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Abstract
With the aim of finding an appropriate description of the state of an ejected electron from a
linear three-centre molecular target, a wavefunction is constructed in a closed analytical form
by solving the Schrödinger equation of an unbound electron (with wave vector k) in a
Coulomb field of three fixed charged nuclei. The model, which is an extension of a two-centre
model developed in the past, fulfils the correct boundary conditions asymptotically up to the
order O((kr)−2). It is employed, in the frame of a perturbative first Born three-centre
procedure, to the determination of the multiply differential cross sections (MDCS) of the
(e,2e) simple ionization of the valence 1πg level of CO2, for which experimental results were
given recently. The ionization of the inner 1πu and 3σu levels of CO2 are also investigated by
this approach. The study of the variation of the MDCS with the direction of the scattered
electron and the ejected electron in the case of oriented three-centre targets shows interference
patterns similar to those created by the diffraction of light by three apertures.

1. Introduction

The scattering of an electron by two- or three-centre targets
is one of the basic problems in collisional processes involving
diatomic and polyatomic linear molecular targets [1]. In
the case of simple (e, 2e) ionization experiments, where the
ejected and the scattered electrons are detected in coincidence
(see [2] and [3] for a general review), the basic difficulty
for diatomic targets, besides that of the separation of the
vibrational and rotational movements of the nuclei [4], consists
of the determination of the continuum wavefunction of the
slow ejected electron in the attractive field of the fixed
centres. Usually one-centre approximate models are used
by constructing large partial one-centre Coulomb or distorted
waves [5] centred on one of the nuclei of the linear molecule
for the homo-nuclear targets like Li2 [6], or centred on the the
heaviest atom of the target, as in the case of H2O [7]. Serov
and collaborators [8] have used the exact solutions of the two-
centre Schrödinger equation, which is separable in prolate
spheroidal coordinates, to construct the wave, describing

the relatively slow (10 eV) ejected electron in the (e, 2e)
experiments of H+

2 [8] and H2 [9].
We have proposed in the past an elegant two-centre

Coulomb continuum (TCC) wavefunction [10] satisfying the
correct boundary conditions, which produces results of the
same quality as the exact solutions for the ionization of H+

2.
This function is now considered by different groups [11–13]
as a very good choice in the study the two-centre aspects in
a variety of situations, where diatomic systems are involved,
beyond strictly electron–molecule collision processes. The
original TCC model has slightly been modified [14] by the
introduction of a supplementary parameter, which adds a
certain flexibility to the function and adapts it to more general
situations. We will refer to this as the modified two-centre
continuum (MTCC).

The aim of the present work is to extend the TCC model
to the three-centre case and apply it to the ionization of CO2,
which is the most common linear three-centre target, for which
(e, 2e) experiments have been realized [15, 16]. Besides
the direct interest of modelling the experiments, we want
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to verify if the variation of the multiply differential cross
section (MDCS) of a three-centre target with the scattering
and ejection angles can show interference patterns similar to
those already predicted for the two-centre case [10].

2. Theory

For the determination of the MDCS of the (e, 2e) simple
ionization of CO2, where the ejected and scattered electrons
are detected in coincidence, which will be considered as a
three-centre collinear molecule, we will employ, as in our
previous publication [14], a first-order Born series perturbative
procedure. The MDCS of a general out-of-plane detection of
the scattered and ejected electrons in the case of an oriented
linear CO2 target is fourfold given by

σ (4)(ρ) = d4σ

d�ρ d�s d�ed
(
k2
e /2

) = kske

ki

×
⎧⎨
⎩

2−1
(∣∣T m=−1

f i

∣∣2
+

∣∣T m=1
f i

∣∣2)
for 1πg and 1πu,∣∣T m=0

f i

∣∣2
for 3σu,

(1)

where d�s , d�e and d�ρ are respectively the elements of the
solid angles for the orientations of the scattered and the ejected
electrons and the internuclear axis ρ. ki , ks and ke represent
respectively the moduli of the wave vectors of the incident,
scattered and ejected electrons. m is the electronic magnetic
quantum number corresponding to the level from which the
electron will be ejected.

In the case of randomly oriented targets, we must pass to
the triple differential cross section (TDCS) by integrating over
all possible and equally probable directions of the molecule in
space:

σ (3) = 1

4π

∫
d�ρσ

(4)(ρ). (2)

The conservation of the kinetic energy is given by

Ei = Es + Ee + I, (3)

where Ei , Es and Ee represent respectively the energy values
of the incident, scattered and ejected electrons. I gives the
energy necessary to eject an electron from the particular level
of the CO2 target [15, 17]:

I =
⎧⎨
⎩

13.77 eV for 1πg,

17.31 eV for 1πu,

18.07 eV for 3σu.

(4)

In the limits of the ‘frozen-core’ model of the electronic
structure of the target, the T matrix element T m

f i involves only
two electrons, the fast incident (scattered) and the bound (slow
ejected) electrons. It is given here as the matrix element of the
first term of the Born perturbative series:

T m
f i = 1

2π

∫
dr

∫
dR exp (ı(kiR − ksR))

× λ̄f (r, ρ)V λm
i (r, ρ). (5)

Here, the fast incident and scattered electrons are reasonably
described by plane waves, (2π)−3/2 exp(ıkiR) for the
incident electron and (2π)−3/2 exp(ıksR) for the scattered.
λm=±1

i (r, ρ) can be identified as a Dyson orbital [18, 19] of
the bound electron in the initial state in the body fixed system
of reference, and λf (r, ρ) the wavefunction of the ejected
electron in the final state. The carbon atom is found at the
origin of the system of reference, and the two oxygen atoms
on the z axis, respectively, at −ρ/2 and ρ/2. r = rC refers
to the position of the bound (ejected) electron with respect to
the carbon centre. The position of this electron with respect to
the two oxygen centres O1 and O2 is given by rO1 = r + ρ/2
and rO2 = r − ρ/2. The potential V represents the interaction
between the incident electron and the target, which will be
approximated here by the Coulomb interactions of the incident
electron with the bound electron and the screened carbon and
oxygen nuclei:

V = − ZO1

|R + ρ/2| − ZC
R

− ZO2

|R − ρ/2| +
1

|R − r| . (6)

The positive charges of the three-centres given by ZO1 � 0,
ZC � 0, ZO2 � 0 satisfy the condition ZO1 + ZC + ZO2 = 1 as
the target is globally neutral. They will be chosen empirically.

Using the Bethe transformation for R in equation (5)∫
dR

exp(ıKR)

|R − r| = 4π exp(ıKr)
K2

, (7)

with K = ki − ks being the momentum transfer, the transition
matrix element T m

f i will be reduced to

T m
f i = 2

K2

∫
dr λ̄f (r, ρ)λm

i (r, ρ)
(−ZO1 exp(−ıKρ/2)

−ZC − ZO2 exp(ıKρ/2) + exp(ıKr)
)
, (8)

where the integrations is over the space coordinates of the
ejected electron. The orientation of the molecule will be given
by ρ of constant modulus ρ = 4.39 au for the equilibrium
position of CO2.

2.1. The initial state wavefunctions

The initial ground-state configuration of CO2 is given by
[20, 21]

1σ 2
g 1σ 2

u 2σ 2
g 3σ 2

g 2σ 2
u 4σ 2

g 3σ 2
u 1π4

u1π4
g . (9)

We will consider the (e, 2e) ionization of the three outermost
levels. For each of these bound levels, we will present results
obtained by two different bases. One is obtained by the
molecular orbitals given by Mulligan [20], which we will
designate by the minimal basis and the other obtained by the
application of a molecular orbital obtained by the Slater-Type
Orbital Package (STOP) [22, 23], which we will designate
as the extended basis. The molecular orbitals proposed by
McLean [21] give very similar results to those of [20], so we
will not present them here.

The molecular orbitals of the extended bases
corresponding to the above three levels are constructed by the

2
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Figure 1. Variation of the TDCS in terms of the ejection angle θe of the ionization of the 1πg level of CO2 for different values of the
parameters Za = Zb = 0.1(0.1)0.4 and Zc = 1 − 2Za . The energy of the scattered electron Es = 500 eV which is detected at an angle
θs = −6◦ in coincidence with the ejected electron with the energy Ee = 37 eV. Full line: the extended basis set [25]. Dashed line: the
minimal basis set [20]. The experimental cross section [16] normalized on the binary pick of the theoretical cross section with the extended
basis set.

linear combinations of Slater-type 1s, 2s, 2p and 3d orbitals
that we define in the following way:

1s =
√

ξ 3
1

π
exp(−ξ1r),

2s =
√

ξ 5
2

3π
r exp(−ξ2r), 2pz =

√
ξ 5

3

π
z exp(−ξ3r),

2px =
√

ξ 5
3

π
x exp(−ξ3r), 2py =

√
ξ 5

3

π
y exp(−ξ3r),

3dzz =
√

ξ 7
4

18π
(2z2 − x2 − y2) exp(−ξ4r),

3dxz =
√

2ξ 7
4

3π
xz exp(−ξ4r), 3dyz =

√
2ξ 7

4

3π
yz exp(−ξ4r).

They will be centred on each atom designated here by O1, C
and O2.

For the 1πg level, the following function is used
λm=±1

i (r, ρ) = 2−1/2(fg ± ıgg) with

fg = C1
(
2pO2

x − 2pO1
x

)
+ D1

(
3dO2

xz + 3dO1
xz

)
+ F13dC

xz,

gg = C1
(
2pO2

y − 2pO1
y

)
+ D1

(
3dO2

yz + 3dO1
yz

)
+ F13dC

yz,

(10)

satisfying the gerade inversion symmetry λm=±1
i (r, ρ) =

λm=±1
i (−r, ρ). Here, the upper index indicates the atom on

which a given orbital is centred.
For the 1πu level, we constructed the molecular orbital

satisfying the ungerade inversion symmetry λm=±1
i (r, ρ) =

−λm=±1
i (−r, ρ) = 2−1/2(fu ± ıgu) with

fu = C2
(
2pO2

x + 2pO1
x

)
+ D2

(
3dO2

xz − 3dO1
xz

)
+ E22pC

x ,

gu = C2
(
2pO2

y + 2pO1
y

)
+ D2

(
3dO2

yz − 3dO1
yz

)
+ E22pC

y .

(11)

For the 3σu level, the molecular orbital that we constructed
satisfies λm=0

i (r, ρ) = −λm=0
i (−r, ρ) and has the form

λm=0
i (r, ρ) = A3

(
1sO2 − 1sO1

)
+ B3

(
2sO2 − 2sO1

)
+ C3

(
2pO2

z + 2pO1
z

)
+ D3

(
3dO2

zz − 3dO1
zz

)
+ E32pC

z . (12)

Here, the Mulligan convention [20] is used, where all one-
centre orbitals have the same z axis along the internuclear axis
ρ, and they all are positive in the positive z direction.

The optimized orbital exponents ξ1, ξ2, ξ3 and ξ4 of oxygen
and carbon [24, 25] are shown in table 1. The corresponding
coefficients Ai , Bi , Ci , Di Ei , Fi (i = 1–3) of the 1πg , 1πu

and 3σu levels displayed in table 2 have been obtained as
mentioned above by the Fortran code STOP [22, 23].
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Figure 2. Same as in figure 1 from the 1πu molecular orbital.

Table 1. Optimized orbital exponents ξ1, ξ2, ξ3 and ξ4 of oxygen and
carbon [24, 25].

ξ1 ξ2 ξ3 ξ4

O 7.657 90 2.220 96 2.254 68 2.522 79
C 5.672 70 1.850 38 1.774 43 1.143 02

2.2. The final state wavefunction: the three-centre electronic
continuum

In the final state, the ejected electron is found in the field of
three fixed nuclei. It will be described by what we will call the
three-centre Coulomb continuum wavefunction designated by
χ(k, r, ρ), where k represents the wave vector of the electron.
This function will replace λf (r, ρ) in the expression of the
transition matrix element equation (8). We extend here the
procedure described in [14] for two-centre targets to the three-
centre case in the following manner.

Let us consider the electron moving in the field of three
fixed collinear nuclei of charges Za = ZO1 , Zc = ZC and
Zb = ZO2 . The vectors ra = r+ρ/2, r ≡ rc and rb = r−ρ/2
refer to the positions of the electron with respect to these nuclei.
The Schrödinger equation has, in atomic units, the following
form:(

−
r

2
− Za

ra

− Zc

r
− Zb

rb

− k2

2

)
χ(k, r, ρ) = 0. (13)

We seek a solution of this equation in the form of a product of
three functions

χ(k, r, ρ) = ζa(Za, k, ra)ζc(Zc, k, rc)ζb(Zb, k, rb), (14)

with

ζj (Zj , k, rj ) = exp

(
ı
krj

3

)
ϑj (Zj , k, rj ), j = a, c, b.

(15)

Substituting this function into equation (13) and multiplying
the left-hand side by the factor exp(−ıkr), we get the following
equation:(

ϑcϑb

[
1

2

ra

+ ık∇ra
+

Za

ra

]

+
1

2

{
ϑc∇rb

ϑb + ϑb∇rc
ϑc

}
∇ra

)
ϑa

+

(
ϑaϑb

[
1

2

rc

+ ık∇rc
+

Zc

rc

]

+
1

2

{
ϑa∇rb

ϑb + ϑb∇ra
ϑa

}
∇rc

)
ϑc

+

(
ϑcϑa

[
1

2

rb

+ ık∇rb
+

Zb

rb

]

+
1

2

{
ϑc∇ra

ϑa + ϑa∇rc
ϑc

}
∇rb

)
ϑb = 0. (16)
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Figure 3. Same as in figure 1 from the 3σu molecular orbital.

Now in equation (16) we neglect as in [14] the last terms with
the cross scalar products in each parentheses and obtain three
separate equations for ra , rc and rb:[

1

2

rj

+ ık∇rj
+

Zj

rj

]
ϑj (Zj , k, rj ) = 0, j = a, c, b.

(17)

These equations have the conventional solutions

ϑj (Zj , k, rj ) = 1F1(ıαj , 1,−ı[krj + krj ]), j = a, c, b,

(18)

where 1F1 is the Kummer confluent hypergeometric function
and αj = −Zj/k is the Sommerfeld parameter. The
wavefunction of the ejected electron can then be written in
the following form:

χ(k, r, ρ) = exp(ıkr)
(2π)3/2

Ma1F1(ıαa, 1,−ı[kra + kra])

×Mc1F1(ıαc, 1,−ı[krc + krc])

×Mb1F1(ıαb, 1,−ı[krb + krb]), (19)

with the normalization factors

Mj = exp
(
−π

αj

2

)
�(1 − ıαj ), j = a, c, b. (20)

The neglected terms in equation (16) have the order O(kr)−2

at kr → ∞ (see details in [14]).

Taking Za = Zb which correspond to the two external
centres, the final state wavefunction λf (r, ρ) will be
symmetrical with respect to the exchange of the vectors ra

and rb. It will also satisfy the asymptotic condition

lim
r→∞ χ(k, r, ρ) −→ exp(ıkr)

(2π)3/2
exp(−ı(αa + αc + αb)

× ln(krc + krc)). (21)

We see that αa + αc + αb = (−Za − Zb − Zc)/k = −1/k,

which shows the exact asymptotic charge seen by the ejected
electron at large distances.

3. Results and discussion

As we have mentioned above, the main aim of the present work
is to propose an appropriately approximated wavefunction
for the state of an unbound electron in the field of three
attractive fixed centres and give some guidance to ionization
experiments. Stable three-centre triatomic systems are
relatively rare. The linear H2+

3 system, which could be the
perfect example for testing our model [26], is not stable.
Similarly Li2+

3 is not easy to obtain and manipulate. The CO2

molecule, which will be considered as a linear system having
relatively loosely attached valence electrons with an ionization
energy comparable to the hydrogen atom (0.506 au), can be a
good choice for a target in our application.

Recently experiments were performed [16] for the
measurement of the TDCS of the simple (e, 2e) ionization

5
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Table 2. The coefficients Ai , Bi , Ci , Di , Ei and Fi (i = 1–3) for the optimized orbital exponents ξ1, ξ2, ξ3 and ξ4 of the 1πg , 1πu and 3σu

molecular orbitals of CO2.

Ai Bi Ci Di Ei Fi

1πg 0.591 432 −0.022 054 0.248 423
1πu 0.493 777 −0.031 866 0.508 353
3σu 0.067 139 −0.395 932 −0.537 740 0.029 015 0.356 080

of the valence 1πg level with fast electrons. We have thus
performed our calculations for the same conditions as these
experiments, namely the detection of the fast Es = 500 eV
scattered electron at an angle θs = −6◦ with respect to the
incidence direction in coincidence with the ejected electron
of Ee = 37 eV. Here, the incident energy is deduced from
equation (3). We apply the ‘frozen-core’ approximation and
choose four different values for Za = Zb in the perturbation
potential V in equation (6), and determine for each case the
TDCS by applying as mentioned above two different bound
state functions: the minimal basis set proposed by Mulligan
in [20] and the extended basis set presented in table 2, which
has the peculiarity of having 3d orbitals. In figure 1, we
show the variation of the TDCS with the ejection angle. We
observe that the expected binary peak around the direction
of the momentum transfer K = ki − ks , i.e. θe = θK is
obtained only by the extended basis and that the minimal
basis does not reproduce the appropriate structure of the
curve in this region. This means that the 2p orbitals in the
1πg wavefunction equation (10) are not sufficient to give the
exact behaviour of the wavefunction and that 3d orbitals (see
equation (10)) are necessary. This observation shows the role
that (e, 2e) simple ionization experiments can have as probes
to the electronic structure of atoms and molecules. We also
observe that around the binary peak the results are not much
affected by the nuclear charges. The recoil peak θe = θK + π

is absent for both bases, especially in the first three cases.
A very small recoil peak is observed for the case Za = 0.4.
This disagreement between experimental and first Born results
was attributed in the past in the case of the ionization of
N2 [27] to the magnitude of the impact energy (∼600 eV).
In this regime, non-first Born effects, which are not taken
into account in our procedure, are expected to start playing
a role.

In figures 2 and 3 we present respectively the variation
of the TDCS of the simple ionization of the 1πu and 3σu

levels of CO2 for the same experimental conditions. As
actual experimental energy resolution varies between 0.5 and
4 eV, the TDCS of these two levels are not resolved in an
(e, 2e) experiment (see for example figure 2 in [15]) and
coincidence counts around 18 eV must be attributed to the
ionization 1πu and 3σu. This means that the TDCS determined
separately for the 1πu and 3σu levels by our procedure must
be combined before being compared to experimental results.
To our knowledge, there are no experimental results for the
high impact energy regime of these levels, so we present them
separately. As for the first case, here also the two different
basis functions are used: a minimal basis given by Mulligan
and the extended basis defined respectively in equations (11)
and (12). In contrast to the 1πg case, figure 1, we see that

500 750 1000 1250 1500 1750 2000
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12
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16

18

20

Z
a
=0.3,

e
=

K

T
D

C
S

E
i

Figure 4. Variation of the TDCS with the incident energy for the
ionization of the 1πg level of CO2 when the ejection direction is
parallel to the momentum transfer θe = θK and φρ = 0◦, θs = −1◦

with Za = Zb = 0.3 and Zc = 1 − 2Za .

the minimal basis produces the same structure as the extended
bases showing that the d orbitals in equations (11) and (12)
add little information on the electronic structure. We can also
observe that for these states the recoil peak is affected by the
nuclear charges Za especially in the case of 3σu case. This,
we think, is due to the presence of 1s and 2s atomic orbitals,
whose matrix elements are more sensitive to the nuclear charge
of the final state function.

In what follows, we will study the MDCS equation (1)
of the ionization of 1πg corresponding to a given orientation
of the molecule. This reveals some interesting characteristics
pertaining to the linear three-centre nature of the target. To
chose the optimal value of the energy of the incident electron,
we have first studied the variation of the TDCS of the ionization
of the 1πg level in terms of the incident energy. We have chosen
the most favourable ejection direction, which corresponds to
an ejection in the direction of the momentum transfer. The
scattering angle θs = −1◦, which is also a favourable direction.
Figure 4 shows that for the given conditions the highest cross
section corresponds to an incident energy Ei ≈ 700 eV. We
will thus chose this value for the following two variations
of the MDCS in terms of the scattering angle, presented in
figure 5 for the most favourable ejection direction, which,
as we said, corresponds to an ejection in the direction of
the momentum transfer, and in terms of the ejection angle
for a fixed scattering angle presented in figure 6. In both
case the internuclear axis of the molecule is perpendicular
to the incidence direction. As expected, we observe in
figure 5 very typical interference patterns in the variation of
the MDCS, like those of the variation of the intensity of light
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Figure 5. Variation of the 4DCS with the scattering angle for the
ionization of CO2 from the 1πg molecular orbital for a given
orientation θe = θK , θρ = 90◦ and φρ = 0◦ with Za = Zb = 0.3 and
Zc = 1 − 2Za . Here, Ei = 700 eV.
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Figure 6. Variation of the 4DCS with the ejection angle for the
ionization of CO2 from the 1πg molecular orbital for a given
orientation θρ = 90◦ and φρ = 0◦ with Za = Zb = 0.3 and
Zc = 1 − 2Za . Full line: Ee = 37 eV. Dashed line: Ee = 74 eV.

on a screen in a light diffraction–interference experiment by
three slits or obstacles. We think that the observed minima
correspond to the situations where the ionization of the electron
for these particular conditions is forbidden. The three-centre
character of the target manifests itself also in figure 6 in
the variation of the MDCS by the appearance of repeated
maxima and minima which change the position, when the
energy of the ejected electron is changed, passing from 37 to
74 eV. The experimental verification of these observations can
be performed only by the preparation of the aligned targets
which can be obtained by the excitation of the rotational
levels by appropriately polarized lasers.

4. Conclusion

We have applied a three-centre Coulomb continuum function,
obtained in a closed analytical form by the Schrödinger
equation of an unbound electron (with wave vector k) in
Coulomb field of three fixed charged nuclei, to the (e, 2e)

ionization of CO2, whose electronic structure is described by
molecular orbitals constructed by LCAO Slater-type orbitals.
Our results reproduce the experimental binary peak of the
ionization of the 1πg level when 3d orbitals are introduced to
the basis. With the aim of showing the multicentric character
of the target, we have studied the variation of the MDCS
for a given orientation of the molecular axis. This shows,
as expected, an oscillatory behaviour due to three-centre
interferences.
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