
s(a)
j′[i′′1 ,...,i′′A−1]

α
S(A)
jj′ ,

Ū
pair
[i′′1 ,...,i′′A−1][j

′′
1 ,...,j′′A−1]

=
∫

dA−1ξΦ̄[i′′1 ,...,i′′A−1]
(ξ)

×

⎛
⎝

A∑
k,k′=1;k<k′

Upair(xkk′(ξ))

⎞
⎠ Φ̄[j′′1 ,...,j′′A−1]

(ξ),

V̄[i′′1 ,...,i′′A−1][j′′1 ,..,j′′A−1]
(ξ0)

=
∫

dA−1ξΦ̄[i′′1 ,...,i′′A−1]
(ξ)

×
(

A∑
k=1

V (xk(ξ0, ξ))

)
Φ̄[j′′1 ,...,j′′A−1]

(ξ).

If Uij′(ξ0) = U
pair
ij′ are independent of ξ0, then ε̃i(ξ0) =

ε̃i and α̃
(i)
j′ (ξ0) = α̃

(i)
j′ are also independent of ξ0, and

Eq. (22) reduces to

Φ̃i(ξ) =
j′max∑
j′=1

α̃
(i)
j′ ΦS(A)

j′ (ξ). (26)

Moreover, if U
pair
ij′ = 0, then ε̃i = E

S(A)
i and α̃

(i)
j′ =

δij′ , and Eq. (26) reduces to Eq. (19). The solutions
of the parametric eigenvalue problem (23) and their
derivatives with respect to parameter ξ0 are calculated
by means of algorithms [50, 51].

An example of such parametric basis of S type
at A = 2 was considered earlier [1, 18]. The case
A ≥ 3 will be considered elsewhere. The algebraic
problem in symmetrized coordinates can be rewritten
also in terms of the integrals that involve the eigen-
functions of (A − 1)-dimensional harmonic oscillator
in Jacobi coordinates, making use of the interbasis
coefficients, generated by the transformations with
(A − 1)-dimensional oscillator Wigner functions,
described in the previous subsection.

4. CLOSE-COUPLING EQUATIONS
IN THE SCR

Now we proceed to seeking the solution of the
problem (8) in the symmetrized coordinates in the
form of Galerkin expansion

Ψio(ξ0, ξ) =
jmax∑
j=1

Φ̃j(ξ)χjio(ξ0), (27)

where χi(ξ0) are unknown functions

χjio(ξ0) =
∫

dA−1ξΦ̃j(ξ)Ψio(ξ0, ξ),

and Φ̃j(ξ) are the orthonormalized basis eigenfunc-
tions (26) of the (A − 1)-dimensional oscillator with
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Fig. 8. (Left panel) Gaussian-type potential (30) at σ = 0.1 (in oscillator units). (Right panel) Corresponding 2D barrier
potential at α = 1/10, σ = 0.1.

the energy eigenvalues Ei, Eq. (14), constructed in
the SCR.

The set of close-coupling Galerkin equations in
the symmetrized coordinates has the form[

− d2

dξ2
0

+ ε̃i − E

]
χiio(ξ0) (28)

+
jmax∑
j=1

Ṽij(ξ0)χjio(ξ0) = 0,

where the effective potentials Ṽij(ξ0) are calculated by
means of Vij(ξ0) from (24)

Ṽij(ξ0) =
j′max∑
j′=1

j′max∑
j′′=1

α̃
(i)
j′ Vj′j′′(ξ0)α̃

(j)
(j′′), (29)

and a set of the eigenvectors α̃
(i)
j′ of the nonparamet-

ric algebraic problem (23) under the above condition
Uij′(ξ0) = U

pair
ij′ �= 0. In the examples considered

below we put Uij′(ξ0) = U
pair
ij′ = 0 in (23), then we

have ε̃i = E
S(A)
i , α̃

(i)
j′ = δij′ and Ṽij(ξ0) = Vij(ξ0).

The repulsive barrier is chosen to be Gaussian

V (xi) =
α√
2πσ

exp
(
−x2

i

σ2

)
. (30)

Figure 8 illustrates the Gaussian potential and the
corresponding barrier potentials in symmetrized co-
ordinates at A = 2. This potential has the oscillator-
type shape, and two barriers are crossing at the right
angle. In the case A ≥ 3 the hyperplanes of barriers
are crossing at the right angle, too. The effective po-
tentials Vij(ξ0) calculated using symbolic algorithm
SCR described in the previous section are shown in
Figs. 9 and 10. In comparison with the symmetric

basis, for antisymmetric one the increase of the num-
bers i and/or j results in stronger oscillation of the
effective potentials Vij and weaker decrease of them to
zero at ξ0 → ∞. At A = 2 all effective potentials are
even functions, and at A ≥ 3 some effective potentials
are odd functions.

We can also seek for the solution of the problem (8)
in symmetrized coordinates in the form of the Kan-
torovich expansion

Ψio(ξ0, ξ) =
jmax∑
j=1

Φ̃j(ξ; ξ0)χ̃jio(ξ0). (31)

Here χ̃iio(ξ0) are unknown functions

χ̃jio(ξ0) =
∫

dA−1ξΦ̃j(ξ; ξ0)Ψio(ξ0, ξ),

and Φ̃i(ξ; ξ0) are the orthonormalized basis eigen-
functions of the parametric (A − 1)-dimensional os-
cillator with eigenenergies Ẽi(ξ0) from Eq. (21) in
the PSCR. Taking Eqs. (15) and (13) into account,
the set of the close-coupling equations in the Kan-
torovich form reads as[

− d2

dξ2
0

+ ε̃i(ξ0) − E

]
χ̃iio(ξ0) (32)

+
jmax∑
j=1

[
Hij(ξ0) +

d

dξ0
Qij(ξ0) + Qij(ξ0)

d

dξ0

]

× χ̃jio(ξ0) = 0,

where the effective potentials Hij(ξ0) and Qij(ξ0) are
calculated

Hij(ξ0) =
j′max∑
j′=1

dα̃
(i)
j′ (ξ0)

dξ0

dα̃
(j)
j′ (ξ0)

dξ0
, (33)
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Table 5. The degeneracy multiplicities p from (16), ps = pa and pS = pA of s, a, S, and A eigenfunctions of the oscillator
energy levels ΔEj = E•

j − E•
1 (• = 0, s, a, S, A)

A = 3 A = 4 A = 5 A = 6
ΔEj

p ps, pa pS , pA p ps, pa pS , pA p ps, pa pS , pA p ps, pa pS , pA

1 1 1 1 1 1 1 1 1 1 1 1 0

2 1 0 3 1 0 4 1 0 5 1 0 2

3 2 1 6 2 1 10 2 1 15 2 1 4

4 2 1 10 3 1 20 3 1 35 3 1 6

5 3 1 15 4 2 35 5 2 70 5 2 8

6 3 1 21 5 1 56 6 2 126 7 2 10

7 4 2 28 7 3 84 9 3 210 10 4 12

Table 6. Resonance values of the energy ES (EA) (in oscillator units) for S (A) states for A = 2, 3, 4 (σ = 1/10, α = 20)
with approximate eigenvalues ED

i , for the first ten states i = 1, . . . , 10, calculated using the truncated oscillator basis
(D) till jmax = 136, 816, 1820 at A = 2, 3, 4

i 1 2 3 4 5 6 7 8 9 10

A = 2

ES 5.72 9.06 9.48 12.46 12.57 13.46 15.74 15.78 16.65 17.41

EA 5.71 9.06 9.48 12.45 12.57 13.45 15.76∗ 15.76∗ 16.66 17.40

ED
i 5.76 9.12 9.53 12.52 12.64 13.52 15.81 15.84 16.73 17.47

A = 3

ES 8.18 11.11 12.60 13.93 14.84 15.79 16.67

8.31 11.23 14.00 14.88 16.73

EA 11.55 14.46 16.18

11.61 14.56 16.25

ED
i 8.19 11.09 11.52 12.51 13.86 14.42 14.74 15.67 16.11 16.53

A = 4

ES 10.12 11.89 12.71 14.86 15.19 15.41 15.86 16.37 17.54 17.76

ED31
i 10.03 12.60 14.71 15.04 16.18 17.34 17.56

ED22
i 11.76 15.21 15.64

∗ Two overlapping peaks of transmission probability.

Qij(ξ0) = −
j′max∑
j′=1

α̃
(i)
j′ (ξ0)

dα̃
(j)
j′ (ξ0)

dξ0
,

using the solutions ε̃i(ξ0) and α̃
(i)
j′ (ξ0), and their first

derivatives of the parametric algebraic eigenvalue
problem (23). Note, that the PSCR constructed
in the above form with the long derivative Dij =
δijd/dξ0 − Qij(ξ0) can be treated as an alternative
version [52] of the method of generator coordinates

with velocity-dependent effective potential [53, 54].
Indeed, equations (32) can be rewritten in the terms
of long derivatives Dij , which apply in some adiabatic
calculations

jmax∑
j=1

[
−D2

ij + Fij(ξ0) + (ε̃i(ξ0) − E)δij

]
(34)

× ˜̃χjio(ξ0) = 0.
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S states of the particles at σ = 0.1. j is the number of the state in Table 3.
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Fig. 10. The same as in Fig. 9 but for A states. j is the number of state in Table 4.

However, the curvature matrix elements

Fij(ξ0) = Hij(ξ0) −
j′′max∑
j′′=1

Qij′′(ξ0)Qj′′j(ξ0)

tend to zero only at j′′max � j′max � jmax. This fact
explains the different rate of convergence of approx-
imate solutions to exact ones with increasing jmax
in different calculations. The asymptotic form of the
matrix solution χ̃jio(ξ0), compatible with (9), was
derived earlier in [18].

Thus, the scattering problem (8) with the asymp-
totic boundary conditions (9) is reduced to the
boundary-value problem for the set of close-coupling
equations in Galerkin or Kantorovich form, (28)
or (32), with the boundary conditions at d = 1, ξ0 =
ξmin and ξ0 = ξmax:

dF(ξ0)
dξ0

∣∣∣∣
ξ0=ξmin

= R(ξmin)F(ξmin), (35)

dF(ξ0)
dξ0

∣∣∣∣
ξ0=ξmax

= R(ξmax)F(ξmax),

where R(ξ) is an unknown jmax × jmax matrix func-
tion, F(ξ0) = {χio(ξ0)}No

io=1 = {{χjio(ξ0)}jmax
j=1}

No
io=1

is the required jmax × No matrix solution, and No

is the number of open channels, No = max
2E≥Ej

j ≤

jmax, calculated using the third version of KANTBP
program [55], described in [18, 41].

5. RESONANCE TRANSMISSION
OF A FEW COUPLED PARTICLES

In the case of V pair(xij) = V hosc(xij), the solution
of the scattering problem described above yields the
reflection and transmission amplitudes Rjio(E) and
Tjio(E) that enter the asymptotic boundary condi-
tions (9) as unknowns. |Rjio(E)|2 (|Tjio(E)|2) is the
probability of a transition to the state, described by
the reflected (transmitted) wave and, hence, will be
referred as the reflection (transmission) coefficient.
Note that |Rjio(E)|2 + |Tjio(E)|2 = 1.

In Figs. 11, 12, and 13 we show the energy de-
pendence of the total transmission probability |T |2ii =∑No

j=1 |Tji(E)|2. This is the probability of a transition
from a chosen state i into any of No states, found from
Eq. (27) by solving the boundary-value problem in the
Galerkin form, (28) and (35), with the KANTBP pro-
gram [55] on the finite-element grid Ωξ{−ξmax

0 , ξmax
0 }

with Nelem fourth-order Lagrange elements between
the nodes. For S solutions at N = 2, 3, 4 the follow-
ing parameters are used: jmax = 13, 21, 39, ξmax

0 =
9.3, 10.5, 12.8, Nelem = 664, 800, 976, while for A
solutions jmax = 13, 16, 15, ξmax

0 = 9.3, 10.5, 12.2,
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Fig. 11. The total transmission probabilities |T |211 vs energy E (in oscillator units) from the ground state of the system of
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Fig. 12. The same as in Fig. 11 but for A states of the particles.

Nelem = 664, 800, 976. Figures 11 and 12 demon-
strate the nonmonotonic behavior of the probability
versus the energy, and the observed resonances are
manifestations of the quantum transparency effect.
With the barrier height increasing, the peaks become
narrower and their positions shift to higher energies.
The multiplet structure of the peaks in the symmetric
case is similar to that in the antisymmetric case. For
three particles the major peaks are double, while for
two and four particles they are single. For A = 2
and α = 10, 20 one can observe additional multiplets

of small peaks. Figure 13 illustrates the energy
dependence of transmission probabilities from the
exited states. As the energy of the initial excited state
increases, the transmission peaks demonstrate a shift
towards higher energies, the set of peak positions
keeping approximately the same as for the transitions
from the ground state and the peaks just changing
one position for another, like it was observed in the
model calculations [14]. For example, for A = 3
the position of the third peak for transitions from
the first two states (E = 10.4167 and E = 10.4156)
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coincides with the position of the first peak for the
transitions from the second two states (E = 10.4197
and E = 10.4298).

The effect of quantum transparency is caused by
the existence of barrier quasistationary states, em-
bedded in the continuum. Figure 14 shows that in the
case of resonance transmission the wave functions,
depending on the center-of-mass variable ξ0, are lo-
calized in the vicinity of the potential barrier center
(ξ0 = 0).

For the energy values, corresponding to some of
the transmission coefficient peaks in Fig. 11 at α =
10 within the effective range of barrier potential ac-
tion, the wave functions demonstrate considerable
increase (from two to ten times) of the probability
density in comparison with the incident unit flux. This
is a fingerprint of quasistationary states, which is not
a quantitative definition, but a clear evidence in favor
of their presence in the system [56, 57].

In the case of total reflection the wave functions
are localized at the barrier side, on which the wave
is incident, and decrease to zero within the effective
range of the barrier action.

Note that the explicit explanation of quantum
transparency effect is achieved in the frame of Kan-
torovich close-coupling equations (32) because of
the multi-barrier potential structure of the effective
potential (33), appearing explicitly even in the diag-
onal or adiabatic approximation, in particular, in the
S case for A = 2 [1, 18]. Nevertheless, in Galerkin
close-coupling equations the multi-barrier potential
structure of the effective potential is observed explic-
itly in the A case (see Fig. 10).

As an example, Fig. 15, which is an epure of
Fig. 11, shows the comparison of convergence rates
of Galerkin (27) and Kantorovich (31) close-coupling
expansions in calculations of transmission coefficient

|T |211 for S wave functions, A = 2 at α = 10, σ = 0.1.
One can see that the diagonal approximation of the
Kantorovich method provides better approximations
of the positions of the transmission coefficient |T |211
resonance peaks. With the increasing number of ba-
sis functions, i.e., the number jmax of close-coupling
equations with respect to the center-of-mass coor-
dinates in Galerkin (28) and Kantorovich (32) form,
respectively, the convergence rates are similar and
confirm the results obtained by solving the problem by
means of the Finite-Difference Numerov method in
2D domain [1]. This is true for the considered short-
range potentials (30), while for long-range potentials
of the Coulomb type the Kantorovich method can be
more efficient [18].

Figure 16 shows the profiles of |Ψ|2 ≡ |Ψ(−)
Em→|2

for the S and A total wave functions of the continuous
spectrum in the (ξ0, ξ1) plane with A = 2, α = 10,
σ = 1/10 at the resonance energies of the first and the
second maximum and the first minimum of the trans-
mission coefficient demonstrating resonance trans-
mission and total reflection, respectively. It is seen
that in the case of resonance transmission the redis-
tribution of energy from the center-of-mass degree of
freedom to the internal (transverse) ones takes place,
i.e., the transverse oscillator undergoes a transition
from the ground state to the excited state, while in
the total reflection the redistribution of energy is ex-
tremely small and the transverse oscillator returns to
infinity in the same state.

In Table 6 we present the resonance values of the
energy ES (EA) calculated by solving the boundary-
value problem (28) and (35), using the KANTBP 3.0
program, for S (A) states at A = 2, 3, 4, σ = 1/10,
α = 20 that correspond to the maxima of transmis-
sion coefficients |T |2ii in Fig. 11 up to the values of en-
ergy E < 18 and the corresponding resonance values
of the energy ED calculated by means of the Dirichlet
conditions (DC) algorithm. One can see, that the
accepted approximation of narrow barrier with im-
permeable walls using in the DC algorithm provides
an appropriate approximation ED

i of the above high
accuracy results ES (EA) with the error smaller than
2%. Below we give a comparison and qualitative
analysis of the obtained results.

In the considered case the potential barrier V (xi)
is narrow and V pair(xij) = V hosc(xij), so that we
solve Eq. (1) in the Cartesian coordinates x1, . . . , xA

in one of the 2A–2 subdomains, defined as pixi > 0,
pi = ±1, with the DC: Ψ(x1, . . . , xA)|∪A

i=1{xi=0} = 0

at the internal boundaries ∪A
i=1{xi = 0}. Here, the

value pi = ±1 indicates the location of the ith particle
at the right or left side of the barrier, respectively.
Thus, in the DC procedure we seek for the solution in
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Fig. 16. The profiles of probability densities |Ψ(ξ0, ξ1)|2 for the S (left panels) and A (right panels) states of A = 2 particles,
revealing resonance transmission and total reflection at resonance energies, depicted in Figs. 11 and 12.

the form of a Galerkin expansion over the orthogonal
truncated oscillator basis, ΨD

i (x) =
∑jmax

j=1 Φ̄j(x)ΨD
ji

composed of A-dimensional harmonic oscillator
functions Φ̄j(x), odd in each of the Cartesian coordi-

nates x1, . . . , xA in accordance with the above DCs,
with unknown coefficients ΨD

ji. As a result, we arrive

at the algebraic eigenvalue problem DΨD = ΨDED

with a dense real-symmetric jmax × jmax matrix. So,
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in the DC procedure we seek for an approximate
solution in one of the potential wells, i.e., we neglect
the tunnelling through the barriers between wells.
Therefore, we cannot observe the splitting, inherent in
exact eigenvalues, corresponding to S and A eigen-
states, differing in permutation symmetry. However,
we can explain the mechanism of their appearance
and give their classification, which is important, too.
The DC algorithm was implemented in CAS Maple
and Fortran environment and published in [58].

Remark. The DC procedure is similar to solving
Eq. (8) in the symmetrized coordinates ξ0, ξ related
to the Cartesian ones via Eq. (3), implemented by the
following two steps:

(i) we approximate the narrow barriers by impene-
trable walls xk(ξ0, ξ) = 0;

(ii) we superpose these mutually perpendicular
walls with the coordinate hyperplanes using rota-
tions.

Actually, the two approaches yield the same
boundary-value problem, formulated in different co-
ordinates (1), (8).

Below we give a comparison and qualitative anal-
ysis of the obtained results. For two particles, A = 2
(see Fig. 8), there are two symmetric potential wells.
In each of them both symmetric and asymmetric
wave functions are constructed. Since the poten-
tial barrier, separating the wells, is sufficiently high,
the appropriate energies are closely spaced, so that
each level describes the states of both S and A type.
The lower energy levels form a sequence “singlet–
doublet–triplet, etc.”, which is seen in Fig. 11. The
resonance transmission energies for a pair of particles
in S states is lower than that for a pair of those in A
states. This is due to the fact that in the vicinity of the
collision point the wave function is zero.

When A = 3, there are six similar wells, three of
them at each side of the plane ξ0 = 0. The symmetry
with respect to the plane ξ0 = 0 explains the presence
of doublets. The presence of states with definite
symmetry is associated with the fact that the axis
ξ0 is a third-order symmetry axis. However, in
contrast to the case A = 2, one can obtain either
S or A combinations of states. For example, the
first four solutions of the problem, in one of the
wells (e.g., the one restricted with the pair-collision
planes “13” and “23”) possess the dominant compo-
nents 2

√
2Φ̄1(x1)Φ̄1(x2)Φ̄1(x3), 2(Φ̄1(x1)Φ̄3(x2) +

Φ̄3(x1)Φ̄1(x2))Φ̄1(x3), 2(Φ̄1(x1)Φ̄3(x2) − Φ̄3(x1) ×
Φ1(x2))Φ̄1(x3), 2

√
2Φ̄1(x1)Φ̄1(x2)Φ̄3(x3). Note,

that the first, second, and fourth of these functions are
symmetric with respect to the permutation x1 ↔ x2,
while the third one is antisymmetric. Hence, in all six
wells using the first four solutions one can obtain six
S and two A states.

When A = 4 there are 14 wells. Six wells in the
center correspond to the case when two particles are
located at one side of the barrier and the rest two at the
other side. The corresponding eigenenergy is denoted
as ED22

i . The rest eight wells correspond to the case
when one particle is located at one side of the barrier
and the rest three at the other side. The corresponding
eigenenergy is denoted as ED31

i . For these states
doublets must be observed, similar to the case of
three particles. However, the separation between the
energy levels is much smaller, because the 4-well
groups are strongly separated by two barriers, instead
of only one barrier in the case A = 3.

The necessary condition for the quasi-stationary
state being symmetric (antisymmetric) is that the
wave functions must be symmetric (antisymmetric)
with respect to those coordinates xi and xj , for which
pi = pj .

6. CONCLUSION

We considered a model of A identical particles
bound by the oscillator-type potential that undergo
quantum tunnelling through the short-range repul-
sive barrier potentials. The model was formulated
in the new representation, which we referred as
symmetrized coordinate representation (SCR). The
constructive method of symmetrizing or antisym-
metrizing the harmonic oscillator basis functions
in the new symmetrized coordinates was described.
We had shown that the transformations of (A −
1)-dimensional oscillator basis functions from the
symmetrized coordinates to the Jacobi coordinates,
reducible to permutations of coordinates and (A −
1)-dimensional finite rotation, are implemented by
means of the (A− 1)-dimensional oscillator Wigner
functions [45], while the reduction of the SCR in the
Cartesian coordinates to the hyperspherical ones is
given by means of the Clebsch–Gordan coefficients
of the interbasis expansions [47]. One can use
the above transformations to recalculate the SCR,
(A − 1)-harmonic oscillator functions of symmetric
or antisymmetric type with respect to permutations
of Cartesian coordinates of A identical particles,
in desirable sets of Jacobi and/or hyperspherical
coordinates.

For clarity a system of several identical particles in
one-dimensional Euclidean space (d = 1) was con-
sidered with a discrete spectrum of relative motion in
the center-of-mass coordinate system, described by
the internal symmetrized variables, and a continuous
spectrum of the center-of-mass motion, described by
the external variable. We calculated only the spatial
part of the wave function, symmetric or antisym-
metric under permutation of A identical particles. If
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necessary, the spin part of the wave function can
be determined using the conventional procedure and
included in a more rigorous calculation.

The multichannel scattering problem for the
Schrödinger equation with several short-range re-
pulsive barriers was formulated. The problem was
reduced to the boundary-value problem for a set of the
close-coupling second-order differential equations
with respect to the longitudinal variable on the whole
axis. This was implemented by expanding the wave
function over the oscillator basis of several bound par-
ticles possessing symmetry or antisymmetry under
permutations of A initial Cartesian coordinates.

We analyzed the effect of quantum transparency,
i.e., the resonance tunnelling of several bound parti-
cles through repulsive potential barriers. We demon-
strated that this effect is due to the existence of the
sub-barrier quasi-stationary states, embedded in the
continuum. For the considered type of symmetric
Gaussian barrier potential the positions of the en-
ergies of the S and A quasi-stationary states have
a small difference, because of the similar multiplet
structure of oscillator energy levels at a fixed number
of particles. This fact explains the similar behavior of
transmission coefficients from S and A states shifted
by the threshold energies. However, the multiplet
structure of energy positions of these states is varied
with increasing number of particles such that for three
particles the major peaks are double, while for two
and four particles they are single. Our calculations
also show that with the increasing energy of the initial
excited state of few-body clusters, the transmission
peaks demonstrate a shift towards higher energies,
the set of peak positions keeping approximately the
same as for the transitions from the ground state and
the peaks just skipping from one position for another.

The proposed approach can be adapted and ap-
plied to the analysis of tetrahedral-symmetric nu-
clei, the study of quantum diffusion of molecules and
micro-clusters through surfaces and the fragmenta-
tion mechanism in producing very neutron-rich light
nuclei. In connection with the intense search for su-
perheavy nuclei, a particularly significant application
of the proposed approach is the mathematically cor-
rect analysis of mechanisms of sub-barrier fusion of
heavy nuclei and the study of fusion rate enhancement
by means of resonance tunnelling.
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