
Symbolic Programming Examples

Thomas Hahn

Max-Planck-Institut für Physik
München

T. Hahn, Symbolic Programming Examples – p.1

List of Examples

• Antisymmetric Tensor
Built-in in FORM, easy in Mathematica.

• Application of Momentum Conservation
Easy in Mathematica, complicated in FORM.

• Abbreviationing
Easy in Mathematica, practically impossible in FORM.

• Simplification of Colour Structures
Different approaches.

• Calculation of a Fermion Trace
Built-in in FORM, complicated in Mathematica.

• Tensor Reduction

T. Hahn, Symbolic Programming Examples – p.2

Reference Books, Formula Collections

• V.I. Borodulin et al.
CORE (Compendium of Relations)
hep-ph/9507456.

• Herbert Pietschmann
Formulae and Results in Weak Interactions
Springer (Austria) 2nd ed., 1983.

• Andrei Grozin
Using REDUCE in High-Energy Physics
Cambridge University Press, 1997.

T. Hahn, Symbolic Programming Examples – p.3

Antisymmetric Tensor

The Antisymmetric Tensor in n dimensions is denoted by
εi1i2...in . You can think of it as a matrix-like object which has
either −1, 0, or 1 at each position.

For example, the Determinant of a matrix, being a completely
antisymmetric object, can be written with the ε-tensor:

detA =
n

∑
i1,...,in=1

εi1i2...inAi11Ai22 · · ·Ainn

In practice, the ε-tensor is usually contracted, e.g. with vectors.
We will adopt the following notation to avoid dummy indices:

εµνρσp
µqνrρsσ = ε(p, q, r, s) .

T. Hahn, Symbolic Programming Examples – p.4

Antisymmetric Tensor in Mathematica

(* implement linearity: *)

Eps[a___, p_Plus, b___] := Eps[a, #, b]&/@ p

Eps[a___, n_?NumberQ r_, b___] := n Eps[a, r, b]

(* otherwise sort the arguments into canonical order: *)

Eps[args__] := Signature[{args}] Eps@@ Sort[{args}] /;

!OrderedQ[{args}]

T. Hahn, Symbolic Programming Examples – p.5

Momentum Conservation

Problem: Proliferation of terms in expressions such as

d =
1

(p1 + p2 − p3)2 +m2

=
1

p2
1
+ p2

2
+ p2

3
+ 2p1p2 − 2p2p3 − 2p1p3 +m2

,

whereas if p1 + p2 = p3 + p4 we could have instead

d =
1

p2
4
+m2

.

In Mathematica: just do d /. p1 + p2 - p3 -> p4.
Problem: FORM cannot replace sums.

T. Hahn, Symbolic Programming Examples – p.6

Momentum Conservation in FORM

Idea: for each expression x, add and subtract a zero, i.e. form

{x, y = x+ σ, z = x− σ}, where e.g. σ = p1+ p2− p3− p4 ,

then select the shortest expression. But: how to select the
shortest expression (in FORM)?

Solution: add the number of terms of each argument, i.e.

{x, y, z} → {
1

x,
2

y,
3

z,
4

nx,
5

ny,
6

nz} .

Then sort nx, ny, nz , but when exchanging na and nb,
exchange also a and b:

symm ‘foo’ (4,1) (5,2) (6,3);

This unconventional sort statement is rather typical for FORM.

T. Hahn, Symbolic Programming Examples – p.7

Momentum Conservation in FORM

#procedure Shortest(foo)

id ‘foo’([x]?) = ‘foo’([x], [x] + ‘MomSum’, [x] - ‘MomSum’);

* add number-of-terms arguments

id ‘foo’([x]?, [y]?, [z]?) = ‘foo’([x], [y], [z],

nterms_([x]), nterms_([y]), nterms_([z]));

* order according to the nterms

symm ‘foo’ (4,1) (5,2) (6,3);

* choose shortest argument

id ‘foo’([x]?, ?a) = ‘foo’([x]);

#endprocedure

T. Hahn, Symbolic Programming Examples – p.8

Abbreviationing

One of the most powerful tricks to both reduce the size of an
expression and reveal its structure is to substitute
subexpressions by new variables.

The essential function here is Unique with which new symbols
are introduced. For example,

Unique["test"]

generates e.g. the symbol test1, which is guaranteed not to
be in use so far.

The Module function which implements lexical scoping in fact
uses Unique to rename the symbols internally because
Mathematica can really do dynamical scoping only.

T. Hahn, Symbolic Programming Examples – p.9

Abbreviationing in Mathematica

$AbbrPrefix = "c"

abbr[expr_] := abbr[expr] = Unique[$AbbrPrefix]

(* abbreviate function *)

Structure[expr_, x_] := Collect[expr, x, abbr]

(* get list of abbreviations *)

AbbrList[] := Cases[DownValues[abbr],

[[_[f_]], s_Symbol] -> s -> f]

(* restore full expression *)

Restore[expr_] := expr /. AbbrList[]

T. Hahn, Symbolic Programming Examples – p.10

Colour Structures

In Feynman diagrams four type of Colour structures appear:

N
a
tu
ra
l
R
ep

re
se
n
ta
ti
o
n

a

i

j

∼ T a
ij =SUNT[a,i,j]

i

j

k

ℓ

∼ T a
ijT

a
kℓ = SUNTSum[i,j,k,ℓ]

A
d
jo
in
t
R
ep

re
se
n
ta
ti
o
n a

b

c

∼ fabc
= SUNF[a,b,c]

a

b

c

d

∼ fabxfxcd
= SUNF[a,b,c,d]

T. Hahn, Symbolic Programming Examples – p.11

Unified Notation

The SUNF’s can be converted to SUNT’s via

fabc = 2i
[

Tr(T cT bT a)− Tr(T aT bT c)
]

.

We can now represent all colour objects by just SUNT:

• SUNT[i,j] = δij

• SUNT[a,b, . . .,i,j] = (T aT b · · ·)ij

• SUNT[a,b, . . .,0,0] = Tr(T aT b · · ·)

This notation again avoids unnecessary dummy indices.
(Mainly namespace problem.)

For purposes such as the “large-Nc limit” people like to use
SU(N) rather than an explicit SU(3).

T. Hahn, Symbolic Programming Examples – p.12

Fierz Identities

The Fierz Identities relate expressions with different orderings
of external particles. The Fierz identities essentially express
completeness of the underlying matrix space.

They were originally found by Markus Fierz in the context of
Dirac spinors, but can be generalized to any
finite-dimensional matrix space [hep-ph/0412245].

For SU(N) (colour) reordering, we need

T a
ijT

a
kℓ =

1

2

(

δiℓδkj −
1

N
δijδkℓ

)

.

T. Hahn, Symbolic Programming Examples – p.13

Cvitanovich Algorithm

For an Amplitude:

• convert all colour structures to (generalized) SUNT objects,

• simplify as much as possible, i.e. use the Fierz identity on
all internal gluon lines.

For a Squared Amplitude:

• use the Fierz identity for SU(N) to get rid of all SUNT
objects.

For “hand” calculations, a pictorial version of this algorithm
exists in the literature.

T. Hahn, Symbolic Programming Examples – p.14

Colour Simplify in FORM

* introduce dummy indices for the traces

repeat;

once SUNT(?a, 0, 0) = SUNT(?a, DUMMY, DUMMY);

sum DUMMY;

endrepeat;

* take apart SUNTs with more than one T

repeat;

once SUNT(?a, [a]?, [b]?, [i]?, [j]?) =

SUNT(?a, [a], [i], DUMMY) * SUNT([b], DUMMY, [j]);

sum DUMMY;

endrepeat;

* apply the Fierz identity

id SUNT([a]?, [i]?, [j]?) * SUNT([a]?, [k]?, [l]?) =

1/2 * SUNT([i], [l]) * SUNT([j], [k]) -

1/2/(‘SUNN’) * SUNT([i], [j]) * SUNT([k], [l]);

T. Hahn, Symbolic Programming Examples – p.15

Translation to Colour-Chain Notation

In colour-chain notation we can distinguish two cases:

a) Contraction of different chains:

〈A|T a |B〉 〈C|T a |D〉 =
1

2

(

〈A|D〉 〈C |B〉 −
1

N
〈A|B〉 〈C |D〉

)

,

b) Contraction on the same chain:

〈A|T a |B|T a |C〉 =
1

2

(

〈A|C〉TrB −
1

N
〈A|B |C〉

)

.

T. Hahn, Symbolic Programming Examples – p.16

Colour Simplify in Mathematica

(* same-chain version *)

sunT[t1___, a_Symbol, t2___, a_, t3___, i_, j_] :=

(sunT[t1, t3, i, j] sunTrace[t2] -

sunT[t1, t2, t3, i, j]/SUNN)/2

(* different-chain version *)

sunT[t1___, a_Symbol, t2___, i_, j_] *

sunT[t3___, a_, t4___, k_, l_] ^:=

(sunT[t1, t4, i, l] sunT[t3, t2, k, j] -

sunT[t1, t2, i, j] sunT[t3, t4, k, l]/SUNN)/2

(* introduce dummy indices for the traces *)

sunTrace[a__] := sunT[a, #, #]&[Unique["col"]]

T. Hahn, Symbolic Programming Examples – p.17

Fermion Trace

Leaving apart problems due to γ5 in d dimensions, we have as
the main algorithm for the 4d case:

Tr γµγνγργσ · · · = + gµν Tr γργσ · · ·

− gµρ Tr γνγσ · · ·

+ gµσ Tr γνγρ · · ·

This algorithm is recursive in nature, and we are ultimately
left with

Tr 1l = 4 .

(Note that this 4 is not the space-time dimension, but the
dimension of spinor space.)

T. Hahn, Symbolic Programming Examples – p.18

Fermion Trace in Mathematica

Trace4[mu_, g__] :=

Block[{Trace4, s = -1},

Plus@@ MapIndexed[

((s = -s) Pair[mu, #1] Drop[Trace4[g], #2])&,

{g}]

]

Trace4[] = 4

T. Hahn, Symbolic Programming Examples – p.19

Tensor Reduction

The loop integrals corresponding to closed loops in a
Feynman integral in general have a tensor structure due to
integration momenta in the numerator. For example,

Bµν(p) =

∫
ddq

qµqν
(

q2 −m2
1

)(

(q − p)2 −m2
2

) .

Such tensorial integrals are rather unwieldy in practice,
therefore they are reduced to linear combinations of
Lorentz-covariant tensors, e.g.

Bµν(p) = B00(p) gµν +B11(p) pµpν .

It is the coefficient functions B00 and B11 which are
implemented in a library like LoopTools.

T. Hahn, Symbolic Programming Examples – p.20

Tensor Reduction Algorithm

The first step is to convert the integration momenta in the
numerator to an actual tensor, e.g. qµqν → Nµν . FORM has the
special command totensor for this:

totensor q1, NUM;

The next step is to take out gµν ’s in all possible ways. We do
this in form of a sum:

Nµ1...µn
=

n

∑
i=0,2,4, . . .

π(0)i ∑
all {ν1,...,νi}
∈{µ1,...,µn}

gν1ν2 · · · gνi−1νi Nµ1...µn\ν1...νi

The π(0)i keeps track of the indices of the tensor coefficients,
i.e. it later provides the two zeros for every gµν in the index,
as in D0012.

T. Hahn, Symbolic Programming Examples – p.21

Tensor Reduction Algorithm

To fill in the remaining π(i)’s, we start off by tagging the
arguments of the loop function, which are just the momenta.
For example:

C(p1, p2, . . .) → τ
(

π(1)p1 + π(2)p2
)

C(p1, p2, . . .)

The temporary function τ keeps its argument, the ‘tagged’
momentum p, separate from the rest of the amplitude.

Now add the indices of Nµ1...µn
to the momentum in τ :

τ(p)Nµi...µn
= pµi

· · · pµn
.

Finally, collect all π’s into the tensor-coefficient index.

T. Hahn, Symbolic Programming Examples – p.22

Tensor Reduction in FORM

totensor q1, NUM;

* take out 0, 2, 4... indices for g_{mu nu}

id NUM(?b) = sum_(DUMMY, 0, nargs_(?b), 2,

pave(0)^DUMMY * distrib_(1, DUMMY, dd_, NUM, ?b));

* construct tagged momentum in TMP

id C0i([p1]?, [p2]?, ?a) = TMP(pave(1)*[p1] + pave(2)*[p2]) *

C0i(MOM([p1]), MOM([p2] - [p1]), MOM([p2]), ?a);

* expand momentum

repeat id TMP([p1]?) * NUM([mu]?, ?a) =

d_([p1], [mu]) * NUM(?a) * TMP([p1]);

* collect the indices

chainin pave;

T. Hahn, Symbolic Programming Examples – p.23

	List of Examples
	Reference Books, Formula Collections
	Antisymmetric Tensor
	Antisymmetric Tensor in Mathematica
	Momentum Conservation
	Momentum Conservation in FORM
	Momentum Conservation in FORM
	Abbreviationing
	Abbreviationing in Mathematica
	Colour Structures
	Unified Notation
	Fierz Identities
	Cvitanovich Algorithm
	Colour Simplify in FORM
	Translation to Colour-Chain Notation
	Colour Simplify in Mathematica
	Fermion Trace
	Fermion Trace in Mathematica
	Tensor Reduction
	Tensor Reduction Algorithm
	Tensor Reduction Algorithm
	Tensor Reduction in FORM

