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Introduction
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its asymptotic behaviour when t tends to zero. For example,
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Let us consider a Feynman integral

F(a1, . . . , an) =

∫

· · ·

∫

dd
k1 . . . d

d
kh

E a1

1 . . .E an

n

depending on a small parameter t. Suppose we need to study
its asymptotic behaviour when t tends to zero. For example,

the integral depends on m2 and q2 and t = m2/q2 → 0.

t = m2 − q2/4 → 0 (threshold limit).

It is incorrect to take the limit and evaluate the integral
afterwards.
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Introduction

For limits typical of Euclidean space (for example, the off-shell
large-momentum limit or the large-mass limit), one can write
down the corresponding asymptotic expansion in terms of a
sum over certain subgraphs of a given graph (Chetyrkin,
Gorishnii, V.Smirnov). This prescription of expansion by
subgraphs has been mathematically proven.
For other limits (general case) no known formula exists.
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Introduction

The strategy of expansion by regions (Beneke, V.Smirnov)
consists of the following prescriptions:

Divide the space of the loop momenta into various
regions and, in every region, expand the integrand in a
Taylor series with respect to the parameters that are
considered small there.

Integrate the integrand, expanded in the appropriate way
in every region, over the whole integration domain of the
loop momenta.

Set to zero any scaleless integral.

Take the sum of non-zero integrals.
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Example

А family of one-loop propagator-type integrals in the Euclidean
space:

F(a1, a2; p
2,m2) =

∫

ddk

(2π)d
1

E a1

1 E a2

2

,

E1 = k2 + m2, E2 = (k + p)2 + m2.

Сonsider the asymptotics of I1(a1, a2; p
2,m2) in the limit when

|p2| ≫ m2, or t = |m2/p2| ≪ 1. The naive Taylor expansion
does not capture the complete asymptotic behaviour since the
integration variables (components of k) span all values from
−∞ to +∞, and in particular may be as small as m or as
large as

√

|p2|.
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p
k

(b) |k2| ∼ m2

E
(b)
1 = k2 + m2

E
(b)
2 = p2

p

k + p

(c) |(k + p)2| ∼ m2

E
(c)
1 = p2

E
(c)
2 = (k + p)2

+ m2

The sum of integrals of expansions in these 3 regions equals to
the expansion of the initial integral.
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Alpha-representation

The alpha-representation for Feynman integrals has a general
structure

F(a1, ..., an) =

c

∫ 1

0

dx1...dxn δ(1 − x1 − ...− xn)x
a1−1
1 ...xan−1

n UaF b,

where coefficient c and exponents a and b depend only on d ,
and ai . U and F are homogeneous polynomials (of order l and
l + 1, respectively) of integration variables xi , and F also
depends on the kinematic invariants.
The strategy of expansion in kinematic regions may also be
formulated in the alpha-representation (V.Smirnov).
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Now we append the alpha-representation of the initial integral
and its expansion in three regions (a-c):

p
k

E1 = k2 + m2

E2 = (k + p)2 + m2

t = |m2/p2| ≪ 1

U = x1 + x2

F = x1x2(p
2 + 2m2)

+ x2
1m2 + x2

2m2
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Now we append the alpha-representation of the initial integral
and its expansion in three regions (a-c):

p
k

E1 = k2 + m2

E2 = (k + p)2 + m2

t = |m2/p2| ≪ 1

U = x1 + x2

F = x1x2(p
2 + 2m2)

+ x2
1m2 + x2

2m2

p
k

(a) |k2| ∼ |p2| ≫ m2

E
(a)
1 = k2

E
(a)
2 = (k + p)2

x1, x2 ∼ t0

U(a) = x1 + x2

F (a) = x1x2p
2
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Alpha-representation

p
k

(b) |k2| ∼ m2

E
(b)
1 = k2 + m2

E
(b)
2 = p2

x1 ∼ t−1, x2 ∼ t

U(b) = x1

F (b) = x1x2p
2 + x2

1m2

p

k + p

(c) |(k + p)2| ∼ m2

E
(c)
1 = p2

E
(c)
2 = (k + p)2

+ m2

x1 ∼ t, x2 ∼ t−1

U(c) = x2,

F (c) = x1x2p
2 + x2

2m2

Let us present a method revealing those regions automatically.
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Geometric approach

Each term in F corresponds to a vector of n + 1 exponents:

tr0x r1
1 ...x rn

n → (r1, ..., rn, r0),

and F corresponds to a set w(F ) of points in
(n + 1)-dimensional vector space.
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r1

A (0,2,1)

r0

E (1,0,0)

D (0,1,0)

B (2,0,1)

r2 C (1,1,0)

B’

A’

O

Graphical representation of sets
w(F = x1x2(p

2 + 2m2) + x2
1m2 + x2

2m2) (crossed points) and
w(U = x1 + x2) (diamonds) corresponding to the integral.
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If we fix the scales of alpha-parameters as xi ∼ tvi , then the
scale of a monomial can be found as
tr0x r1

1 ...x rn
n ∼ tr0+v1r1+...+rnvn ∼ t~r~v , with ~r = (r1, ..., rn, r0) from

w(F ) and ~v = (v1, ..., vn, 1).
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If we fix the scales of alpha-parameters as xi ∼ tvi , then the
scale of a monomial can be found as
tr0x r1

1 ...x rn
n ∼ tr0+v1r1+...+rnvn ∼ t~r~v , with ~r = (r1, ..., rn, r0) from

w(F ) and ~v = (v1, ..., vn, 1).

Graphically, ~r~v represents the length of a projection that
vector ~r has on the direction ~v .

Any choice of ~v corresponds to some hierarchy between xi , but
most of such choices lead to zero (scaleless) integrals. The
few directions that lead to scaleful integrals determine the
regions of expansion that we seek.
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Geometric approach

The terms in F that remain after the expansion are all
characterized by the same scale in powers of t. In terms of the
corresponding subset of points w(F ′), they feature the same
value of the projection on ~v . In other words, all these points
lie in the same hyperplane orthogonal to ~v .
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Geometric approach

The terms in F that remain after the expansion are all
characterized by the same scale in powers of t. In terms of the
corresponding subset of points w(F ′), they feature the same
value of the projection on ~v . In other words, all these points
lie in the same hyperplane orthogonal to ~v .

Revealing of regions (=non-trivial scalings) turns to finding
the convex hull of points corresponding to monomials.
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In this example we find the corresponding points and vectors
(points as denoted in the figure):

a : ~v = (1, 0, 0), w(F ′) = (C ), w(U ′) = (D,E ),

b : ~v = (1, 1,−1), w(F ′) = (A,C ), w(U ′) = (D),

c : ~v = (1,−1, 1), w(F ′) = (B ,C ), w(U ′) = (E ).
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Geometric approach

Together with Pak we presented (2010) a code Asy.m

revealing the regions.
The main function is AlphaRepExpand [ks, ds, cs, hi ], where
ks is the list of loop momenta (e.g., {k}),
ds is the list of denominators (e.g., {k2 +m2, (k + p)2 +m2}),
cs is the list of constraints (e.g., {p2 → M2}) and
hi is the list of scalings of kinematic invariants with respect to
the small parameter x (e.g., {M → x0,m → x1}).
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Preresolution

Let us consider the one-loop propagator diagram with two
massive lines in the threshold limit, i.e. when
t = m2 − q2/4 → 0 with q being the external momentum:

F(q2,m2) =

∫

ddk

(k2 − m2)
(

(k − q)2 − m2
) ,
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Preresolution

Let us consider the one-loop propagator diagram with two
massive lines in the threshold limit, i.e. when
t = m2 − q2/4 → 0 with q being the external momentum:

F(q2,m2) =

∫

ddk

(k2 − m2)
(

(k − q)2 − m2
) ,

we have

U = x1 + x2

F =
q2

4
(x1 − x2)

2 + t(x1 + x2)
2
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Preresolution

With the initial approach we find only one region (hard),
however we are missing the region where x1 ≈ x2 (more
precisely x1 − x2 ∼ t1/2) which causes problems.

The reason why the initial approach fails is that some terms
can get cancelled out for certain values of x1 and x2. Our goal
is to make what we call preresolutions — some variables
replacements in order to reveal hidden contributions.

In this example let us decompose the integration domain into
two subdomains, x1 ≤ x2 and x2 ≤ x1. The two resulting
integrals are equal to each other, but such an equality will not
generally take place for any integral.



Geometric approach to asymptotic expansion of Feynman integrals

Preresolution

In the first domain we turn to new variables by
x1 = x ′

1/2, x2 = x ′

2 + x ′

1/2, remove the primes at xi and obtain
the new functions

U ′ = x1 + x2

F ′ =
q2

4
x2
2 + t(x1 + x2)

2
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In the first domain we turn to new variables by
x1 = x ′

1/2, x2 = x ′

2 + x ′

1/2, remove the primes at xi and obtain
the new functions

U ′ = x1 + x2

F ′ =
q2

4
x2
2 + t(x1 + x2)

2

The goal of this trick is to make the line x1 = x2 (in the old
variables) the border of an integration domain which turned
out to be (in the new variables) x2 = 0.
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Preresolution

Such an approach (recursive variable replacements in order to
get rid of cancelling terms) was developed together with
Jantzen and V.Smirnov, now we can even reveal Glauber
regions automatically.

We call this method “preresolution of singularities”.

The idea of the algorithm: the initial terms proportional to the
small parameter t can get cancelled out. Let us try to get rid
of them.
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Preresolution

The idea of the algorithm: the initial terms proportional to the
small parameter t can get cancelled out. Let us try to get rid
of them.

Let us count negative and positive terms proportional to t

separately. The smallest number among those two is called to
be the error level of the expression (F ).

Step 1. We try all pairs of variables and for each of those try
to divide the integration domain into two (either xi > cxj or
xi < cxj). We have some methods of finding the best possible
constant c for each pair of variables.
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For each of those pairs we make an appropriate variable
replacement, so that in new coordinates the integration
domain is equal to the initial one. We calculate the error level
for both new “sectors”.
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Preresolution

For each of those pairs we make an appropriate variable
replacement, so that in new coordinates the integration
domain is equal to the initial one. We calculate the error level
for both new “sectors”.

Step 2. If for both sectors the error level decreases, we can
continue recursively with this pair. If for no variables the error
level decreases, we stop the recursion. We build a tree of all
possible replacements.

Step 3. We analyse this tree and choose the best possible
“sector” decompositions.

For all physical examples we tried we result in getting rid of
terms that can get cancelled out.
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