Evaluating five-loop Konishi in $\mathcal{N}=4$ SYM

V.A. Smirnov

Nuclear Physics Institute of Moscow State University
arXiv:1202.5733
B. Eden, P. Heslop, G.P. Korchemsky, V.A. Smirnov,
E. Sokatchev
arXiv:1202.5733
B. Eden, P. Heslop, G.P. Korchemsky, V.A. Smirnov,
E. Sokatchev

The Konishi operator

$$
\mathcal{K}=\operatorname{tr}\left(\Phi^{I} \Phi^{I}\right)
$$

with Φ^{I} (with $I=1, \ldots, 6$) in the adjoint representation of $S U\left(N_{c}\right)$.
arXiv:1202.5733
B. Eden, P. Heslop, G.P. Korchemsky, V.A. Smirnov,
E. Sokatchev

The Konishi operator

$$
\mathcal{K}=\operatorname{tr}\left(\Phi^{I} \Phi^{I}\right)
$$

with Φ^{I} (with $I=1, \ldots, 6$) in the adjoint representation of $S U\left(N_{c}\right)$.
Its anomalous dimension

$$
\Delta_{\mathcal{K}}=2+\gamma_{\mathcal{K}}(a)=2+\sum_{\ell=1}^{\infty} a^{\ell} \gamma_{\mathcal{K}}^{(\ell)}
$$

with $a=g^{2} N_{c} /\left(4 \pi^{2}\right)$

$$
\begin{aligned}
& \gamma_{\mathcal{K}}(a)=3 a-3 a^{2}+\frac{21}{4} a^{3}-\left(\frac{39}{4}-\frac{9}{4} \zeta_{3}+\frac{45}{8} \zeta_{5}\right) a^{4} \\
& +\left(\frac{237}{16}+\frac{27}{4} \zeta_{3}-\frac{81}{16} \zeta_{3}{ }^{2}-\frac{135}{16} \zeta_{5}+\frac{945}{32} \zeta_{7}\right) a^{5}+O\left(a^{6}\right)+O\left(1 / N_{c}^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \gamma_{\mathcal{K}}(a)=3 a-3 a^{2}+\frac{21}{4} a^{3}-\left(\frac{39}{4}-\frac{9}{4} \zeta_{3}+\frac{45}{8} \zeta_{5}\right) a^{4} \\
& +\left(\frac{237}{16}+\frac{27}{4} \zeta_{3}-\frac{81}{16} \zeta_{3}^{2}-\frac{135}{16} \zeta_{5}+\frac{945}{32} \zeta_{7}\right) a^{5}+O\left(a^{6}\right)+O\left(1 / N_{c}^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \gamma_{\mathcal{K}}(a)=3 a-3 a^{2}+\frac{21}{4} a^{3}-\left(\frac{39}{4}-\frac{9}{4} \zeta_{3}+\frac{45}{8} \zeta_{5}\right) a^{4} \\
& +\left(\frac{237}{16}+\frac{27}{4} \zeta_{3}-\frac{81}{16} \zeta_{3}^{2}-\frac{135}{16} \zeta_{5}+\frac{945}{32} \zeta_{7}\right) a^{5}+O\left(a^{6}\right)+O\left(1 / N_{c}^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { one loop } \\
& \text { two loops }
\end{aligned}
$$

[B. Eden, C. Schubert \& E. Sokatchev'00; M. Bianchi, S. Kovacs, G. Rossi \& Y. S. Stanev]

$$
\begin{aligned}
& \gamma_{\mathcal{K}}(a)=3 a-3 a^{2}+\frac{21}{4} a^{3}-\left(\frac{39}{4}-\frac{9}{4} \zeta_{3}+\frac{45}{8} \zeta_{5}\right) a^{4} \\
& +\left(\frac{237}{16}+\frac{27}{4} \zeta_{3}-\frac{81}{16} \zeta_{3}^{2}-\frac{135}{16} \zeta_{5}+\frac{945}{32} \zeta_{7}\right) a^{5}+O\left(a^{6}\right)+O\left(1 / N_{c}^{2}\right)
\end{aligned}
$$

one loop
[L. Andrianopoli \& S. Ferrara'96] two loops
[B. Eden, C. Schubert \& E. Sokatchev'00; M. Bianchi, S. Kovacs, G. Rossi \& Y. S. Stanev] three loops [A. V. Kotikov, L. N. Lipatov, A. I. Onishchenko \& V. N. Velizhanin'04;
B. Eden, C. Jarczak and E. Sokatchev'04]

$$
\begin{aligned}
& \gamma_{\mathcal{K}}(a)=3 a-3 a^{2}+\frac{21}{4} a^{3}-\left(\frac{39}{4}-\frac{9}{4} \zeta_{3}+\frac{45}{8} \zeta_{5}\right) a^{4} \\
& +\left(\frac{237}{16}+\frac{27}{4} \zeta_{3}-\frac{81}{16} \zeta_{3}^{2}-\frac{135}{16} \zeta_{5}+\frac{945}{32} \zeta_{7}\right) a^{5}+O\left(a^{6}\right)+O\left(1 / N_{c}^{2}\right)
\end{aligned}
$$

one loop
[L. Andrianopoli \& S. Ferrara'96] two loops
[B. Eden, C. Schubert \& E. Sokatchev'00; M. Bianchi, S. Kovacs, G. Rossi \& Y. S. Stanev] three loops [A. V. Kotikov, L. N. Lipatov, A. I. Onishchenko \& V. N. Velizhanin'04;
B. Eden, C. Jarczak and E. Sokatchev'04]
four loops
[F. Fiamberti, A. Santambrogio, C. Sieg \& D. Zanon'07,08; V. N. Velizhanin'08,09]

$$
\begin{aligned}
& \gamma_{\mathcal{K}}(a)=3 a-3 a^{2}+\frac{21}{4} a^{3}-\left(\frac{39}{4}-\frac{9}{4} \zeta_{3}+\frac{45}{8} \zeta_{5}\right) a^{4} \\
& +\left(\frac{237}{16}+\frac{27}{4} \zeta_{3}-\frac{81}{16} \zeta_{3}^{2}-\frac{135}{16} \zeta_{5}+\frac{945}{32} \zeta_{7}\right) a^{5}+O\left(a^{6}\right)+O\left(1 / N_{c}^{2}\right) \\
& \text { one loop } \\
& \text { two loops } \\
& \text { [B. Eden, C. Schubert \& E. Sokatchev'00; M. Bianchi, S. Kovacs, G. Rossi \& Y. S. Stanev] } \\
& \text { three loops } \quad \text { [A. V. Kotikov, L. N. Lipatov, A. I. Onishchenko \& V. N. Velizhanin'04; } \\
& \begin{array}{l}
\text { B. Eden, C. Jarczak and E. Sokatchev'04] } \\
\text { four loops Ferrara'96] } \\
\text { [F. Fiamberti, A. Santambrogio, C. Sieg \& D. Zanon'07,08; V. N. Velizhanin'08,09] } \\
\text { five loops: a prediction based on integrability in AdS/CFT }
\end{array}
\end{aligned}
$$

[Z. Bajnok, A. Hegedus, R. A. Janik \& T. Lukowski'09;
G. Arutyunov, S. Frolov \& R. Suzuki'10; J. Balog \& A. Hegedus'10]

Evaluating $\gamma_{\mathcal{K}}^{(5)}$:

Evaluating $\gamma_{\mathcal{K}}^{(5)}$:

- $\gamma_{\mathcal{K}}^{(5)}$ in terms of five-loop integrals

Evaluating $\gamma_{\mathcal{K}}^{(5)}$:

- $\gamma_{\mathcal{K}}^{(5)}$ in terms of five-loop integrals
- $\gamma_{\mathcal{K}}^{(5)}$ in terms of four-loop integrals (using infrared rearrangement)

Evaluating $\gamma_{\mathcal{K}}^{(5)}$:

- $\gamma_{\mathcal{K}}^{(5)}$ in terms of five-loop integrals
- $\gamma_{\mathcal{K}}^{(5)}$ in terms of four-loop integrals (using infrared rearrangement)
- $\gamma_{\mathcal{K}}^{(5)}$ in terms of 24 master integrals (using IBP reduction)

Evaluating $\gamma_{\mathcal{K}}^{(5)}$:

- $\gamma_{\mathcal{K}}^{(5)}$ in terms of five-loop integrals
- $\gamma_{\mathcal{K}}^{(5)}$ in terms of four-loop integrals (using infrared rearrangement)
- $\gamma_{\mathcal{K}}^{(5)}$ in terms of 24 master integrals (using IBP reduction)
- evaluating unknown master integrals (using gluing)

Our tool to evaluate it is the OPE of the stress-tensor multiplet in $\mathcal{N}=4 \mathrm{SYM}$, with the superconformal primary state

$$
\mathcal{O}_{\mathbf{2 0}} \mathbf{0}^{I J}=\operatorname{tr}\left(\Phi^{I} \Phi^{J}\right)-\frac{1}{6} \delta^{I J} \operatorname{tr}\left(\Phi^{K} \Phi^{K}\right) .
$$

Our tool to evaluate it is the OPE of the stress-tensor multiplet in $\mathcal{N}=4 \mathrm{SYM}$, with the superconformal primary state

$$
\mathcal{O}_{\mathbf{2} \mathbf{0}^{\prime}}^{I J}=\operatorname{tr}\left(\Phi^{I} \Phi^{J}\right)-\frac{1}{6} \delta^{I J} \operatorname{tr}\left(\Phi^{K} \Phi^{K}\right) .
$$

It proves convenient to introduce auxiliary $S O(6)$ harmonic variables Y_{I}, defined as a (complex) null vector, $Y^{2} \equiv Y_{I} Y_{I}=0$, and project the indices of $\mathcal{O}^{I J}$ as

$$
\mathcal{O}(x, y) \equiv Y_{I} Y_{J} \mathcal{O}_{\mathbf{2} \mathbf{0}^{\prime}}^{I J}(x)=Y_{I} Y_{J} \operatorname{tr}\left(\Phi^{I}(x) \Phi^{J}(x)\right)
$$

Our tool to evaluate it is the OPE of the stress-tensor multiplet in $\mathcal{N}=4 \mathrm{SYM}$, with the superconformal primary state

$$
\mathcal{O}_{\mathbf{2} \mathbf{0}^{\prime}}^{I J}=\operatorname{tr}\left(\Phi^{I} \Phi^{J}\right)-\frac{1}{6} \delta^{I J} \operatorname{tr}\left(\Phi^{K} \Phi^{K}\right) .
$$

It proves convenient to introduce auxiliary $S O(6)$ harmonic variables Y_{I}, defined as a (complex) null vector, $Y^{2} \equiv Y_{I} Y_{I}=0$, and project the indices of $\mathcal{O}^{I J}$ as

$$
\mathcal{O}(x, y) \equiv Y_{I} Y_{J} \mathcal{O}_{\mathbf{2} \mathbf{0}^{\prime}}^{I J}(x)=Y_{I} Y_{J} \operatorname{tr}\left(\Phi^{I}(x) \Phi^{J}(x)\right)
$$

Its scaling dimension is protected.

The four-point correlation function is the first one to receive perturbative corrections:

$$
G_{4}=\left\langle\mathcal{O}\left(x_{1}, y_{1}\right) \mathcal{O}\left(x_{2}, y_{2}\right) \mathcal{O}\left(x_{3}, y_{3}\right) \mathcal{O}\left(x_{4}, y_{4}\right)\right\rangle=\sum_{\ell=0}^{\infty} a^{\ell} G_{4}^{(\ell)}(1,2,3,4)
$$

The four-point correlation function is the first one to receive perturbative corrections:

$$
G_{4}=\left\langle\mathcal{O}\left(x_{1}, y_{1}\right) \mathcal{O}\left(x_{2}, y_{2}\right) \mathcal{O}\left(x_{3}, y_{3}\right) \mathcal{O}\left(x_{4}, y_{4}\right)\right\rangle=\sum_{\ell=0}^{\infty} a^{\ell} G_{4}^{(\ell)}(1,2,3,4)
$$

where (for $\ell \geq 1$)

$$
G_{4}^{(\ell)}(1,2,3,4)=\frac{2\left(N_{c}^{2}-1\right)}{\left(4 \pi^{2}\right)^{4}} R(1,2,3,4) F^{(\ell)}\left(x_{i}\right)
$$

[B. Eden, P. Heslop, G.P. Korchemsky, E. Sokatchev'11]

$$
F^{(\ell)}\left(x_{i}\right)=\frac{x_{12}^{2} x_{13}^{2} x_{14}^{2} x_{23}^{2} x_{24}^{2} x_{34}^{2}}{\ell!\left(-4 \pi^{2}\right)^{\ell}} \int d^{4} x_{5} \ldots d^{4} x_{4+\ell} f^{(\ell)}\left(x_{1}, \ldots, x_{4+\ell}\right),
$$

[B. Eden, P. Heslop, G.P. Korchemsky, E. Sokatchev'11]

$F^{(\ell)}\left(x_{i}\right)=\frac{x_{12}^{2} x_{13}^{2} x_{14}^{2} x_{23}^{2} x_{24}^{2} x_{34}^{2}}{\ell!\left(-4 \pi^{2}\right)^{\ell}} \int d^{4} x_{5} \ldots d^{4} x_{4+\ell} f^{(\ell)}\left(x_{1}, \ldots, x_{4+\ell}\right)$,
where $x_{i j}^{2}=\left(x_{i}-x_{j}\right)^{2}$,

$$
f^{(\ell)}\left(x_{1}, \ldots, x_{4+\ell}\right)=\frac{P^{(\ell)}\left(x_{1}, \ldots, x_{4+\ell}\right)}{\prod_{1 \leq i<j \leq 4+\ell} x_{i j}^{2}}
$$

and $P^{(\ell)}$ is a homogeneous polynomial in $x_{i j}^{2}$
of degree $(\ell-1)(\ell+4) / 2$.
It is symmetric under the exchange of any pair of points x_{i} and x_{j} (both external and internal).
$F^{(\ell)}\left(x_{i}\right)$ up to six loops in the planar sector
[B. Eden, P. Heslop, G.P. Korchemsky, E. Sokatchev'12]

$F^{(\ell)}\left(x_{i}\right)$ up to six loops in the planar sector

[B. Eden, P. Heslop, G.P. Korchemsky, E. Sokatchev'12]
For example,

$$
P^{(1)}=1, \quad P^{(2)}=\frac{1}{48} \sum_{\sigma \in S_{6}} x_{\sigma_{1} \sigma_{2}}^{2} x_{\sigma_{3} \sigma_{4}}^{2} x_{\sigma_{5} \sigma_{6}}^{2}=x_{12}^{2} x_{34}^{2} x_{56}^{2}+\ldots
$$

$F^{(\ell)}\left(x_{i}\right)$ up to six loops in the planar sector
[B. Eden, P. Heslop, G.P. Korchemsky, E. Sokatchev'12]
For example,

$$
P^{(1)}=1, \quad P^{(2)}=\frac{1}{48} \sum_{\sigma \in S_{6}} x_{\sigma_{1} \sigma_{2}}^{2} x_{\sigma_{3} \sigma_{4}}^{2} x_{\sigma_{5} \sigma_{6}}^{2}=x_{12}^{2} x_{34}^{2} x_{56}^{2}+\ldots
$$

OPE $\left(x_{2} \rightarrow x_{1}\right)$

$$
\begin{aligned}
\mathcal{O}\left(x_{1}, y_{1}\right) \mathcal{O}\left(x_{2}, y_{2}\right)=c_{\mathcal{I}} \frac{\left(Y_{1} \cdot Y_{2}\right)^{2}}{x_{12}^{4}} \mathcal{I} & +c_{\mathcal{K}}(a) \frac{\left(Y_{1} \cdot Y_{2}\right)^{2}}{\left(x_{12}^{2}\right)^{1-\gamma_{\mathcal{K}} / 2}} \mathcal{K}\left(x_{2}\right) \\
& +c_{\mathcal{O}} \frac{\left(Y_{1} \cdot Y_{2}\right)}{x_{12}^{2}} \mathcal{O}_{\mathbf{2 0}}{ }^{I J}\left(x_{2}\right)+\ldots
\end{aligned}
$$

The operators \mathcal{I} and $\mathcal{O}_{20^{\prime}}$ are protected:

$$
c_{\mathcal{I}}=\left(N_{c}^{2}-1\right) /\left(32 \pi^{4}\right), \quad c_{\mathcal{O}}=1 /\left(2 \pi^{2}\right)
$$

The operators \mathcal{I} and $\mathcal{O}_{20^{\prime}}$ are protected:

$$
c_{\mathcal{I}}=\left(N_{c}^{2}-1\right) /\left(32 \pi^{4}\right), \quad c_{\mathcal{O}}=1 /\left(2 \pi^{2}\right)
$$

Apply OPE to the first and the second pairs of the operators (in the limit $x_{1} \rightarrow x_{2}, x_{3} \rightarrow x_{4}$) using

$$
\begin{aligned}
\left\langle\mathcal{K}\left(x_{2}\right) \mathcal{K}\left(x_{4}\right)\right\rangle & =\frac{d_{\mathcal{K}}}{\left(x_{24}^{2}\right)^{2+\gamma \mathcal{K}}}, \\
\left\langle\mathcal{O}_{\mathbf{2 0}}{ }^{I J}\left(x_{2}\right) \mathcal{O}_{\mathbf{2 0 ^ { \prime }}}^{K L}\left(x_{4}\right)\right\rangle & =\frac{c_{\mathcal{I}}}{2 x_{24}^{4}}\left(\delta^{I K} \delta^{J L}+\delta^{I L} \delta^{J K}-\frac{1}{3} \delta^{I J} \delta^{K L}\right)
\end{aligned}
$$

The operators \mathcal{I} and $\mathcal{O}_{20^{\prime}}$ are protected:

$$
c_{\mathcal{I}}=\left(N_{c}^{2}-1\right) /\left(32 \pi^{4}\right), \quad c_{\mathcal{O}}=1 /\left(2 \pi^{2}\right)
$$

Apply OPE to the first and the second pairs of the operators (in the limit $x_{1} \rightarrow x_{2}, x_{3} \rightarrow x_{4}$) using

$$
\begin{aligned}
\left\langle\mathcal{K}\left(x_{2}\right) \mathcal{K}\left(x_{4}\right)\right\rangle & =\frac{d_{\mathcal{K}}}{\left(x_{24}^{2}\right)^{2+\gamma_{\mathcal{K}}}}, \\
\left\langle\mathcal{O}_{20^{\prime}}^{I J}\left(x_{2}\right) \mathcal{O}_{20^{\prime}}^{K L}\left(x_{4}\right)\right\rangle & =\frac{c_{\mathcal{I}}}{2 x_{24}^{4}}\left(\delta^{I K} \delta^{J L}+\delta^{I L} \delta^{J K}-\frac{1}{3} \delta^{I J} \delta^{K L}\right)
\end{aligned}
$$

with the normalization choice

$$
d_{\mathcal{K}}=3 \frac{N_{c}^{2}-1}{\left(4 \pi^{2}\right)^{2}}, \quad c_{\mathcal{K}}(a)=\frac{1}{12 \pi^{2}}+O(a)
$$

to obtain

$$
\begin{gathered}
G_{4} \xrightarrow{\substack{x_{2} \rightarrow x_{1} \\
x_{4} \rightarrow x_{3}}} \frac{\left(N_{c}^{2}-1\right)^{2}}{4\left(4 \pi^{2}\right)^{4}} \frac{y_{12}^{4} y_{34}^{4}}{x_{12}^{4} x_{34}^{4}}+\frac{N_{c}^{2}-1}{\left(4 \pi^{2}\right)^{4}}\left[\frac{y_{12}^{2} y_{34}^{2}\left(y_{13}^{2} y_{24}^{2}+y_{14}^{2} y_{23}^{2}\right)}{x_{12}^{2} x_{34}^{2} x_{13}^{4}}\right. \\
+\frac{1}{3} \frac{y_{12}^{4} x_{34}^{4} x_{34}^{4} x_{13}^{4}}{\left.\left(c_{\mathcal{K}}^{2}(a) u^{\gamma \kappa}(a) / 2-1\right)\right]+\ldots,}
\end{gathered}
$$

to obtain

$G_{4} \xrightarrow{\substack{x_{2} \rightarrow x_{1} \\ x_{4} \rightarrow x_{3}}} \frac{\left(N_{c}^{2}-1\right)^{2}}{4\left(4 \pi^{2}\right)^{4}} \frac{y_{12}^{4} y_{34}^{4}}{x_{12}^{4} x_{34}^{4}}+\frac{N_{c}^{2}-1}{\left(4 \pi^{2}\right)^{4}}\left[\frac{y_{12}^{2} y_{34}^{2}\left(y_{13}^{2} y_{24}^{2}+y_{14}^{2} y_{23}^{2}\right)}{x_{12}^{2} x_{34}^{2} x_{13}^{4}}\right.$

$$
\left.+\frac{1}{3} \frac{y_{12}^{4} y_{34}^{4}}{x_{12}^{2} x_{34}^{2} x_{13}^{4}}\left(c_{\mathcal{K}}^{2}(a) u^{\gamma_{\mathcal{K}}(a) / 2}-1\right)\right]+\ldots
$$

where $y_{i j}^{2}=\left(Y_{i} \cdot Y_{j}\right)$ and

$$
u=\frac{x_{12}^{2} x_{34}^{2}}{x_{13}^{2} x_{24}^{2}}, \quad v=\frac{x_{14}^{2} x_{23}^{2}}{x_{13}^{2} x_{24}^{2}}
$$

to obtain

$G_{4} \xrightarrow{\substack{x_{2} \rightarrow x_{1} \\ x_{4} \rightarrow x_{3}}} \frac{\left(N_{c}^{2}-1\right)^{2}}{4\left(4 \pi^{2}\right)^{4}} \frac{y_{12}^{4} y_{34}^{4}}{x_{12}^{4} x_{34}^{4}}+\frac{N_{c}^{2}-1}{\left(4 \pi^{2}\right)^{4}}\left[\frac{y_{12}^{2} y_{34}^{2}\left(y_{13}^{2} y_{24}^{2}+y_{14}^{2} y_{23}^{2}\right)}{x_{12}^{2} x_{34}^{2} x_{13}^{4}}\right.$

$$
\left.+\frac{1}{3} \frac{y_{12}^{4} y_{34}^{4}}{x_{12}^{2} x_{34}^{2} x_{13}^{4}}\left(c_{\mathcal{K}}^{2}(a) u^{\gamma_{\mathcal{K}}(a) / 2}-1\right)\right]+\ldots
$$

where $y_{i j}^{2}=\left(Y_{i} \cdot Y_{j}\right)$ and

$$
u=\frac{x_{12}^{2} x_{34}^{2}}{x_{13}^{2} x_{24}^{2}}, \quad v=\frac{x_{14}^{2} x_{23}^{2}}{x_{13}^{2} x_{24}^{2}}
$$

so that $u \rightarrow 0, v \rightarrow 1$ in the limit $x_{2} \rightarrow x_{1}, x_{4} \rightarrow x_{3}$.

Therefore,

$$
\sum_{\ell \geq 1} a^{\ell} F^{(\ell)}\left(x_{i}\right) \xrightarrow{\substack{x_{2} \rightarrow x_{1} \\ x_{4} \rightarrow x_{3}}} \frac{1}{6 x_{13}^{4}}\left(c_{\mathcal{K}}^{2}(a) u^{\gamma_{\mathcal{K}}(a) / 2}-1\right)[1+O(u, 1-v)]
$$

Therefore,
$\sum_{\ell \geq 1} a^{\ell} F^{(\ell)}\left(x_{i}\right) \xrightarrow{\substack{x_{2}+x_{1} \\ x_{4} \rightarrow x_{3}}} \frac{1}{6 x_{13}^{4}}\left(c_{\mathcal{K}}^{2}(a) u^{\gamma \mathcal{K}(a) / 2}-1\right)[1+O(u, 1-v)]$
and
$\ln \left(1+6 \sum_{\ell \geq 1} a^{\ell} \widehat{F}^{(\ell)}\left(x_{i}\right)\right) \stackrel{\substack{u \rightarrow 0 \\ v \rightarrow}}{\substack{2}} \gamma_{\mathcal{K}}(a) \ln u+\ln \left(c_{\mathcal{K}}^{2}(a)\right)+O(u, 1-$

Therefore,
$\sum_{\ell \geq 1} a^{\ell} F^{(\ell)}\left(x_{i}\right) \xrightarrow{\substack{x_{2}+x_{1} \\ x_{4} \rightarrow x_{3}}} \frac{1}{6 x_{13}^{4}}\left(c_{\mathcal{K}}^{2}(a) u^{\gamma \mathcal{K}(a) / 2}-1\right)[1+O(u, 1-v)]$
and
$\ln \left(1+6 \sum_{\ell \geq 1} a^{\ell} \widehat{F}^{(\ell)}\left(x_{i}\right)\right) \xrightarrow{\substack{u \rightarrow 0 \\ v \rightarrow}} \frac{1}{2} \gamma_{\mathcal{K}}(a) \ln u+\ln \left(c_{\mathcal{K}}^{2}(a)\right)+O(u, 1-$
where $x_{13}^{4} F^{(\ell)}\left(x_{i}\right) \xrightarrow{\substack{x_{2} \rightarrow x_{1} \\ x_{4} \rightarrow x_{3}}} \widehat{F}\left(x_{i}\right)$ and

$$
\gamma_{\mathcal{K}}(a)=\sum_{\ell \geq 1} a^{\ell} \gamma_{\mathcal{K}}^{(\ell)}, \quad\left(c_{\mathcal{K}}(a)\right)^{2}=1+3 \sum_{\ell \geq 1} a^{\ell} \alpha^{(\ell)}
$$

The ℓ-loop correction to the logarithm of the correlation function is given by an ℓ-folded integral over the internal coordinates $x_{5}, \ldots, x_{4+\ell}$:

$$
\begin{aligned}
\ln (1+ & \left.6 \sum_{\ell \geq 1} a^{\ell} \widehat{F}^{(\ell)}\left(x_{i}\right)\right) \\
& =\sum_{\ell \geq 1} a^{\ell} \int d^{4} x_{5} \ldots d^{4} x_{4+\ell} \mathcal{I}_{\ell}\left(x_{1}, \ldots, x_{4} \mid x_{5}, \ldots, x_{4+\ell}\right), \\
& =\sum_{\ell \geq 1} a^{\ell} I^{(\ell)}
\end{aligned}
$$

where \mathcal{I}_{ℓ} is symmetric under the $S_{4} \times S_{\ell}$ permutations of the four external coordinates, x_{1}, \ldots, x_{4} and the ℓ internal coordinates $x_{5}, \ldots, x_{4+\ell}$.

Up to five loops

$$
\begin{aligned}
I^{(1)}= & 6 \widehat{F}^{(1)}, \\
I^{(2)}= & 6\left[\widehat{F}^{(2)}-3\left(\widehat{F}^{(1)}\right)^{2}\right], \\
I^{(3)}= & 6\left[\widehat{F}^{(3)}-6 \widehat{F}^{(1)} \widehat{F}^{(2)}+12\left(\widehat{F}^{(1)}\right)^{3}\right], \\
I^{(4)}= & 6\left[\widehat{F}^{4)}-6 \widehat{F}^{(1)} \widehat{F}^{(3)}-3\left(\widehat{F}^{(2)}\right)^{2}+36 \widehat{F}^{(2)}\left(\widehat{F}^{(1)}\right)^{2}-54\left(\widehat{F}^{(1)}\right)^{4}\right. \\
I^{(5)}= & 6\left[\widehat{F}^{(5)}-6 \widehat{F}^{(1)} \widehat{F}^{(4)}-6 \widehat{F}^{(3)} \widehat{F}^{(2)}+36 \widehat{F}^{(3)}\left(\widehat{F}^{(1)}\right)^{2}\right. \\
& \left.+36 \widehat{F}^{(1)}\left(\widehat{F}^{(2)}\right)^{2}-216 \widehat{F}^{(2)}\left(\widehat{F}^{(1)}\right)^{3}+\frac{1296}{5}\left(\widehat{F}^{(1)}\right)^{5}\right] .
\end{aligned}
$$

$l=5$, the planar limit:

$$
I^{(5)}=\int d^{4} x_{5} \ldots d^{4} x_{9} \mathcal{I}_{5}\left(x_{1}, \ldots, x_{4} \mid x_{5}, \ldots, x_{9}\right)
$$

with

$$
\mathcal{I}_{5}=-\frac{6}{5!\left(4 \pi^{2}\right)^{5}} \frac{x_{13}^{4}}{\prod_{i=5}^{9} x_{1 i}^{4} x_{3 i}^{4}}\left[\frac{1}{5!} \frac{\widehat{P}_{5,6,7,8,9}}{x_{56}^{2} x_{57}^{2} x_{58}^{2} x_{59}^{2} x_{67}^{2} x_{68}^{2} x_{69}^{2} x_{78}^{2} x_{79}^{2} x_{89}^{2}}\right.
$$

$$
-\frac{1}{4} x_{12}^{4} \frac{\widehat{P}_{5,6,7,8}}{x_{56}^{2} x_{57}^{2} x_{58}^{2} x_{67}^{2} x_{68}^{2} x_{78}^{2}}-\frac{1}{2} x_{13}^{4} \frac{\widehat{P}_{5,6,7}}{x_{56}^{2} x_{57}^{2} x_{67}^{2}}
$$

$$
\frac{\widehat{P}_{8,9}}{x_{89}^{2}}+6\left(x_{13}^{4}\right)^{2} \frac{\widehat{P}_{5,6,7}}{x_{56}^{2} x_{57}^{2} x_{67}^{2}}+9\left(x_{13}^{4}\right)^{2} \frac{\widehat{P}_{5,6}}{x_{56}^{2}} \frac{\widehat{P}_{7,8}}{x_{78}^{2}}
$$

$$
\left.-108\left(x_{13}^{4}\right)^{3} \frac{\widehat{P}_{5,6}}{x_{56}^{2}}+\frac{1296}{5}\left(x_{13}^{4}\right)^{4}\right]+S_{5} \text { permutations }
$$

where $\widehat{P}_{5,6,7,8,9}=\left.P^{(5)}\right|_{x_{2}=x_{1}, x_{4}=x_{3}}$ etc., and

$$
\begin{aligned}
& P^{(5)}=-\frac{1}{2} x_{13}^{2} x_{16}^{2} x_{18}^{2} x_{19}^{2} x_{24}^{4} x_{26}^{2} x_{29}^{2} x_{37}^{2} x_{38}^{2} x_{39}^{2} x_{47}^{2} x_{48}^{2} x_{56}^{2} x_{57}^{2} x_{58}^{2} x_{59}^{2} x_{67}^{2} \\
& \quad+\frac{1}{4} x_{13}^{2} x_{16}^{2} x_{18}^{2} x_{19}^{2} x_{24}^{4} x_{26}^{2} x_{29}^{2} x_{37}^{4} x_{39}^{2} x_{48}^{4} x_{56}^{2} x_{57}^{2} x_{58}^{2} x_{59}^{2} x_{67}^{2} \\
& \quad+\frac{1}{4} x_{13}^{4} x_{17}^{2} x_{19}^{2} x_{24}^{2} x_{26}^{2} x_{27}^{2} x_{29}^{2} x_{36}^{2} x_{39}^{2} x_{48}^{6} x_{56}^{2} x_{57}^{2} x_{58}^{2} x_{59}^{2} x_{67}^{2} \\
& \quad+\frac{1}{6} x_{13}^{2} x_{16}^{2} x_{19}^{4} x_{24}^{4} x_{28}^{2} x_{29}^{2} x_{37}^{4} x_{38}^{2} x_{46}^{2} x_{47}^{2} x_{56}^{2} x_{57}^{2} x_{58}^{2} x_{59}^{2} x_{68}^{2} \\
& \quad-\frac{1}{8} x_{13}^{4} x_{16}^{2} x_{18}^{2} x_{24}^{4} x_{28}^{2} x_{29}^{2} x_{37}^{2} x_{39}^{2} x_{46}^{2} x_{47}^{2} x_{56}^{2} x_{57}^{2} x_{58}^{2} x_{59}^{2} x_{69}^{2} x_{78}^{2} \\
& \quad+\frac{1}{28} x_{13}^{2} x_{17}^{2} x_{18}^{2} x_{19}^{2} x_{24}^{8} x_{36}^{2} x_{38}^{2} x_{39}^{2} x_{56}^{2} x_{57}^{2} x_{58}^{2} x_{59}^{2} x_{67}^{2} x_{69}^{2} x_{78}^{2} \\
& \quad+\frac{1}{12} x_{13}^{2} x_{16}^{2} x_{17}^{2} x_{19}^{2} x_{26}^{2} x_{27}^{2} x_{28}^{2} x_{29}^{2} x_{35}^{2} x_{38}^{2} x_{39}^{2} x_{45}^{2} x_{46}^{2} x_{47}^{2} x_{49}^{2} x_{57}^{2} x_{58}^{2} x_{68}^{2} \\
& \quad+S_{9} \text { permutations }
\end{aligned}
$$

To evaluate

$$
\gamma_{\mathcal{K}}(a)=2 \frac{d}{d \ln u} \ln \left(1+6 \sum_{\ell \geq 1} a^{\ell} \widehat{F}^{(\ell)}\left(x_{i}\right)\right)
$$

we need the coefficient at $\ln u$ of this integral in the limit, $x_{1} \rightarrow x_{2}$ and $x_{3} \rightarrow x_{4}$, i.e. $u \rightarrow 0$.

To evaluate

$$
\gamma_{\mathcal{K}}(a)=2 \frac{d}{d \ln u} \ln \left(1+6 \sum_{\ell \geq 1} a^{\ell} \widehat{F}^{(\ell)}\left(x_{i}\right)\right)
$$

we need the coefficient at $\ln u$ of this integral in the limit, $x_{1} \rightarrow x_{2}$ and $x_{3} \rightarrow x_{4}$, i.e. $u \rightarrow 0$.
Put $x_{1}=x_{2}$ and $x_{3}=x_{4}$ and introduce dimensional regularization (in coordinate space) with $D=4-2 \epsilon$

$$
\mu^{l \epsilon} \int d^{D} x_{5} \ldots d^{D} x_{9} \mathcal{I}_{\ell}\left(x_{1}, x_{1}, x_{3}, x_{3} \mid x_{5}, \ldots, x_{9}\right) .
$$

To evaluate

$$
\gamma_{\mathcal{K}}(a)=2 \frac{d}{d \ln u} \ln \left(1+6 \sum_{\ell \geq 1} a^{\ell} \widehat{F}^{(\ell)}\left(x_{i}\right)\right)
$$

we need the coefficient at $\ln u$ of this integral in the limit, $x_{1} \rightarrow x_{2}$ and $x_{3} \rightarrow x_{4}$, i.e. $u \rightarrow 0$.
Put $x_{1}=x_{2}$ and $x_{3}=x_{4}$ and introduce dimensional regularization (in coordinate space) with $D=4-2 \epsilon$

$$
\mu^{l \epsilon} \int d^{D} x_{5} \ldots d^{D} x_{9} \mathcal{I}_{\ell}\left(x_{1}, x_{1}, x_{3}, x_{3} \mid x_{5}, \ldots, x_{9}\right) .
$$

The integral has a simple pole in $\epsilon=(4-D) / 2$.

$$
\gamma_{\mathcal{K}}(a)=\frac{d}{d \ln \mu^{2}} \ln \left(1+6 \sum_{\ell \geq 1} a^{\ell} \widehat{F}_{\epsilon}^{(\ell)}\left(x_{i}\right)\right)
$$

$$
\gamma_{\mathcal{K}}(a)=\frac{d}{d \ln \mu^{2}} \ln \left(1+6 \sum_{\ell \geq 1} a^{\ell} \widehat{F}_{\epsilon}^{(\ell)}\left(x_{i}\right)\right)
$$

The problem reduces to evaluating the pole part of

$$
\int d^{D} x_{5} \ldots d^{D} x_{9} \mathcal{I}_{5}\left(x_{1}, x_{1}, x_{3}, x_{3} \mid x_{5}, \ldots, x_{9}\right)
$$

in ϵ.

$$
\gamma_{\mathcal{K}}(a)=\frac{d}{d \ln \mu^{2}} \ln \left(1+6 \sum_{\ell \geq 1} a^{\ell} \widehat{F}_{\epsilon}^{(\ell)}\left(x_{i}\right)\right)
$$

The problem reduces to evaluating the pole part of

$$
\int d^{D} x_{5} \ldots d^{D} x_{9} \mathcal{I}_{5}\left(x_{1}, x_{1}, x_{3}, x_{3} \mid x_{5}, \ldots, x_{9}\right)
$$

in ϵ.
IRR (infrared rearrangement)

IRR

If the pole part of a given (incompletely renormalized) diagram is independent of momenta and masses, try to set to zero as many momenta and masses as possible without generating IR divergences.

IRR

If the pole part of a given (incompletely renormalized) diagram is independent of momenta and masses, try to set to zero as many momenta and masses as possible without generating IR divergences.

An advanced strategy: set all the momenta and masses to zero and introduce a mass or momentum.

IRR

If the pole part of a given (incompletely renormalized) diagram is independent of momenta and masses, try to set to zero as many momenta and masses as possible without generating IR divergences.

An advanced strategy: set all the momenta and masses to zero and introduce a mass or momentum.
(If IR divergences are still generated they can be removed immediately by the R^{*}-operation
[K.G. Chetyrkin \& F.V. Tkachov'82, K.G. Chetyrkin \& V.A. Smirnov'82])

If the pole part of a given (incompletely renormalized) diagram is independent of momenta and masses, try to set to zero as many momenta and masses as possible without generating IR divergences.

An advanced strategy: set all the momenta and masses to zero and introduce a mass or momentum.
(If IR divergences are still generated they can be removed immediately by the R^{*}-operation
[K.G. Chetyrkin \& F.V. Tkachov'82, K.G. Chetyrkin \& V.A. Smirnov'82])
A four-loop example:

$$
I\left(x_{1}, x_{3}\right)=\frac{1}{\pi^{2 D}} \int \frac{\left(x_{13}^{2}\right)^{D} d^{D} x_{5} \ldots d^{D} x_{8}}{x_{15}^{2} x_{16}^{2} x_{17}^{2} x_{18}^{2} x_{35}^{2} x_{36}^{2} x_{37}^{2} x_{38}^{2} x_{56}^{2} x_{68}^{2} x_{78}^{2} x_{57}^{2}}
$$

IRR

There is an UV simple pole in ϵ

$$
I\left(x_{1}, x_{3}\right)=\left(x_{13}^{2}\right)^{-4 \epsilon}\left[\frac{C}{\epsilon}+O\left(\epsilon^{0}\right)\right]
$$

from the integration over x_{5}, \ldots, x_{8} close to x_{1} and from the symmetrical region where x_{5}, \ldots, x_{8} are all close to x_{3}.

IRR

There is an UV simple pole in ϵ

$$
I\left(x_{1}, x_{3}\right)=\left(x_{13}^{2}\right)^{-4 \epsilon}\left[\frac{C}{\epsilon}+O\left(\epsilon^{0}\right)\right]
$$

from the integration over x_{5}, \ldots, x_{8} close to x_{1} and from the symmetrical region where x_{5}, \ldots, x_{8} are all close to x_{3}. UV divergences come from regions where the integrand considered as a generalized function of x_{i} is ill-defined. The integrand is unintegrable in a vicinity of the two external points, x_{1} and x_{3}

IRR

There is an UV simple pole in ϵ

$$
I\left(x_{1}, x_{3}\right)=\left(x_{13}^{2}\right)^{-4 \epsilon}\left[\frac{C}{\epsilon}+O\left(\epsilon^{0}\right)\right]
$$

from the integration over x_{5}, \ldots, x_{8} close to x_{1} and from the symmetrical region where x_{5}, \ldots, x_{8} are all close to x_{3}. UV divergences come from regions where the integrand considered as a generalized function of x_{i} is ill-defined. The integrand is unintegrable in a vicinity of the two external points, x_{1} and x_{3} In a vicinity of $x_{1}\left(x_{3} \rightarrow \infty\right)$:

$$
F\left(x_{1}, x_{5}, \ldots, x_{8}\right)=\frac{1}{x_{15}^{2} x_{16}^{2} x_{17}^{2} x_{18}^{2} x_{56}^{2} x_{68}^{2} x_{78}^{2} x_{57}^{2}}
$$

IRR

Its divergent part is described by an UV counterterm

$$
\Delta\left(x_{1}, x_{5}, \ldots, x_{8}\right)=\frac{C}{2 \epsilon} \delta\left(x_{1}-x_{5}\right) \ldots \delta\left(x_{1}-x_{8}\right),
$$

IRR

Its divergent part is described by an UV counterterm

$$
\Delta\left(x_{1}, x_{5}, \ldots, x_{8}\right)=\frac{C}{2 \epsilon} \delta\left(x_{1}-x_{5}\right) \ldots \delta\left(x_{1}-x_{8}\right),
$$

A similar counterterm $\Delta\left(x_{3}, x_{5}, \ldots, x_{8}\right)$ is connected with the vicinity of x_{3}.

IRR

Its divergent part is described by an UV counterterm

$$
\Delta\left(x_{1}, x_{5}, \ldots, x_{8}\right)=\frac{C}{2 \epsilon} \delta\left(x_{1}-x_{5}\right) \ldots \delta\left(x_{1}-x_{8}\right),
$$

A similar counterterm $\Delta\left(x_{3}, x_{5}, \ldots, x_{8}\right)$ is connected with the vicinity of x_{3}. The pole part of $I\left(x_{1}, x_{3}\right)$ is C / ϵ.

IRR

Its divergent part is described by an UV counterterm

$$
\Delta\left(x_{1}, x_{5}, \ldots, x_{8}\right)=\frac{C}{2 \epsilon} \delta\left(x_{1}-x_{5}\right) \ldots \delta\left(x_{1}-x_{8}\right),
$$

A similar counterterm $\Delta\left(x_{3}, x_{5}, \ldots, x_{8}\right)$ is connected with the vicinity of x_{3}.
The pole part of $I\left(x_{1}, x_{3}\right)$ is C / ϵ.
We are not going to momentum space via Fourier transform because

- we would obtain four-loop integrals,
- exponents of the propagators would depend on ϵ.

IRR

Apply IRR in the coordinate space: treat the coordinates x_{1}, x_{5} as external and x_{6}, x_{7}, x_{8} as internal points. (Setting an external momentum to zero \sim integrating over the corresponding coordinate.)

IRR

Apply IRR in the coordinate space: treat the coordinates x_{1}, x_{5} as external and x_{6}, x_{7}, x_{8} as internal points.
(Setting an external momentum to zero \sim integrating over the corresponding coordinate.)
Then C can be obtained from
$F\left(x_{1}, x_{5}\right)=\int \frac{d^{D} x_{6} d^{D} x_{7} d^{D} x_{8}}{x_{15}^{2} x_{16}^{2} x_{17}^{2} x_{18}^{2} x_{56}^{2} x_{68}^{2} x_{78}^{2} x_{57}^{2}}=\frac{C}{2 \epsilon} \delta\left(x_{1}-x_{5}\right)+O\left(\epsilon^{0}\right)$
(No IR divergences have been generated.)

Apply IRR in the coordinate space: treat the coordinates x_{1}, x_{5} as external and x_{6}, x_{7}, x_{8} as internal points.
(Setting an external momentum to zero \sim integrating over the corresponding coordinate.)
Then C can be obtained from
$F\left(x_{1}, x_{5}\right)=\int \frac{d^{D} x_{6} d^{D} x_{7} d^{D} x_{8}}{x_{15}^{2} x_{16}^{2} x_{17}^{2} x_{18}^{2} x_{56}^{2} x_{68}^{2} x_{78}^{2} x_{57}^{2}}=\frac{C}{2 \epsilon} \delta\left(x_{1}-x_{5}\right)+O\left(\epsilon^{0}\right)$
(No IR divergences have been generated.)
This propagator integral is three-loop:

$$
F\left(x_{1}, x_{5}\right)=f(\epsilon) \frac{1}{\left(x_{15}^{2}\right)^{2+3 \epsilon}} .
$$

IRR

Here the pole is hidden in $\frac{1}{\left(x_{15}^{2}\right)^{2+3 \epsilon}}$ so that $f(\epsilon)$ is analytic at $\epsilon=0$.

IRR

Here the pole is hidden in $\frac{1}{\left(x_{15}^{2}\right)^{2+3 \epsilon}}$ so that $f(\epsilon)$ is analytic at $\epsilon=0$. To reveal the pole take its D-dimensional Fourier transform:
$\mathcal{F}\left[\frac{1}{\left(x^{2}\right)^{\lambda}}\right]=\frac{1}{\pi^{D / 2}} \int d^{D} x \mathrm{e}^{i p x} \frac{1}{\left(x^{2}\right)^{\lambda}}=\frac{4^{D / 2-\lambda}}{\Gamma(\lambda)} \frac{\Gamma(D / 2-\lambda)}{\left(p^{2}\right)^{D / 2-\lambda}}$.

IRR

Here the pole is hidden in $\frac{1}{\left(x_{15}^{2}\right)^{2+3 \epsilon}}$ so that $f(\epsilon)$ is analytic at $\epsilon=0$. To reveal the pole take its D-dimensional Fourier transform:
$\mathcal{F}\left[\frac{1}{\left(x^{2}\right)^{\lambda}}\right]=\frac{1}{\pi^{D / 2}} \int d^{D} x \mathrm{e}^{i p x} \frac{1}{\left(x^{2}\right)^{\lambda}}=\frac{4^{D / 2-\lambda}}{\Gamma(\lambda)} \frac{\Gamma(D / 2-\lambda)}{\left(p^{2}\right)^{D / 2-\lambda}}$.
For $\lambda=2+3 \epsilon$ and for $x_{5}=0$:

$$
\mathcal{F}\left[F\left(x_{1}, 0\right)\right]=f(\epsilon) \frac{4^{-4 \epsilon} \Gamma(-4 \epsilon)}{\Gamma(2+3 \epsilon)} \frac{1}{\left(p^{2}\right)^{-4 \epsilon}}=-\frac{f(0)}{4 \epsilon}+O\left(\epsilon^{0}\right) .
$$

IRR

Here the pole is hidden in $\frac{1}{\left(x_{15}^{2}\right)^{2+3 \epsilon}}$ so that $f(\epsilon)$ is analytic at $\epsilon=0$. To reveal the pole take its D-dimensional Fourier transform:
$\mathcal{F}\left[\frac{1}{\left(x^{2}\right)^{\lambda}}\right]=\frac{1}{\pi^{D / 2}} \int d^{D} x \mathrm{e}^{i p x} \frac{1}{\left(x^{2}\right)^{\lambda}}=\frac{4^{D / 2-\lambda}}{\Gamma(\lambda)} \frac{\Gamma(D / 2-\lambda)}{\left(p^{2}\right)^{D / 2-\lambda}}$.
For $\lambda=2+3 \epsilon$ and for $x_{5}=0$:

$$
\mathcal{F}\left[F\left(x_{1}, 0\right)\right]=f(\epsilon) \frac{4^{-4 \epsilon} \Gamma(-4 \epsilon)}{\Gamma(2+3 \epsilon)} \frac{1}{\left(p^{2}\right)^{-4 \epsilon}}=-\frac{f(0)}{4 \epsilon}+O\left(\epsilon^{0}\right) .
$$

We obtain

$$
C=-\frac{1}{2} f(0)=-\left.\frac{1}{2} F\left(x_{1}, 0\right)\right|_{x_{1}^{2}=1, D=4}
$$

IRR

The integral $F\left(x_{1}, x_{5}\right)$ corresponds to a planar graph.

Using a known result for the corresponding dual integral at $d=4$ leads to

$$
C=-10 \zeta(5)
$$

$$
\int d^{D} x_{5} \ldots d^{D} x_{9} \mathcal{I}_{5}\left(x_{1}, x_{1}, x_{3}, x_{3} \mid x_{5}, \ldots, x_{9}\right)
$$

To evaluate the pole part (a simple pole) apply IRR.

$$
\int d^{D} x_{5} \ldots d^{D} x_{9} \mathcal{I}_{5}\left(x_{1}, x_{1}, x_{3}, x_{3} \mid x_{5}, \ldots, x_{9}\right)
$$

To evaluate the pole part (a simple pole) apply IRR.
The pole is generated by the region where x_{5}, \ldots, x_{9} are close either to x_{1} or x_{3}.
There are no other sources of poles in ϵ.

$$
\int d^{D} x_{5} \ldots d^{D} x_{9} \mathcal{I}_{5}\left(x_{1}, x_{1}, x_{3}, x_{3} \mid x_{5}, \ldots, x_{9}\right)
$$

To evaluate the pole part (a simple pole) apply IRR.
The pole is generated by the region where x_{5}, \ldots, x_{9} are close either to x_{1} or x_{3}.
There are no other sources of poles in ϵ.
Let $x_{5}, \ldots, x_{9} \sim x_{1}$. As in our example, the problem reduces to the evaluation of the UV counterterm of

$$
\hat{\mathcal{I}}_{5}\left(x_{1}, x_{5}, \ldots, x_{9}\right)=\lim _{x_{3} \rightarrow \infty} \mathcal{I}_{5}\left(x_{1}, x_{3} ; x_{5}, \ldots, x_{9}\right)
$$

$$
\int d^{D} x_{5} \ldots d^{D} x_{9} \mathcal{I}_{5}\left(x_{1}, x_{1}, x_{3}, x_{3} \mid x_{5}, \ldots, x_{9}\right)
$$

To evaluate the pole part (a simple pole) apply IRR.
The pole is generated by the region where x_{5}, \ldots, x_{9} are close either to x_{1} or x_{3}.
There are no other sources of poles in ϵ.
Let $x_{5}, \ldots, x_{9} \sim x_{1}$. As in our example, the problem reduces to the evaluation of the UV counterterm of

$$
\hat{\mathcal{I}}_{5}\left(x_{1}, x_{5}, \ldots, x_{9}\right)=\lim _{x_{3} \rightarrow \infty} \mathcal{I}_{5}\left(x_{1}, x_{3} ; x_{5}, \ldots, x_{9}\right) .
$$

Apply IRR:
consider x_{1} and x_{5} external and $x_{6}, x_{7}, x_{8}, x_{9}$ internal.

The problem reduces to the evaluation of the residue of

$$
\frac{1}{\left(x_{15}^{2}\right)^{2+4 \epsilon}} \int d^{D} x_{6} d^{D} x_{7} d^{D} x_{8} d^{D} x_{9} \hat{\mathcal{I}}_{5}\left(x_{1}, x_{5}, \ldots, x_{9}\right)
$$

The problem reduces to the evaluation of the residue of

$$
\frac{1}{\left(x_{15}^{2}\right)^{2+4 \epsilon}} \int d^{D} x_{6} d^{D} x_{7} d^{D} x_{8} d^{D} x_{9} \hat{\mathcal{I}}_{5}\left(x_{1}, x_{5}, \ldots, x_{9}\right) .
$$

The pole comes from $\frac{1}{\left(x_{15}^{2}\right)^{2+4 \epsilon}}$ so that we need to evaluate

$$
\int d^{D} x_{6} d^{D} x_{7} d^{D} x_{8} d^{D} x_{9} \hat{\mathcal{I}}_{5}\left(x_{1}, x_{5}, \ldots, x_{9}\right)
$$

at $x_{15}^{2}=1$.

Around 17000 four-loop two-point Feynman integrals contributing to this integral and belonging to the family

$$
\begin{aligned}
& G\left(a_{1}, \ldots, a_{14}\right)=\int \frac{d^{D} x_{6} d^{D} x_{7} d^{D} x_{8} d^{D} x_{9}}{\left(x_{16}^{2}\right)^{a_{1}}\left(x_{17}^{2}\right)^{a_{2}}\left(x_{18}^{2}\right)^{a_{3}}\left(x_{19}^{2}\right)^{a_{4}}\left(x_{6}^{2}\right)^{a_{5}}\left(x_{7}^{2}\right)^{a_{6}}\left(x_{8}^{2}\right)^{a_{7}}} \\
& \quad \times \frac{1}{\left(x_{9}^{2}\right)^{a_{8}}\left(x_{67}^{2}\right)^{a_{9}}\left(x_{68}^{2}\right)^{a_{10}}\left(x_{69}^{2}\right)^{a_{11}}\left(x_{78}^{2}\right)^{a_{12}}\left(x_{79}^{2}\right)^{a_{13}}\left(x_{89}^{2}\right)^{a_{14}}} .
\end{aligned}
$$

with various indices a_{i}.

Around 17000 four-loop two-point Feynman integrals contributing to this integral and belonging to the family

$$
\begin{aligned}
& G\left(a_{1}, \ldots, a_{14}\right)=\int \frac{d^{D} x_{6} d^{D} x_{7} d^{D} x_{8} d^{D} x_{9}}{\left(x_{16}^{2}\right)^{a_{1}}\left(x_{17}^{2}\right)^{a_{2}}\left(x_{18}^{2}\right)^{a_{3}}\left(x_{19}^{2}\right)^{a_{4}}\left(x_{6}^{2}\right)^{a_{5}}\left(x_{7}^{2}\right)^{a_{6}}\left(x_{8}^{2}\right)^{a_{7}}} \\
& \quad \times \frac{1}{\left(x_{9}^{2}\right)^{a_{8}}\left(x_{67}^{2}\right)^{a_{9}}\left(x_{68}^{2}\right)^{a_{10}}\left(x_{69}^{2}\right)^{a_{11}}\left(x_{78}^{2}\right)^{a_{12}}\left(x_{79}^{2}\right)^{a_{13}}\left(x_{89}^{2}\right)^{a_{14}}} .
\end{aligned}
$$

with various indices a_{i}.
An IBP reduction to master integrals.

Solving IBP relations algorithmically:

- Laporta's algorithm
[Laporta \& Remiddi'96; Laporta'00; Gehrmann \& Remiddi'01]

Solving IBP relations algorithmically:

- Laporta's algorithm
[Laporta \& Remiddi'96; Laporta'00; Gehrmann \& Remiddi'01]
Implementations of the Laporta's algorithm

Solving IBP relations algorithmically:

- Laporta's algorithm
[Laporta \& Remiddi'96; Laporta'00; Gehrmann \& Remiddi'01]
Implementations of the Laporta's algorithm
Three public versions:

Solving IBP relations algorithmically:

- Laporta's algorithm
[Laporta \& Remiddi'96; Laporta'00; Gehrmann \& Remiddi'01]
Implementations of the Laporta's algorithm
Three public versions:
- AIR

Solving IBP relations algorithmically:

- Laporta's algorithm
[Laporta \& Remiddi'96; Laporta'00; Gehrmann \& Remiddi'01]
Implementations of the Laporta's algorithm
Three public versions:
- AIR
[Anastasiou \& Lazopoulos'04]
- FIRE
[A. Smirnov'08]
(in Mathematica; a C++ version is private)

Solving IBP relations algorithmically:

- Laporta's algorithm
[Laporta \& Remiddi'96; Laporta'00; Gehrmann \& Remiddi'01]
Implementations of the Laporta's algorithm
Three public versions:
- AIR
[Anastasiou \& Lazopoulos'04]
- FIRE
[A. Smirnov'08]
(in Mathematica; a C++ version is private)
- Reduze
[C. Studerus'09, A. von Manteuffel \& C. Studerus'11]

Solving IBP relations algorithmically:

- Laporta's algorithm
[Laporta \& Remiddi'96; Laporta'00; Gehrmann \& Remiddi'01]
Implementations of the Laporta's algorithm
Three public versions:
- AIR
- FIRE
(in Mathematica; a C++ version is private)
e Reduze [C. Studerus'09, A. von Manteuffel \& C. Studerus'11]
Private versions
[Gehrmann \& Remiddi, Laporta, Czakon, Schröder, Pak, Sturm, Marquard \& Seidel, Velizhanin, ...]

C++ version of FIRE \rightarrow

$$
\begin{aligned}
C_{4} & =w_{44} M_{44}+w_{61} M_{61}+w_{36} M_{36}+w_{31} M_{31}+w_{35} M_{35} \\
& +w_{22} M_{22}+w_{32} M_{32}+w_{33} M_{33}+w_{34} M_{34}+w_{25} M_{25}+w_{23} M_{23} \\
& +w_{27} M_{27}+w_{24} M_{24}+w_{26} M_{26}+w_{01} M_{01} \\
& +w_{21} M_{21}+w_{12} M_{12}+w_{11} M_{11}+w_{14} M_{14}+w_{13} M_{13}+w_{1} I_{1}+w
\end{aligned}
$$

C++ version of FIRE \rightarrow

$$
\begin{aligned}
C_{4} & =w_{44} M_{44}+w_{61} M_{61}+w_{36} M_{36}+w_{31} M_{31}+w_{35} M_{35} \\
& +w_{22} M_{22}+w_{32} M_{32}+w_{33} M_{33}+w_{34} M_{34}+w_{25} M_{25}+w_{23} M_{23} \\
& +w_{27} M_{27}+w_{24} M_{24}+w_{26} M_{26}+w_{01} M_{01} \\
& +w_{21} M_{21}+w_{12} M_{12}+w_{11} M_{11}+w_{14} M_{14}+w_{13} M_{13}+w_{1} I_{1}+w^{2}
\end{aligned}
$$

Only I_{1} and I_{2}, are associated with non-planar graphs.
20 master integrals M_{44}, \ldots, M_{13} correspond to planar graphs and can be represented, via duality, as four-loop propagator master (momentum) integrals.

M_{36}

M_{35}

M_{23}

M_{27}

M_{26}

M_{21}

M_{52}, ε^{1}

M_{24}, ε^{4}

M_{11}, ε^{5}

M_{12}, ε^{5}

M_{31}, ε^{3}

Results in an ϵ expansion up to transcendentality weight seven and up to weight twelve
[P.A. Baikov \& K.G. Chetyrkin'10]
[R.N. Lee, A.V. Smirnov \& V.A. Smirnov]

Results in an ϵ expansion up to transcendentality weight seven
[P.A. Baikov \& K.G. Chetyrkin'10] and up to weight twelve

The two non-planar master integrals I_{1} and I_{2}

I_{1}

I_{2}

$I_{3}(0)$

$I_{4}(0)$

We did not use the method by R. Lee based on dimensional recurrence relations.

Its applications
[R. Lee, A. and V. Smirnovs'10,11]

$$
\begin{aligned}
I_{1} & =\frac{\mathrm{e}^{4 \gamma \epsilon}}{\pi^{2 D}} \int \frac{d^{D} x_{6} d^{D} x_{7} d^{D} x_{8} d^{D} x_{9}}{x_{16}^{2} x_{19}^{2} x_{67}^{2} x_{68}^{2} x_{7}^{2} x_{79}^{2} x_{8}^{2} x_{89}^{2}}=\frac{a_{1}}{\epsilon}+b_{1}+c_{1} \epsilon+O\left(\epsilon^{2}\right), \\
I_{2} & =\frac{\mathrm{e}^{4 \gamma \epsilon}}{\pi^{2 D}} \int \frac{d^{D} x_{6} d^{D} x_{7} d^{D} x_{8} d^{D} x_{9}}{x_{16}^{2}\left(x_{19}^{2}\right)^{2} x_{67}^{2} x_{68}^{2} x_{7}^{2} x_{79}^{2} x_{8}^{2} x_{89}^{2}}=\frac{a_{2}}{\epsilon}+b_{2}+c_{2} \epsilon+O\left(\epsilon^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& I_{1}=\frac{\mathrm{e}^{4 \gamma \epsilon}}{\pi^{2 D}} \int \frac{d^{D} x_{6} d^{D} x_{7} d^{D} x_{8} d^{D} x_{9}}{x_{16}^{2} x_{19}^{2} x_{67}^{2} x_{68}^{2} x_{7}^{2} x_{79}^{2} x_{8}^{2} x_{89}^{2}}=\frac{a_{1}}{\epsilon}+b_{1}+c_{1} \epsilon+O\left(\epsilon^{2}\right), \\
& I_{2}=\frac{\mathrm{e}^{4 \gamma \epsilon}}{\pi^{2 D}} \int \frac{d^{D} x_{6} d^{D} x_{7} d^{D} x_{8} d^{D} x_{9}}{x_{16}^{2}\left(x_{19}^{2}\right)^{2} x_{67}^{2} x_{68}^{2} x_{7}^{2} x_{79}^{2} x_{8}^{2} x_{89}^{2}}=\frac{a_{2}}{\epsilon}+b_{2}+c_{2} \epsilon+O\left(\epsilon^{2}\right) \\
& \left(\frac{3 a_{1}}{80}+\frac{9 a_{2}}{160}+\frac{15 \zeta_{5}}{16}\right) \epsilon^{-2} \\
& \quad+\left(-\frac{21 a_{1}}{80}-\frac{9 a_{2}}{80}+\frac{3 b_{1}}{80}+\frac{9 b_{2}}{160}+\frac{15 \zeta_{3}^{2}}{16}+\frac{5 \pi^{6}}{2016}\right) \epsilon^{-1} \\
& \quad+\left(\frac{741 a_{1}}{640}+\frac{807 a_{2}}{320}-\frac{21 b_{1}}{80}-\frac{9 b_{2}}{80}+\frac{3 c_{1}}{80}+\frac{9 c_{2}}{160}-\frac{225 \zeta_{7}}{64}-\frac{5 \pi^{2} \zeta_{5}}{16}\right. \\
& \\
& \left.+\frac{7035 \zeta_{5}}{128}+\frac{81 \zeta_{3}^{2}}{16}+\frac{\pi^{4} \zeta_{3}}{32}-\frac{27 \zeta_{3}}{4}-\frac{237}{16}\right)+O(\epsilon)
\end{aligned}
$$

The absence of poles \rightarrow two relations between coefficients
$a_{1}, a_{2}, b_{1}, b_{2}, c_{1}, c_{2}$
To evaluate a_{1}, a_{2} take a Fourier transform:

$$
\mathcal{F}\left[I_{1}\right]=\mathcal{F}\left[\frac{a_{1}}{\epsilon}\left(x_{1}^{2}\right)^{-4 \epsilon}+O\left(\epsilon^{0}\right)\right]=\left(64 a_{1}+O(\epsilon)\right)\left(p^{2}\right)^{-2+5 \epsilon} .
$$

The absence of poles \rightarrow two relations between coefficients $a_{1}, a_{2}, b_{1}, b_{2}, c_{1}, c_{2}$
To evaluate a_{1}, a_{2} take a Fourier transform:
$\mathcal{F}\left[I_{1}\right]=\mathcal{F}\left[\frac{a_{1}}{\epsilon}\left(x_{1}^{2}\right)^{-4 \epsilon}+O\left(\epsilon^{0}\right)\right]=\left(64 a_{1}+O(\epsilon)\right)\left(p^{2}\right)^{-2+5 \epsilon}$.

so that $a_{1}=5 \zeta_{5}$.

$$
\begin{aligned}
\mathcal{F}\left[I_{2}\right]= & F\left[\frac{a_{2}}{\epsilon}\left(x_{1}^{2}\right)^{-1-4 \epsilon}+O\left(\epsilon^{0}\right)\right]=4\left(\frac{a_{2}}{\epsilon}+O(\epsilon)\right)\left(p^{2}\right)^{-1+5 \epsilon} . \\
& \mathcal{F}\left[\frac{1}{\left(x_{19}^{2}\right)^{2}}\right]=2^{-2 \epsilon} \Gamma(-\epsilon)\left(p^{2}\right)^{\epsilon}=-\frac{1}{\epsilon}+O\left(\epsilon^{0}\right) .
\end{aligned}
$$

so that taking the residue at the pole reduces to shrinking the corresponding line to a point.

$$
\begin{gathered}
\mathcal{F}\left[I_{2}\right]=F\left[\frac{a_{2}}{\epsilon}\left(x_{1}^{2}\right)^{-1-4 \epsilon}+O\left(\epsilon^{0}\right)\right]=4\left(\frac{a_{2}}{\epsilon}+O(\epsilon)\right)\left(p^{2}\right)^{-1+5 \epsilon} . \\
\\
\mathcal{F}\left[\frac{1}{\left(x_{19}^{2}\right)^{2}}\right]=2^{-2 \epsilon} \Gamma(-\epsilon)\left(p^{2}\right)^{\epsilon}=-\frac{1}{\epsilon}+O\left(\epsilon^{0}\right) .
\end{gathered}
$$

so that taking the residue at the pole reduces to shrinking the corresponding line to a point.
$\mathcal{F}\left[I_{2}\right]=-\frac{4}{\epsilon}\left[-\frac{4}{\epsilon}\left(20 \zeta_{5}+O(\epsilon)\right)\left(p^{2}\right)^{-1+5 \epsilon}\right.$.
We obtain $a_{2}=-20 \zeta_{5}$.

Introduce the following auxiliary integrals

$$
\begin{aligned}
I_{3}(\kappa) & =\frac{\mathrm{e}^{4 \gamma \epsilon}}{\pi^{2 D}} \int \frac{d^{D} x_{6} d^{D} x_{7} d^{D} x_{8} d^{D} x_{9}}{\left(x_{16}^{2} x_{19}^{2} x_{67}^{2} x_{68}^{2} x_{78}^{2} x_{79}^{2} x_{7}^{2} x_{8}^{2} x_{89}^{2}\right)^{1-\epsilon \kappa}} \\
I_{4}(\kappa) & =\frac{\mathrm{e}^{4 \gamma \epsilon}}{\pi^{2 D}} \int \frac{d^{D} x_{6} d^{D} x_{7} d^{D} x_{8} d^{D} x_{9}}{\left(x_{16}^{2} x_{17}^{2} x_{19}^{2} x_{67}^{2} x_{68}^{2} x_{79}^{2} x_{7}^{2} x_{8}^{2} x_{89}^{2}\right)^{1-\epsilon \kappa}}
\end{aligned}
$$

with

$$
I_{i}(\kappa)=b_{i}+\epsilon\left(c_{i}+\kappa d_{i}\right)+O\left(\epsilon^{2}\right), \quad i=3,4
$$

Introduce the following auxiliary integrals

$$
\begin{aligned}
& I_{3}(\kappa)=\frac{\mathrm{e}^{4 \gamma \epsilon}}{\pi^{2 D}} \int \frac{d^{D} x_{6} d^{D} x_{7} d^{D} x_{8} d^{D} x_{9}}{\left(x_{16}^{2} x_{19}^{2} x_{67}^{2} x_{68}^{2} x_{78}^{2} x_{79}^{2} x_{7}^{2} x_{8}^{2} x_{89}^{2}\right)^{1-\epsilon \kappa}}, \\
& I_{4}(\kappa)=\frac{\mathrm{e}^{4 \gamma \epsilon}}{\pi^{2 D}} \int \frac{d^{D} x_{6} d^{D} x_{7} d^{D} x_{8} d^{D} x_{9}}{\left(x_{16}^{2} x_{17}^{2} x_{19}^{2} x_{67}^{2} x_{68}^{2} x_{79}^{2} x_{7}^{2} x_{8}^{2} x_{89}^{2}\right)^{1-\epsilon \kappa}},
\end{aligned}
$$

with

$$
I_{i}(\kappa)=b_{i}+\epsilon\left(c_{i}+\kappa d_{i}\right)+O\left(\epsilon^{2}\right), \quad i=3,4
$$

Evaluate $I_{3}(0)$ and $I_{4}(0)$. They are not master integrals. We use FIRE to reduce them to master integrals, in particular, I_{1} and I_{2}.

$$
\begin{aligned}
b_{3} & =-\frac{2}{3} b_{1}-\frac{7}{3} b_{2}-70 \zeta_{5}+\frac{26}{3} \zeta_{3}^{2}-\frac{65}{567} \pi^{6}, \\
b_{4}= & -b_{1}-2 b_{2}-45 \zeta_{5}+7 \zeta_{3}^{2}-\frac{5}{54} \pi^{6}, \\
c_{3}= & \frac{14}{3} b_{1}+\frac{14}{3} b_{2}-\frac{2}{3} c_{1}-\frac{7}{3} c_{2}-\frac{4667}{6} \zeta_{7}+\frac{130}{9} \pi^{2} \zeta_{5}-\frac{100}{3} \zeta_{5}+\frac{13}{45} \pi^{4} \\
c_{4}= & 2 b_{1}-6 b_{2}-c_{1}-2 c_{2}-\frac{4193}{4} \zeta_{7}+\frac{35}{3} \pi^{2} \zeta_{5}-275 \zeta_{5}+35 \zeta_{3}^{2} \\
& \quad+\frac{7}{30} \pi^{4} \zeta_{3}-\frac{25}{54} \pi^{6} .
\end{aligned}
$$

$$
\begin{aligned}
b_{3} & =-\frac{2}{3} b_{1}-\frac{7}{3} b_{2}-70 \zeta_{5}+\frac{26}{3} \zeta_{3}{ }^{2}-\frac{65}{567} \pi^{6}, \\
b_{4}= & -b_{1}-2 b_{2}-45 \zeta_{5}+7 \zeta_{3}^{2}-\frac{5}{54} \pi^{6}, \\
c_{3}= & \frac{14}{3} b_{1}+\frac{14}{3} b_{2}-\frac{2}{3} c_{1}-\frac{7}{3} c_{2}-\frac{4667}{6} \zeta_{7}+\frac{130}{9} \pi^{2} \zeta_{5}-\frac{100}{3} \zeta_{5}+\frac{13}{45} \pi^{4} \\
c_{4}= & 2 b_{1}-6 b_{2}-c_{1}-2 c_{2}-\frac{4193}{4} \zeta_{7}+\frac{35}{3} \pi^{2} \zeta_{5}-275 \zeta_{5}+35 \zeta_{3}{ }^{2} \\
& \quad+\frac{7}{30} \pi^{4} \zeta_{3}-\frac{25}{54} \pi^{6} .
\end{aligned}
$$

Evaluate I_{3} and I_{4} at $\kappa=1 / 2$ and $\kappa=1$ and obtain I_{1} and I_{2}, i.e. b_{1}, b_{2} and c_{1}, c_{2}.

$I_{i}(\kappa), i=3,4$ is a linear function of κ at $O(\epsilon) \rightarrow$

$$
I_{i}(0)=2 I_{i}(1)-I_{i}(1 / 2)+O\left(\epsilon^{2}\right)=b_{i}+\epsilon c_{i}+O\left(\epsilon^{2}\right) .
$$

$I_{i}(\kappa), i=3,4$ is a linear function of κ at $O(\epsilon) \rightarrow$

$$
I_{i}(0)=2 I_{i}(1)-I_{i}(1 / 2)+O\left(\epsilon^{2}\right)=b_{i}+\epsilon c_{i}+O\left(\epsilon^{2}\right)
$$

Let $\kappa=1$, i.e. with propagators $1 /\left(x^{2}\right)^{1-\epsilon} \rightarrow$ $\mathcal{F}\left[I_{3}(1)\right]$ and $\mathcal{F}\left[I_{4}(1)\right]$ are given by conventional four-loop momentum Feynman integrals with propagators $1 / p^{2}$. $\mathcal{F}\left[I_{3}(1)\right] \rightarrow M_{45}$ of Baikov and Chetyrkin.

$$
I_{3}(1)=36 \zeta_{3}^{2}+\epsilon\left(108 \zeta_{3} \zeta_{4}+288 \zeta_{3}^{2}-378 \zeta_{7}\right)+O\left(\epsilon^{2}\right)
$$

$I_{i}(\kappa), i=3,4$ is a linear function of κ at $O(\epsilon) \rightarrow$

$$
I_{i}(0)=2 I_{i}(1)-I_{i}(1 / 2)+O\left(\epsilon^{2}\right)=b_{i}+\epsilon c_{i}+O\left(\epsilon^{2}\right)
$$

Let $\kappa=1$, i.e. with propagators $1 /\left(x^{2}\right)^{1-\epsilon} \rightarrow$
$\mathcal{F}\left[I_{3}(1)\right]$ and $\mathcal{F}\left[I_{4}(1)\right]$ are given by conventional four-loop momentum Feynman integrals with propagators $1 / p^{2}$. $\mathcal{F}\left[I_{3}(1)\right] \rightarrow M_{45}$ of Baikov and Chetyrkin.

$$
I_{3}(1)=36 \zeta_{3}^{2}+\epsilon\left(108 \zeta_{3} \zeta_{4}+288 \zeta_{3}^{2}-378 \zeta_{7}\right)+O\left(\epsilon^{2}\right)
$$

The second integral $\mathcal{F}\left[I_{4}(1)\right]$ is not a master integral. We applied FIRE to reduce it to master integrals
$M_{01}, M_{11}, M_{35}, M_{13}, M_{36}, M_{12}, M_{21}$.

$$
I_{4}(1)=36 \zeta_{3}^{2}+\epsilon\left(108 \zeta_{3} \zeta_{4}+108 \zeta_{3}^{2}+\frac{189}{2} \zeta_{7}\right)+O\left(\epsilon^{2}\right)
$$

$$
I_{4}(1)=36 \zeta_{3}^{2}+\epsilon\left(108 \zeta_{3} \zeta_{4}+108 \zeta_{3}^{2}+\frac{189}{2} \zeta_{7}\right)+O\left(\epsilon^{2}\right)
$$

Let now $\kappa=1 / 2$.
For the integral $I_{3}(1 / 2)$, the conformal weight of the integrand at x_{7} and x_{8} equals the space-time dimension $4(1-\kappa \epsilon)=D$.

$$
I_{4}(1)=36 \zeta_{3}^{2}+\epsilon\left(108 \zeta_{3} \zeta_{4}+108 \zeta_{3}^{2}+\frac{189}{2} \zeta_{7}\right)+O\left(\epsilon^{2}\right)
$$

Let now $\kappa=1 / 2$.
For the integral $I_{3}(1 / 2)$, the conformal weight of the integrand at x_{7} and x_{8} equals the space-time dimension $4(1-\kappa \epsilon)=D$.
Using inversion $x_{i}^{\mu} \rightarrow x_{i}^{\mu} / x_{i}^{2}$ we obtain

$$
I_{3}(1 / 2)=\frac{\mathrm{e}^{4 \gamma \epsilon}}{\pi^{2 D}} \int \frac{d^{D} x_{6} d^{D} x_{7} d^{D}{ }^{2} x_{8} d^{D}{ }^{2} x_{9}}{\left(x_{16}^{2} x_{19}^{2} x_{67}^{2} x_{68}^{2} x_{78}^{2} x_{79}^{2} x_{6}^{2} x_{9}^{2} x_{89}^{2}\right)^{1-\epsilon / 2}}=x_{1}
$$

The two-loop subintegral over x_{7} and x_{8} equals

$$
\frac{\mathrm{e}^{2 \gamma \epsilon}}{\pi^{D}} \int \frac{d^{D} x_{7} d^{D} x_{8}}{\left(x_{67}^{2} x_{68}^{2} x_{78}^{2} x_{79}^{2} x_{89}^{2}\right)^{1-\epsilon / 2}}=\frac{6 \zeta_{3}+\left(9 \zeta_{4}+12 \zeta_{3}\right) \epsilon+O\left(\epsilon^{2}\right)}{\left(x_{69}^{2}\right)^{1-\epsilon / 2}}
$$

The two-loop subintegral over x_{7} and x_{8} equals

$$
\frac{\mathrm{e}^{2 \gamma \epsilon}}{\pi^{D}} \int \frac{d^{D} x_{7} d^{D} x_{8}}{\left(x_{67}^{2} x_{68}^{2} x_{78}^{2} x_{79}^{2} x_{89}^{2}\right)^{1-\epsilon / 2}}=\frac{6 \zeta_{3}+\left(9 \zeta_{4}+12 \zeta_{3}\right) \epsilon+O\left(\epsilon^{2}\right)}{\left(x_{69}^{2}\right)^{1-\epsilon / 2}}
$$

Taking similarly the remaining integral over x_{6} and $x_{9} \rightarrow$

$$
I_{3}(1 / 2)=\left[6 \zeta_{3}+\left(9 \zeta_{4}+12 \zeta_{3}\right) \epsilon+O\left(\epsilon^{2}\right)\right]^{2} .
$$

The two-loop subintegral over x_{7} and x_{8} equals

$$
\frac{\mathrm{e}^{2 \gamma \epsilon}}{\pi^{D}} \int \frac{d^{D} x_{7} d^{D} x_{8}}{\left(x_{67}^{2} x_{68}^{2} x_{78}^{2} x_{79}^{2} x_{89}^{2}\right)^{1-\epsilon / 2}}=\frac{6 \zeta_{3}+\left(9 \zeta_{4}+12 \zeta_{3}\right) \epsilon+O\left(\epsilon^{2}\right)}{\left(x_{69}^{2}\right)^{1-\epsilon / 2}}
$$

Taking similarly the remaining integral over x_{6} and $x_{9} \rightarrow$

$$
I_{3}(1 / 2)=\left[6 \zeta_{3}+\left(9 \zeta_{4}+12 \zeta_{3}\right) \epsilon+O\left(\epsilon^{2}\right)\right]^{2} .
$$

$$
I_{4}(1 / 2)=?
$$

The two-loop subintegral over x_{7} and x_{8} equals

$$
\frac{\mathrm{e}^{2 \gamma \epsilon}}{\pi^{D}} \int \frac{d^{D} x_{7} d^{D} x_{8}}{\left(x_{67}^{2} x_{68}^{2} x_{78}^{2} x_{79}^{2} x_{89}^{2}\right)^{1-\epsilon / 2}}=\frac{6 \zeta_{3}+\left(9 \zeta_{4}+12 \zeta_{3}\right) \epsilon+O\left(\epsilon^{2}\right)}{\left(x_{69}^{2}\right)^{1-\epsilon / 2}}
$$

Taking similarly the remaining integral over x_{6} and $x_{9} \rightarrow$

$$
\begin{gathered}
I_{3}(1 / 2)=\left[6 \zeta_{3}+\left(9 \zeta_{4}+12 \zeta_{3}\right) \epsilon+O\left(\epsilon^{2}\right)\right]^{2} . \\
I_{4}(1 / 2)=? \\
I_{4}(1 / 2)=I_{3}(1 / 2)=36 \zeta_{3}^{2}+\epsilon\left(108 \zeta_{3} \zeta_{4}+144 \zeta_{3}^{2}\right)+O\left(\epsilon^{2}\right) .
\end{gathered}
$$

Gluing

Method of gluing

[K.G. Chetyrkin \& F.V. Tkachov'81, P.A. Baikov \& K.G. Chetyrkin,10]

Gluing

Method of gluing
[K.G. Chetyrkin \& F.V. Tkachov'81, P.A. Baikov \& K.G. Chetyrkin,10]
Gluing by vertex and gluing by line.

Gluing

Method of gluing
[K.G. Chetyrkin \& F.V. Tkachov'81, P.A. Baikov \& K.G. Chetyrkin,10]
Gluing by vertex and gluing by line.
Let $F_{\Gamma}(q ; d)$ be an l-loop dimensionally regularized scalar propagator massless Feynman integral corresponding to a graph Γ,

$$
F_{\Gamma}(q ; d)=C_{\Gamma}(\epsilon)\left(q^{2}\right)^{\omega / 2-l \epsilon},
$$

where $\omega=4 l-2 L$ is the degree of divergence and $C_{\Gamma}(\epsilon)$ is a meromorphic function which is finite at $\epsilon=0$ if the integral is convergent.

Gluing

Let us denote by $\hat{\Gamma}$ the graph obtained from Γ by adding a new line which connects the two external vertices.

Gluing

Let us denote by $\hat{\Gamma}$ the graph obtained from Γ by adding a new line which connects the two external vertices.

Gluing by line. Let us suppose that two UV- and IR-convergent graphs, Γ_{1} and Γ_{2}, have degrees of divergence $\omega_{1}=\omega_{2}=-2$ and that $\hat{\Gamma_{1}}$ and $\hat{\Gamma_{2}}$ are the same. Then $C_{\Gamma_{1}}(0)=C_{\Gamma_{2}}(0)$.

Gluing

Let us denote by $\hat{\Gamma}$ the graph obtained from Γ by adding a new line which connects the two external vertices.

Gluing by line. Let us suppose that two UV- and IR-convergent graphs, Γ_{1} and Γ_{2}, have degrees of divergence $\omega_{1}=\omega_{2}=-2$ and that $\hat{\Gamma_{1}}$ and $\hat{\Gamma_{2}}$ are the same. Then $C_{\Gamma_{1}}(0)=C_{\Gamma_{2}}(0)$.

$C_{\Gamma_{1}}(0)=C_{\Gamma_{2}}(0)=20 \zeta_{5}$

Let us prove (without calculation) that $I_{3}(0)=I_{4}(0)$.

$$
I_{i}(0)=\frac{c_{i}(\epsilon)}{\left(x_{1}^{2}\right)^{1+4 \epsilon}}, \quad i=3,4 .
$$

Let us prove (without calculation) that $I_{3}(0)=I_{4}(0)$.

$$
I_{i}(0)=\frac{c_{i}(\epsilon)}{\left(x_{1}^{2}\right)^{1+4 \epsilon}}, \quad i=3,4 .
$$

Add to each of these diagrams a new line with the usual propagator $1 / x_{1}^{2}$, i.e. multiply $I_{i}(0)$ by $1 / x_{1}^{2}$ (gluing by a line).

Let us prove (without calculation) that $I_{3}(0)=I_{4}(0)$.

$$
I_{i}(0)=\frac{c_{i}(\epsilon)}{\left(x_{1}^{2}\right)^{1+4 \epsilon}}, \quad i=3,4 .
$$

Add to each of these diagrams a new line with the usual propagator $1 / x_{1}^{2}$, i.e. multiply $I_{i}(0)$ by $1 / x_{1}^{2}$ (gluing by a line).

Take the Fourier transform

$$
\mathcal{F}\left[\frac{I_{i}(0)}{x_{1}^{2}}\right]=\mathcal{F}\left[\frac{c_{i}(\epsilon)}{\left(x_{1}^{2}\right)^{2+4 \epsilon}}\right]=c_{i}(\epsilon) \frac{2^{-10 \epsilon} \Gamma(-5 \epsilon)}{\Gamma(2+4 \epsilon)}\left(p^{2}\right)^{5 \epsilon}
$$

The pole part in ϵ is independent of p,
$\mathcal{F}\left[\frac{I_{i}(0)}{x_{1}^{2}}\right]=-\frac{c_{i}(0)}{5 \epsilon}+O\left(\epsilon^{0}\right)$, i.e. independent of the way p
flows through the diagram.

The pole part in ϵ is independent of p,
$\mathcal{F}\left[\frac{I_{i}(0)}{x_{1}^{2}}\right]=-\frac{c_{i}(0)}{5 \epsilon}+O\left(\epsilon^{0}\right)$, i.e. independent of the way p
flows through the diagram. This is the UV pole part of the vacuum graph (i.e. with $p=0$) obtained by gluing either from I_{3} or I_{4}.

\longrightarrow

The pole part in ϵ is independent of p,
$\mathcal{F}\left[\frac{I_{i}(0)}{x_{1}^{2}}\right]=-\frac{c_{i}(0)}{5 \epsilon}+O\left(\epsilon^{0}\right)$, i.e. independent of the way p
flows through the diagram. This is the UV pole part of the vacuum graph (i.e. with $p=0$) obtained by gluing either from I_{3} or I_{4}.

So, $c_{3}(0)=c_{4}(0)$ and, therefore, $I_{4}(0)=I_{3}(0)$ at $\epsilon=0$.

Consider I_{3} and I_{4} with all the indices equal to
$1-\epsilon / 2-\lambda / 10$.
Formally, these are $I_{3}(\kappa)$ and $I_{4}(\kappa)$ at $\kappa=1 / 2-\lambda /(10 \epsilon)$.

$$
I_{i}(1 / 2+\lambda /(10 \epsilon))=\frac{c_{i}(\epsilon, \lambda)}{\left(x_{1}^{2}\right)^{1-\epsilon / 2-9 \lambda / 10}}, \quad i=3,4 .
$$

Consider I_{3} and I_{4} with all the indices equal to $1-\epsilon / 2-\lambda / 10$.
Formally, these are $I_{3}(\kappa)$ and $I_{4}(\kappa)$ at $\kappa=1 / 2-\lambda /(10 \epsilon)$.

$$
I_{i}(1 / 2+\lambda /(10 \epsilon))=\frac{c_{i}(\epsilon, \lambda)}{\left(x_{1}^{2}\right)^{1-\epsilon / 2-9 \lambda / 10}}, \quad i=3,4 .
$$

Add to these diagrams a new line with the propagator with the same exponent, i.e. multiply $I_{i}(\kappa)$ by $1 /\left(x_{1}^{2}\right)^{1-\epsilon / 2-\lambda / 10}$ (gluing by a line)

Consider I_{3} and I_{4} with all the indices equal to
$1-\epsilon / 2-\lambda / 10$.
Formally, these are $I_{3}(\kappa)$ and $I_{4}(\kappa)$ at $\kappa=1 / 2-\lambda /(10 \epsilon)$.

$$
I_{i}(1 / 2+\lambda /(10 \epsilon))=\frac{c_{i}(\epsilon, \lambda)}{\left(x_{1}^{2}\right)^{1-\epsilon / 2-9 \lambda / 10}}, \quad i=3,4 .
$$

Add to these diagrams a new line with the propagator with the same exponent, i.e. multiply $I_{i}(\kappa)$ by $1 /\left(x_{1}^{2}\right)^{1-\epsilon / 2-\lambda / 10}$ (gluing by a line)
Take the Fourier transform
$\mathcal{F}\left[\frac{I_{i}(1 / 2+\lambda /(10 \epsilon))}{\left(x_{1}^{2}\right)^{1-\epsilon / 2-\lambda / 10}}\right]=\mathcal{F}\left[\frac{c_{i}(\epsilon, \lambda)}{\left(x_{1}^{2}\right)^{2-\epsilon-\lambda}}\right]=c_{i}(\epsilon, \lambda) \frac{2^{2 \lambda} \Gamma(\lambda)}{\Gamma(2-\epsilon-\lambda)}\left(p^{2}\right)$

The pole part in λ is independent of p,

$$
\mathcal{F}\left[\frac{I_{i}(1 / 2+\lambda /(10 \epsilon))}{\left(x_{1}^{2}\right)^{1-\epsilon / 2-\lambda / 10}}\right]=\lambda^{-1} \frac{c_{i}(\epsilon, 0)}{\Gamma(2-\epsilon)}+O\left(\lambda^{0}\right),
$$

i.e. independent of the way p flows through the diagram.

The pole part in λ is independent of p,

$$
\mathcal{F}\left[\frac{I_{i}(1 / 2+\lambda /(10 \epsilon))}{\left(x_{1}^{2}\right)^{1-\epsilon / 2-\lambda / 10}}\right]=\lambda^{-1} \frac{c_{i}(\epsilon, 0)}{\Gamma(2-\epsilon)}+O\left(\lambda^{0}\right),
$$

i.e. independent of the way p flows through the diagram. This is the UV pole part of the vacuum graph (i.e. with $p=0$) which is the graph obtained by gluing either from I_{3} and I_{4}.

So, $c_{3}(\epsilon, 0)=c_{4}(\epsilon, 0)$ and, therefore, $I_{4}(1 / 2)=I_{3}(1 / 2)$

So, $c_{3}(\epsilon, 0)=c_{4}(\epsilon, 0)$ and, therefore, $I_{4}(1 / 2)=I_{3}(1 / 2)$

$$
\begin{aligned}
& I_{3}(\kappa)=36 \zeta_{3}^{2}+\epsilon\left(108 \zeta_{3} \zeta_{4}+288 \kappa \zeta_{3}^{2}+(1-2 \kappa) 378 \zeta_{7}\right)+O\left(\epsilon^{2}\right) \\
& I_{4}(\kappa)=36 \zeta_{3}^{2}+\epsilon\left(108 \zeta_{3} \zeta_{4}+(180-72 \kappa) \zeta_{3}^{2}-\frac{189}{2}(1-2 \kappa) \zeta_{7}\right)+O(
\end{aligned}
$$

So, $c_{3}(\epsilon, 0)=c_{4}(\epsilon, 0)$ and, therefore, $I_{4}(1 / 2)=I_{3}(1 / 2)$

$$
\begin{aligned}
& I_{3}(\kappa)=36 \zeta_{3}^{2}+\epsilon\left(108 \zeta_{3} \zeta_{4}+288 \kappa \zeta_{3}^{2}+(1-2 \kappa) 378 \zeta_{7}\right)+O\left(\epsilon^{2}\right) \\
& I_{4}(\kappa)=36 \zeta_{3}^{2}+\epsilon\left(108 \zeta_{3} \zeta_{4}+(180-72 \kappa) \zeta_{3}^{2}-\frac{189}{2}(1-2 \kappa) \zeta_{7}\right)+O(
\end{aligned}
$$

We obtain

$$
\begin{aligned}
& b_{3}=b_{4}=36 \zeta_{3}^{2}, \\
& c_{3}=108 \zeta_{3} \zeta_{4}+378 \zeta_{7}, \\
& c_{4}=108 \zeta_{3} \zeta_{4}+180 \zeta_{3}^{2}-\frac{189}{2} \zeta_{7} .
\end{aligned}
$$

This gives a system of linear relations for b_{1}, b_{2} and c_{1}, c_{2}, with the solution

$$
\begin{aligned}
& a_{1}=5 \zeta_{5}, \quad b_{1}=\frac{5}{378} \pi^{6}-13 \zeta_{3}^{2}+35 \zeta_{5}, \\
& a_{2}=-20 \zeta_{5}, \quad b_{2}=-\frac{10}{189} \pi^{6}-8 \zeta_{3}^{2}-40 \zeta_{5}, \\
& c_{1}=-\frac{13}{30} \pi^{4} \zeta_{3}-91 \zeta_{3}^{2}+195 \zeta_{5}-\frac{5}{3} \pi^{2} \zeta_{5}+\frac{345}{4} \zeta_{7}+\frac{5}{54} \pi^{6}, \\
& c_{2}=-\frac{4}{15} \pi^{4} \zeta_{3}-16 \zeta_{3}^{2}-80 \zeta_{5}+\frac{20}{3} \pi^{2} \zeta_{5}-520 \zeta_{7}-\frac{20}{189} \pi^{6}
\end{aligned}
$$

Our results:

$$
\begin{gathered}
I_{1}=\frac{5 \zeta_{5}}{\epsilon}+\frac{5}{378} \pi^{6}-13 \zeta_{3}^{2}+35 \zeta_{5} \\
+\left(-\frac{13}{30} \pi^{4} \zeta_{3}-91 \zeta_{3}^{2}+195 \zeta_{5}-\frac{5}{3} \pi^{2} \zeta_{5}+\frac{345}{4} \zeta_{7}+\frac{5}{54} \pi^{6}\right) \epsilon+\ldots \\
I_{2}=-\frac{20 \zeta_{5}}{\epsilon}-\frac{10}{189} \pi^{6}-8 \zeta_{3}^{2}-40 \zeta_{5} \\
+\left(-\frac{4}{15} \pi^{4} \zeta_{3}-16 \zeta_{3}^{2}-80 \zeta_{5}+\frac{20}{3} \pi^{2} \zeta_{5}-520 \zeta_{7}-\frac{20}{189} \pi^{6}\right) \epsilon+\ldots
\end{gathered}
$$

To check numerically our analytic results for these two non-planar integrals we used the code FIESTA
[A.V. Smirnov \& M.N. Tentyukov'08]
which gave the precision of six digits.

To check numerically our analytic results for these two non-planar integrals we used the code FIESTA
[A.V. Smirnov \& M.N. Tentyukov’08]
which gave the precision of six digits.
Modern sector decompositions
[T. Binoth \& G. Heinrich'00; C. Bogner \& S. Weinzierl'07; A.V. Smirnov \& M.N. Tentyukov'08;
A.V. Smirnov, V.A. Smirnov, \& M.N. Tentyukov'10; J. Carter \& G. Heinrich'10]

$$
\begin{aligned}
& \gamma_{\mathcal{K}}(a)=3 a-3 a^{2}+\frac{21}{4} a^{3}-\left(\frac{39}{4}-\frac{9}{4} \zeta_{3}+\frac{45}{8} \zeta_{5}\right) a^{4} \\
& +\left(\frac{237}{16}+\frac{27}{4} \zeta_{3}-\frac{81}{16} \zeta_{3}^{2}-\frac{135}{16} \zeta_{5}+\frac{945}{32} \zeta_{7}\right) a^{5}+O\left(a^{6}\right)+O\left(1 / N_{c}^{2}\right)
\end{aligned}
$$

$$
\begin{gathered}
\gamma_{\mathcal{K}}(a)=3 a-3 a^{2}+\frac{21}{4} a^{3}-\left(\frac{39}{4}-\frac{9}{4} \zeta_{3}+\frac{45}{8} \zeta_{5}\right) a^{4} \\
+\left(\frac{237}{16}+\frac{27}{4} \zeta_{3}-\frac{81}{16} \zeta_{3}^{2}-\frac{135}{16} \zeta_{5}+\frac{945}{32} \zeta_{7}\right) a^{5}+O\left(a^{6}\right)+O\left(1 / N_{c}^{2}\right) \\
\frac{81}{16} \zeta_{3}^{2}=\left(\frac{9}{4} \zeta_{3}\right)^{2}
\end{gathered}
$$

$$
\begin{aligned}
& \gamma_{\mathcal{K}}(a)=3 a-3 a^{2}+\frac{21}{4} a^{3}-\left(\frac{39}{4}-\frac{9}{4} \zeta_{3}+\frac{45}{8} \zeta_{5}\right) a^{4} \\
& +\left(\frac{237}{16}+\frac{27}{4} \zeta_{3}-\frac{81}{16} \zeta_{3}^{2}-\frac{135}{16} \zeta_{5}+\frac{945}{32} \zeta_{7}\right) a^{5}+O\left(a^{6}\right)+O\left(1 / N_{c}^{2}\right) \\
& \frac{81}{16} \zeta_{3}^{2}=\left(\frac{9}{4} \zeta_{3}\right)^{2} \\
& \left.\left\{\frac{45}{8} \zeta_{5}, \frac{945}{32} \zeta_{7}\right\} \leftrightarrow\left\{\frac{2^{-k} \pi^{2 k-4}}{\zeta(2(k-2))}\right\}\right|_{k=4,5, \ldots}=\left\{\frac{45}{8}, \frac{945}{32}, \frac{4725}{32}, \ldots\right\}
\end{aligned}
$$

Conclusion

Why have we succeeded?

Conclusion

Why have we succeeded?

- We have used the expression for the correlation function G_{4} constructed in
[B. Eden, P. Heslop, G.P. Korchemsky, E. Sokatchev'11]

Conclusion

Why have we succeeded?

- We have used the expression for the correlation function G_{4} constructed in
[B. Eden, P. Heslop, G.P. Korchemsky, E. Sokatchev'11]
- We have reduced the problem to four-loop integrals (using IRR)

Conclusion

Why have we succeeded?

- We have used the expression for the correlation function G_{4} constructed in
[B. Eden, P. Heslop, G.P. Korchemsky, E. Sokatchev'11]
- We have reduced the problem to four-loop integrals (using IRR)
- We were able to reduce all the integrals obtained to master integrals (using FIRE)

Conclusion

Why have we succeeded?

- We have used the expression for the correlation function G_{4} constructed in
[B. Eden, P. Heslop, G.P. Korchemsky, E. Sokatchev'11]
- We have reduced the problem to four-loop integrals (using IRR)
- We were able to reduce all the integrals obtained to master integrals (using FIRE)
- We were able to evaluate the two unknown master integrals (using gluing)

Conclusion

Why have we succeeded?

- We have used the expression for the correlation function G_{4} constructed in
[B. Eden, P. Heslop, G.P. Korchemsky, E. Sokatchev'11]
- We have reduced the problem to four-loop integrals (using IRR)
- We were able to reduce all the integrals obtained to master integrals (using FIRE)
- We were able to evaluate the two unknown master integrals (using gluing)

An analytic six-loop calculation?

