PRD71(2005), JPG32(2006), PRD77(2008), NPBPS186(2009), arXiv:1106.4006 [hep-ph]

INCLUSIVE TAU LEPTON DECAY: THE EFFECTS DUE TO HADRONIZATION

A.V. Nesterenko

Bogoliubov Laboratory of Theoretical Physics

Joint Institute for Nuclear Research, Dubna, Russian Federation

5th Workshop "Calculations for Modern and Future Colliders" Dubna, Russian Federation, 23 July – 2 August 2012

INTRODUCTION

The τ lepton is the only lepton which is heavy enough $(M_{\tau} \simeq 1.777 \,\text{GeV})$ to decay into hadrons. The interest to this process is primarily due to

- Tests of QCD and Standard Model
- Constraints on "New physics"
- Precise experimental data
- No need in phenomenological models
- Probes infrared hadron dynamics

The experimentally measurable quantity here is

$$R_{\tau} = \frac{\Gamma(\tau^- \rightarrow \text{hadrons}^- \nu_{\tau})}{\Gamma(\tau^- \rightarrow e^- \bar{\nu}_e \nu_{\tau})}$$
$$= R_{\tau,\text{V}} + R_{\tau,\text{A}} + R_{\tau,\text{S}}$$
$$= 3.640 \pm 0.010,$$
$$R_{\tau,\text{V}} = R_{\tau,\text{V}}^{J=0} + R_{\tau,\text{V}}^{J=1}$$
$$= 1.783 \pm 0.011 \pm 0.002,$$

 $R_{\tau,A} = R_{\tau,A}^{J=0} + R_{\tau,A}^{J=1}$ $= 1.695 \pm 0.011 \pm 0.002.$

■ ALEPH Collab., EPJC4(1998), PR421(2005), RMP78(2006), EPJC56(2008).

A.V.Nesterenko

THEORETICAL DESCRIPTION

The theoretical prediction for the quantities on hand reads

$$R_{\tau,\mathrm{V/A}}^{J=1} = \frac{N_{\mathrm{c}}}{2} |V_{\mathrm{ud}}|^2 S_{\mathrm{EW}} \Big(\Delta_{\mathrm{QCD}}^{\mathrm{V/A}} + \delta_{\mathrm{EW}}' \Big),$$

 $N_{\rm c} = 3$, $|V_{\rm ud}| = 0.9738 \pm 0.0005$, $S_{\rm EW} = 1.0194 \pm 0.0050$, $\delta'_{\rm EW} = 0.0010$,

$$\Delta_{\rm QCD}^{\rm V/A} = 2 \int_{m_{\rm V/A}^2}^{M_\tau^2} f\left(\frac{s}{M_\tau^2}\right) R^{\rm V/A}(s) \frac{ds}{M_\tau^2},$$

where $M_{\tau} = 1.777 \,\text{GeV}, \ f(x) = (1-x)^2 (1+2x),$ $R^{\text{V/A}}(s) = \frac{1}{2\pi i} \lim_{\varepsilon \to 0_+} \left[\Pi^{\text{V/A}}(s+i\varepsilon) - \Pi^{\text{V/A}}(s-i\varepsilon) \right] = \frac{1}{\pi} \text{Im} \lim_{\varepsilon \to 0_+} \Pi^{\text{V/A}}(s+i\varepsilon),$ $\Pi_{\mu\nu}(q^2) = i \int d^4x \, e^{iqx} \langle 0 | T \left\{ J_{\mu}(x) J_{\nu}(0) \right\} | 0 \rangle \equiv \frac{i}{12\pi^2} (q_{\mu}q_{\nu} - g_{\mu\nu}q^2) \Pi(q^2).$

Braaten, Narison, Pich, NPB373(1992); Le Diberder, Pich, PLB289(1992).

A.V.Nesterenko

For practical purposes it is convenient to use Adler function

$$D(Q^2) = -\frac{d \Pi(-Q^2)}{d \ln Q^2}, \qquad Q^2 = -q^2 = -s.$$

Adler, **PRD10**(1974).

Its ultraviolet behavior can be approximated by

$$D(Q^2) \simeq D_{\text{pert}}^{(\ell)}(Q^2) = 1 + \sum_{j=1}^{\ell} d_j \Big[\alpha_{\text{s}}^{(\ell)}(Q^2) \Big]^j, \quad Q^2 \to \infty,$$

where $\alpha_{\rm s}^{(\ell)}(Q^2)$ is the ℓ -loop perturbative running coupling. One-loop: $\alpha_{\rm pert}^{(1)}(Q^2) = 4\pi/[\beta_0 \ln(Q^2/\Lambda^2)], \beta_0 = 11 - 2n_{\rm f}/3, d_1 = 1/\pi.$

 Gorishny, Kataev, Larin, PLB259(1991); Surguladze, Samuel, PRL66(1991); Baikov, Chetyrkin, Kuhn, PRL101(2008).

For functions R(s) and $D(Q^2)$ the following relations hold:

$$R(s) = \frac{1}{2\pi i} \lim_{\varepsilon \to 0_+} \int_{s+i\varepsilon}^{s-i\varepsilon} D(-\zeta) \frac{d\zeta}{\zeta} \longleftrightarrow D(Q^2) = Q^2 \int_{m^2}^{\infty} \frac{R(s)}{(s+Q^2)^2} ds.$$

Adler, PRD10(1974); Radyushkin (1982); Krasnikov, Pivovarov, PLB116(1982).

The masses of all final state particles are neglected (m = 0).

In this analysis, it is convenient to handle the leading-order terms separately from the strong corrections:

$$R(s) = r^{(0)}(s) + r_{\rm s}^{(\ell)}(s), \qquad D(Q^2) = d^{(0)}(Q^2) + d_{\rm s}^{(\ell)}(Q^2).$$

The one-loop level ($\ell = 1$) with three active flavors ($n_f = 3$) is assumed in what follows.

There are two equally justified methods of description Δ_{QCD}

Method I: Use of definitions of R(s) and $D(Q^2)$ only

Integration by parts eventually results in

$$\begin{split} \Delta_{\rm QCD} &= g(1)\,R(M_{\tau}^2) + \int_0^{M_{\tau}^2} g\Big(\frac{\sigma}{M_{\tau}^2}\Big) \varrho(\sigma)\,\frac{d\sigma}{\sigma}, \quad g(x) = x(2-2x^2+x^3), \\ \varrho(\sigma) &= \frac{1}{2\pi i} \lim_{\varepsilon \to 0_+} \left[d_{\rm s}(-\sigma-i\varepsilon) - d_{\rm s}(-\sigma+i\varepsilon)\right]. \end{split}$$

A.V.Nesterenko

Method II: Method I + deformation of integration contour

Identically to "Method I", Δ_{QCD} is rewritten here as the sum of two integrals along the edges of physical cut of $\Pi(q^2)$:

$$\begin{split} \Delta_{\rm QCD} &= \frac{1}{\pi i} \int_{0+i\varepsilon}^{M_{\tau}^2 + i\varepsilon} f\left(\frac{s}{M_{\tau}^2}\right) \Pi(s) \frac{ds}{M_{\tau}^2} \\ &+ \frac{1}{\pi i} \int_{M_{\tau}^2 - i\varepsilon}^{0-i\varepsilon} f\left(\frac{s}{M_{\tau}^2}\right) \Pi(s) \frac{ds}{M_{\tau}^2}. \end{split}$$

Additional deformation of contour: $C_1 + C_2 \longrightarrow -(C_0 + C_M)$ $\Delta_{\text{QCD}} = \frac{i}{\pi} \left[\int_{C_0} f\left(\frac{s}{M_\tau^2}\right) \Pi(s) \frac{ds}{M_\tau^2} + \int_{C_M} f\left(\frac{s}{M_\tau^2}\right) \Pi(s) \frac{ds}{M_\tau^2} \right]$ $= \frac{1}{2\pi} \lim_{\varepsilon \to 0_+} \int_{-\pi+\varepsilon}^{\pi-\varepsilon} D\left(M_\tau^2 e^{i\theta}\right) \left(1 + 2e^{i\theta} - 2e^{i3\theta} - e^{i4\theta}\right) d\theta.$

A.V.Nesterenko

All the presented above is valid only for "genuine physical" functions $\Pi_{\text{phys}}(q^2)$ and $D_{\text{phys}}(Q^2)$ in the massless limit.

However, one has to deal with their perturbative approximations, which are inconsistent with dispersion relations for these functions.

Hadronic decay of τ lepton within perturbative approach: the direct use of perturbative approximations $\Pi_{\text{pert}}(q^2)$ and $D_{\text{pert}}(Q^2)$ in the aforementioned expressions for Δ_{QCD} .

Method II + one–loop pQCD:

A.V.Nesterenko

Unknown "genuine physical" Adler function $D_{phys}(Q^2)$:

 $C_1 + C_2 = -(C_0 + C_M)$

The use of either of two integration contours would have led to the same result. One-loop perturbative Adler function $D_{\text{pert}}^{(1)}(Q^2)$:

The integration contours used within methods I and II are not equivalent.

• The leading–order perturbative term:

The massless parton model prediction

$$\Pi_{\rm pert}^{(0)}(q^2) = -\ln\left(\frac{-q^2}{\mu^2}\right) \longrightarrow \left\{ d_{\rm pert}^{(0)}(Q^2) = 1, \ r_{\rm pert}^{(0)}(s) = 1 \right\}, \quad |q^2| \to \infty$$

gives the same result for $\Delta_{\rm QCD}$ within either of two methods: $\Delta_{\rm QCD}^{(0)}=1.$

• The one-loop perturbative correction:

A.V.Nesterenko

ALEPH–2008 data: $\Delta_{exp}^{V} = 1.224 \pm 0.050$, $\Delta_{exp}^{A} = 0.748 \pm 0.034$.

However, within perturbative approach $\Delta_{\text{pert}}^{\text{V}} \equiv \Delta_{\text{pert}}^{\text{A}}$.

Method I: One solution for V-channel, none for A-channel

A.V.Nesterenko

Method II: Two solutions for V-channel, none for A-channel

 $\Lambda = (434^{+117}_{-127}) \text{ MeV}$ $\Lambda = (1652^{+21}_{-23}) \text{ MeV}$

no solution

Perturbative approach, one-loop level, $n_{\rm f}$ =3 active flavors:

	V-channel	A-channel
Method I	$\Lambda = (844^{+726}_{-393}) \mathrm{MeV}$	no solution
Method II	$\Lambda = (434^{+117}_{-127}) \text{ MeV}$ $\Lambda = (1652^{+21}_{-23}) \text{ MeV}$	no solution

V-channel: perturbative approach gives three equally justified solutions, but only highlighted one is usually retained.

A-channel: perturbative approach fails to describe experimental data on inclusive τ lepton hadronic decay.

A.V. Nesterenko

Dispersion relations impose stringent physical nonperturbative constraints on the quantities on hand:

$$D(Q^2) = Q^2 \int_{m^2}^{\infty} \frac{R(s)}{(s+Q^2)^2} \, ds \quad \longrightarrow \quad \begin{cases} D(Q^2) = 0 \text{ at } Q^2 = 0; \\ \text{the only cut } Q^2 \leq -m^2 \end{cases}$$

BASIC IDEA: merge perturbative approximation for Adler function with such nonperturbative constraints

$$R(s) \stackrel{\textcircled{1}}{=} \frac{1}{2\pi i} \lim_{\varepsilon \to 0_+} \int_{s+i\varepsilon}^{s-i\varepsilon} D(-\zeta) \frac{d\zeta}{\zeta} \longleftrightarrow D(Q^2) \stackrel{\textcircled{2}}{=} Q^2 \int_{m^2}^{\infty} \frac{R(s)}{(s+Q^2)^2} ds$$

A.V.Nesterenko

Nesterenko, Papavassiliou, PRD71(2005); JPG32(2006).

This derivation requires only dispersion relations for $D(Q^2)$ and R(s) and the fact that $d_s(Q^2) \to 0$ for $Q^2 \to \infty$.

Neither additional approximations nor model–dependent assumptions were involved.

The derived expression for $D(Q^2)$:

- no unphysical singularities
- correct analytic properties in Q^2
- applicable in entire $0 \le Q^2 < \infty$
- Nesterenko, Papavassiliou, JPG32(2006).

Obtained $D(Q^2)$ leads to the same result for $\Delta_{\rm QCD}$ for either choice of the integration contour

In the massless limit (m = 0)derived representations become identical to those of the "Analytic Perturbation Theory" (APT).

Shirkov, Solovtsov, Milton, PRL79(1997); PRD55(1997); TMP150(2007).

But it is essential to keep $m \neq 0$ within approach on hand.

Some attempts to improve massless APT behavior of $D(Q^2)$:

APT + relativistic quark mass threshold resummation:

APT + vector meson dominance assumption:

[plot taken from NPBPS164(2007)]

Cvetic, Valenzuela, Schmidt (2005)–(2007)

TAU DECAY WITHIN DISPERSIVE APPROACH

- The effects due to hadronization are retained $(m \neq 0)$
- Smooth kinematic threshold for the leading term of R(s):

$$\begin{aligned} r_{\rm V/A}^{(0)}(s) &= \left(1 - \frac{m_{\rm V/A}^2}{s}\right)^{3/2} & \longrightarrow d_{\rm V/A}^{(0)}(Q^2) = 1 + \frac{3}{\xi} \left\{1 + \frac{u(\xi)}{2} \ln\left[1 + 2\xi \left(1 - u(\xi)\right)\right]\right\} \\ \text{where } u(\xi) &= \sqrt{1 + \xi^{-1}}, \ \xi = Q^2 / m_{\rm V/A}^2 \end{aligned}$$

• Nonperturbative model for one-loop spectral density:

$$\rho(\sigma) = \frac{4}{\beta_0} \frac{1}{\ln^2(\sigma/\Lambda^2) + \pi^2} + \frac{\Lambda^2}{\sigma}$$

Nesterenko, PRD62(2000); PRD64(2001); (2011).

In turn, expression for $\Delta_{QCD}^{V/A}$ has taken the following form:

$$\begin{split} \Delta_{\rm QCD}^{\rm V/A} &= \sqrt{1 - \zeta_{\rm V/A}} \left(1 + 6\zeta_{\rm V/A} - \frac{5}{8}\zeta_{\rm V/A}^2 + \frac{3}{16}\zeta_{\rm V/A}^3 \right) \\ &- 3\zeta_{\rm V/A} \left(1 + \frac{1}{8}\zeta_{\rm V/A}^2 - \frac{1}{32}\zeta_{\rm V/A}^3 \right) \ln \left[\frac{2}{\zeta_{\rm V/A}} \left(1 + \sqrt{1 - \zeta_{\rm V/A}} \right) - 1 \right] \\ &+ \int_{m_{\rm V/A}^2}^{\infty} H \left(\frac{\sigma}{M_{\tau}^2} \right) \rho(\sigma) \frac{d\sigma}{\sigma}, \end{split}$$

where $\zeta_{ ext{V/A}} = m_{ ext{V/A}}^2/M_{ au}^2$,

$$H(x) = g(x) \theta(1 - x) + g(1) \theta(x - 1) - g(\zeta_{V/A}),$$
$$g(x) = x(2 - 2x^2 + x^3)$$

■ Nesterenko, NPBPS186(2009); (2011).

This results in nearly identical solutions for QCD scale parameter Λ in both vector and axial-vector channels:

 $\Lambda = (408 \pm 30) \,\mathrm{MeV}$

 $\Lambda = (437 \pm 34) \,\mathrm{MeV}$

The obtained solutions also agree with perturbative (V) one:

	Perturbative approach	Dispersive approach
V-channel	$\Lambda = (434^{+117}_{-127}) \mathrm{MeV}$	$\Lambda = (408 \pm 30) \mathrm{MeV}$
A-channel	no solution	$\Lambda = (437 \pm 34) \mathrm{MeV}$

- Theoretical description of τ lepton hadronic decay is performed in the framework of Dispersive approach to QCD
- The significance of effects due to hadronization is argued
- The approach on hand is capable of describing experimental data on inclusive τ lepton hadronic decay in both vector and axial-vector channels
- The vicinity of obtained values of QCD scale parameter Λ testifies to the self-consistency of developed approach