Z bozon production in Drell-Yan process

E. Scherbakova

II.Institut for Theoretical Physics Hamburg University

In Collaboration with Prof.Dr.B.A.Kniehl and Dr.O.Veretin

CALC-2012, JINR, Dubna

Outline

Introduction Previous Work

- Hadron Cross Section
 - Steps Of Calculation
 - ۲ Diagrams

Tools

- Singularities
- Numerical Results
 - Analitical result
 - Pictures

3

Outline

Previous Work

Steps Of Calculation

- Singularities
- Analitical result Pictures

Drell-Yan process

Research goals and reasons

- The measurements of production of Z boson in Drell-Yan mechanism and jets are fundamental probes of the EW force and an essential starting point for searches of new physics beyond the SM.
- Detectors systematics should be under control. One of the ways to achieve it is the study very precisely the well-understood standard processes like *W* or *Z* boson production.
- The cross section of Z boson production with the high transverse momenta q_T and well-isolated leptons decay modes can be very easy triggered in detectors such as ATLAS and CMS. This provide a clean experimental signature with rather low background especially for Z boson production.

Previous Work

- The neutral boson production in a hadron-hadron collision was first invented by Sidney Drell and Tung-Mow Yan in 1970.
 Experimentally, this process was first observed by J.H.
 Christenson et al. in proton-uranium collisions at the Brookhaven National Laboratory.
- First theoretical calculation of the corrections to *Z* boson production in the Drell-Yan process was done in 1979 *Altarelli at al.*.
- The next-to-leading (NLO) QCD corrections for the large *q*_T vector boson production were calculated by *R. K. Ellis at al., 1983, R. J. Gonsalves at al., 1999; P. B. Arnold and M. H. Reno, 1999*
- The pure weak one-loop corrections and the leading logarithmic corrections were done by *J. H. Kuhn et al.,2005*

Outline

Previous Work

Hadron Cross Section

- Steps Of Calculation

- Singularities
- Analitical result
 - Pictures

Steps Of Calculation

DIANA M. Tentyukov and J. Fleischer, 2000

 \rightarrow Set of Topologies of Diagrams

AIR C. Anastasiou and A. Lazopoulos, 2004

 \rightarrow Set of Master Integrals

FORM, FORTRAN, C++

 \rightarrow Analytical Formulae

PDFs:

CTEQ6M J. C. Collins et al., MRST A. Martin, J. Stirling et al.

sd $\bar{\sigma}_{ii}$

dtdu

CUBA (VEGAS, SUAVE) T. Hahn, 2006 → Numerical Result E. Scherbakova (Hamburg University) Production of Z boson CALC-2012, JINR, Dubna 8/43

QCD corrections

of the order $O(\alpha_s^2 \alpha)$ in the perturbation theory: loops and bremsstrahlung corrections to the QCD $i + j \rightarrow Z + k$ Born process (here *i*, *j* and *k* are gluons, quarks or antiquarks)

16 N A 16

QED corrections

of the order $O(\alpha_S \alpha^2)$ in the perturbation theory: loops and bremsstrahlung *photonic* corrections to the QCD $i + j \rightarrow Z + k$ Born process and *gluon* corrections to QED $i + j \rightarrow Z + \gamma$ Born process

EW corrections

of the order $O(\alpha_S \alpha^2)$: loops diagrams in the exchange of weak bosons, and mixed EW-QCD corrections of the interference diagram $q + q \rightarrow q + q + Z$ with exchange of Z boson and the same diagram with exchange of gluon

Outline

Hadron Cross Section
 Steps Of Calculation
 Diagrams

3 Tools

- Singularities
- Numerical Results
 Analitical result
 Distures
 - Pictures

Summary

315

Gamma Matrices

G. 't Hooft and M. J. G. Veltman, 1972

• $\gamma_5 \equiv i\gamma^0\gamma^1\gamma^2\gamma^3$, $Tr(\gamma^\mu\gamma^\nu\gamma^\rho\gamma^\tau\gamma_5) = -4i\varepsilon^{\mu\nu\rho\tau}$

The diagrams have only one trace with γ₅:

$$Tr(...\gamma^{\mu}...\gamma^{\sigma}\gamma_{5}...\gamma^{\nu}\gamma_{5})$$

 \rightarrow Using anticommutations relation $\{\gamma^{\mu},\gamma_{5}\}=$ 0, we cancel $\gamma_{5}\gamma^{5}=$ 1.

 \rightarrow And $A(p_1, p_2, q) \varepsilon^{\mu\nu\rho\tau} \rightarrow 0$ because of convolution with only 3 external momenta.

• The squared diagrams give us two traces with γ_5 .

$$Tr(...\gamma^{\mu_1}...\gamma^{\sigma_1}\gamma_5...\gamma^{\nu_1}\gamma_5)Tr(...\gamma^{\mu_2}...\gamma^{\sigma_2}\gamma_5...\gamma^{\nu_2}\gamma_5)$$

 $\varepsilon^{\mu\nu\rho\tau}\varepsilon^{\mu\nu\rho\tau} \neq 0$. In the case of *Z* boson production these diagrams are all finite and we calculated the traces in *d* = 4 dimensions.

Singularities

Soft or collinear limits in the parton kinematics correspond to $s_2 \rightarrow 0$, where $s_2 = s + t + u - Q^2$. The factor $s_2^{-\varepsilon}$ in the phase space measure is used to separate explicitly the poles in the dimensional regulator ε and the finite integrable distribution in $1/\varepsilon$.

$$\frac{1}{s_2^{1+\varepsilon}} = -\frac{1}{\varepsilon}\delta(s_2)\left(1-\varepsilon\ln A + \frac{\varepsilon^2}{2}\ln^2 A\right) + \left(\frac{1}{s_2}\right)_{A_+} - \varepsilon\left(\frac{\ln s_2}{s_2}\right)_{A_+} + O(\varepsilon^2)$$

$$\int_{0}^{A} ds_{2}f(s_{2}) \left(\frac{1}{s_{2}}\right)_{A_{+}} = \int_{0}^{A} ds_{2}\frac{f(s_{2}) - f(0)}{s_{2}}$$
$$\int_{0}^{A} ds_{2}f(s_{2}) \left(\frac{\ln(s_{2})}{s_{2}}\right)_{A_{+}} = \int_{0}^{A} ds_{2}\frac{(f(s_{2}) - f(0))\ln(s_{2})}{s_{2}}$$

Collinear Singularities

The calculation of the factorized cross-section $d\bar{\sigma}$:

$$\frac{sd\bar{\sigma}_{i,j}}{dtdu} = \frac{sd\sigma_{i,j}}{dtdu}
-\frac{\alpha_S}{2\pi} \sum_{k} \sum_{n=1,20} \int_{0}^{1} dz_n R_{k\leftarrow i_n}(z_n, M^2) \frac{sd\sigma_{k,j_n}^{(1)}}{dt}|_{p_n \to z_n p_n} \delta(z_n(s+t-Q^2)+u)
\frac{sd\bar{\sigma}_{i,j}^{(2),QED}}{dtdu} = \frac{sd\sigma_{i,j}^{(2),QED}}{dtdu}
-\frac{\alpha_S}{2\pi} \sum_{k} \int_{0}^{1} dz R_{QCD}(z, M^2) \frac{sd\sigma_{k,j}^{(1),QED}}{dt}
-\frac{\alpha}{2\pi} \sum_{k} \int_{0}^{1} dz R_{QED}(z, M^2) \frac{sd\sigma_{i,k}^{(1),QCD}}{dt}$$

Outline

Hadron Cross Section
 Steps Of Calculation
 Diagrams

3) Too

- Singularities
- Numerical Results
 - Analitical result
 - Pictures

Summary

315

Result

Analytical formulae for QCD, QED and EW corrections

$$\frac{d\sigma}{dq_T^2 \, dy} = \sum_{i,j} \int_{B}^{1} dx_1 \int_{0}^{A} \frac{ds_2 \ f_i(x_1, \mu_F^2) f_j(x_2(s_2), \mu_F^2)}{x_1 \, S + U - Q^2} \\ \frac{s \, d\hat{\sigma}_{i,j}}{dt \, d\mu} (x_1 P_1, x_2(s_2) P_2, \mu_F^2)$$

- Numerical calculations
 - Total Cross Section
 - Transverse Momentum Distribution
 - Rapidity Distribution

• Tevatron($\sqrt{S} = 1.96 \text{ TeV}$) and LHC ($\sqrt{S} = 14 \text{ TeV}$)

The total cross section of Z boson production

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のへで

K-1 factor to the total σ for $p+p \longrightarrow Z+X$

Figure: NLO QCD and EW corrections. $\sqrt{S} = 14 TeV$ (LHC). All NLO contributions included.

イロト イヨト イヨト イヨト

- 문/권

K-1 factor to the total σ for $p+p \longrightarrow Z+X$

Figure: NLO QCD and EW corrections. $\sqrt{S} = 14 TeV$ (LHC). Close up without NLO QCD and EW.

◆□ → ◆□ → ◆ = → ◆ = → ● = ・ のへで

K-1 factor to the total σ for $p + \bar{p} \longrightarrow Z + X$

Figure: NLO QCD and EW corrections. $\sqrt{S} = 1.96 \text{ TeV}$ (Tevatron). All NLO contributions included.

* ロ > (四 > (三 > (三 > (三 +

K-1 factor to the total σ for $p + \bar{p} \longrightarrow Z + X$

Figure: NLO QCD and EW corrections. $\sqrt{S} = 1.96 TeV$ (Tevatron). Close up without NLO QCD and EW.

The q_T distributions

Figure: $\sqrt{S} = 14 \text{ TeV}$ (LHC). The full value of cross section.

The q_T distributions

Figure: $\sqrt{S} = 14 \text{ TeV}$ (LHC). The logarithmic values.

The rapidity distributions.

▲ロト ▲母ト ▲ヨト ▲ヨト 三国市 のへで

The rapidity distributions.

Figure: $\sqrt{S} = 1.96 TeV$ (Tevatron).

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目目 のへで

Outline

Steps Of Calculation

- Singularities
- Analitical result
 - Pictures

- 20

Summary

- The production of Z boson in the hadron-hadron interactions plays a very important role in the modern physics with relation to the development of the colliders technique and the building of new high energies hadron-hadron colliders like LHC.
- The accuracy of the calculated cross section give us a good approximation to the knowledge of the value of background and help us to separate important events.
- Our result includes the full QCD, QED and EW corrections of Z boson production in Drell-Yan mechanism up to general orders $O(\alpha_S \alpha, \alpha_S^2 \alpha, \alpha_S \alpha^2)$.
- The numerical results are presented by plots of the total cross section σ^{tot} and of the distributions in the transverse momentum $\frac{d\sigma}{dq_T}$ and in the rapidity $\frac{d\sigma}{dy}$ of Z boson.

Summary

 The contribution of the QCD corrections of order O(α²_Sα) is most important at small q^{cut}_T.

At large values of the momentum q_T^{cut} (for LHC energies $q_T^{cut} > 1200 \text{GeV}$ and for Tevatron energies $q_T^{cut} > 400 \text{GeV}$) the EW contributions of the order $O(\alpha_S \alpha^2)$ play a significant role and achieve up to 30% for LHC and 20% for Tevatron energies.

 The results will be applied to data analysis of modern and future experiments at hadrons colliders.

NOC ELE (EX (A)

Thank You!!!

E. Scherbakova (Hamburg University)

Production of Z boson

・ イヨト イヨト ヨヨ 今へで
CALC-2012, JINR, Dubna 30 / 43

$$d\sigma_{i,j} = rac{1}{2E_i 2E_j |v_i - v_j|} |M(p_i, p_j \to \{p_f\})|^2 d\Phi^{(n)}$$

 $2E_i 2E_j |v_i - v_j|$ is the flux factor $|M(p_i, p_j \rightarrow \{p_f\})|^2$ is the partonic matrix elements of interaction particles p_i and p_j with production of a set of final particles $\{p_f\}$ E_i and E_j are the energies of incoming particles.

$$\int d\Phi^{(n)} = \left(\prod_{f} \int \frac{d^{3}p_{f}}{(2\pi)^{3}} \frac{1}{2E_{f}}\right) (2\pi)^{4} \delta^{(4)} (p_{i} + p_{j} - \sum_{f} (p_{f})).$$

$$\mathcal{L}_{SM} = \mathcal{L}_{gauge} + \mathcal{L}_{fermion} + \mathcal{L}_{higgs} + \mathcal{L}_{yukawa}.$$

$$\mathcal{L}_{ ext{gauge}} = -rac{1}{4} G^{ extbf{a}}_{\mu
u} G^{ extbf{a}\,\mu
u} - rac{1}{4} W^{ extbf{a}}_{\mu
u} W^{ extbf{a}\,\mu
u} - rac{1}{4} B^{\mu
u} B^{\mu
u}.$$

$$\mathcal{L}_{ ext{fermions}} = \sum_{L} ar{L} i \gamma^{\mu} \mathcal{D}_{\mu} L + \sum_{r} ar{r} i \gamma^{\mu} \mathcal{D}_{\mu} r,$$

$$egin{split} \mathcal{L}_{ ext{higgs}} &= |D\Phi|^2 - V(\Phi^{\dagger}\Phi), \ V(\Phi^{\dagger}\Phi) &= rac{\lambda^2}{4} \left(\Phi^{\dagger}\Phi - v^2
ight)^2, \end{split}$$

$$\mathcal{L}_{yukawa} pprox -g_Y ar{L} \Phi r + h.c.$$

$${old G}^{m{a}}_{\mu
u}=\partial_{\mu}{old A}^{m{a}}_{
u}-\partial_{
u}{old A}^{m{a}}_{\mu}+g\!f^{m{a}bc}{old A}^{m{b}}_{\mu}{old A}^{m{c}}_{
u}$$

$$\mathcal{D}_{\mu}=i\partial_{\mu}-g_{
m s}G_{\mu}^{a}t^{a}-g^{\prime}rac{1}{2}Y_{W}\mathcal{B}_{\mu}-grac{1}{2}ec{ au}_{
m L}ec{W}_{\mu}$$

$$\mathcal{L}_{ ext{NC}} = oldsymbol{e} j^{ ext{EM}}_{\mu} oldsymbol{A}^{\mu} + rac{oldsymbol{g}}{\cos heta} j^{ ext{Z}}_{\mu} oldsymbol{Z}^{\mu},$$

where electromagnetic j^{EM} and neutral j^{Z}_{μ} weak boson currents:

Propagators

Couplings of interaction

$$-i \mathbf{e} \gamma^{\mu} \left(L_{f_i f_j} \frac{1-\gamma_5}{2} + \mathbf{R}_{f_i f_j} \frac{1+\gamma_5}{2}
ight),$$

$$-ig\gamma^{\mu}t_{c},$$

.

$$-ieKigg(g^{\mu_1\mu_2}(k_1-k_2)^{\mu_3}$$

$$+ g^{\mu_2\mu_3} (k_2 - k_3)^{\mu_1} + g^{\mu_3\mu_1}$$

d)
$$k_{1}^{\mu_{1},a}$$
 $k_{3}^{\mu_{3},c}$ $k_{3}^{\mu_{3},c}$ $k_{2}^{\mu_{2},b}$

$$gf^{abc}igg(g^{\mu_1\mu_2}(k_1-k_2)^{\mu_3}$$

E. Scherbakova (Hamburg University)

2

CALC-2012, JINR, Dubna 35 / 43

▲□▶ ▲圖▶ ▲필▶ ▲필▶ - 필]님

$$i\gamma^{\mu}(v_f-\gamma_5a_f),$$

where v_f and a_f are

$$v_f = \frac{I_3 - 2Q_f \sin^2 \theta_W}{2 \sin \theta_W \cos \theta_W}, \qquad a_f = \frac{I_3}{2 \sin \theta_W \cos \theta_W}$$

with I_3 being isospin of a quark.

-

Generators of SU(3) groups

$$\begin{bmatrix} t^{a}, t^{b} \end{bmatrix} = i f^{abc} t^{c},$$

$$t^{a}_{i,j} t^{a}_{j,k} = C_{F} \delta_{ik},$$

$$f^{acd} f^{bcd} = C_{A} \delta_{ab},$$

$$t^{a}_{i,j}, t^{b}_{i,j} = T_{R} \delta_{ij},$$

 f^{abc} are structure constants of SU(3) groups

 $C_F = \frac{N_C^2 - 1}{2N_C}$ is the "Casimir" color factor associated with gluon emission from the quark

 $\textit{C}_{\textit{A}} \equiv \textit{N}_{\textit{C}} = 3$ is the color factor associated with gluon emission from a gluon

 $T_R = \frac{1}{2}$ is the color factor for a gluon to split to quark-antiquark pair

A = A = A = E < 000</p>

Running Constant α_S

$$\begin{aligned} \alpha_{S}(\mu_{R}) &\equiv \frac{g^{2}(\mu_{R})}{4\pi} = \frac{4\pi}{\beta_{0}\ln(\mu_{R}^{2}/\Lambda^{2})} \Big[1 - \frac{2\beta_{1}}{\beta_{0}^{2}} \frac{\ln[\ln(\mu_{R}^{2}/\Lambda^{2})]}{\ln(\mu_{R}^{2}/\Lambda^{2})} \\ &+ \frac{4\beta_{1}^{2}}{\beta_{0}^{4}\ln^{2}(\mu_{R}^{2}/\Lambda^{2})i} \left(\left(\ln[\ln(\mu_{R}^{2}/\Lambda^{2})] - 1/2 \right)^{2} + \frac{\beta_{2}\beta_{0}}{8\beta_{1}^{2}} - \frac{5}{4} \right) \Big]. \end{aligned}$$

$$\beta_0 = 11 - \frac{2}{3}n_f, \quad \beta_1 = 51 - \frac{19}{3}n_f, \quad \beta_2 = 2857 - \frac{5033}{9}n_f + \frac{325}{27}n_f^2.$$

E. Scherbakova (Hamburg University)

CALC-2012, JINR, Dubna 38 / 43

Running Constant α

$$\alpha(\mu) = \frac{e^2(\mu)}{4\pi} (\delta\alpha_{bos} + \delta\alpha_{lep} + \delta\alpha_{top} + \delta\alpha_{hadrons}^{(5)}(M_Z^2) - \delta\alpha_{udscb}(M_Z^2)),$$

$$\begin{split} \delta \alpha_{bos} &= \frac{\alpha}{4\pi} (7 \ln \frac{M_W^2}{\mu^2} - \frac{2}{3}), \\ \delta \alpha_{lep} &= -\frac{\alpha}{3\pi} \sum_{l=e,\mu,\tau} \ln \frac{m_l^2}{\mu^2}, \\ \delta \alpha_{top} &= -\frac{4\alpha}{9\pi} \ln \frac{m_t^2}{\mu^2}, \\ \delta \alpha_{hadrons}^{(5)}(M_Z^2) &= 0.027572 \pm 0.000359, \\ \delta \alpha_{udscb}(M_Z^2) &= \frac{11\alpha}{9\pi} \left(\ln \frac{m_Z^2}{\mu^2} - \frac{5}{3} \right). \end{split}$$

Integration By Parts

Constructing algorithms which reduce the number of all integrals of the process to a few master integrals.

$$0 = \int \mathrm{d}^d k \frac{\partial}{\partial k_{\mu}} \frac{\eta^{\mu}}{[k^2]^{\nu_1} [(k+p_1)^2]^{\nu_2} [(k+p_{12})^2]^{\nu_3} [(k+p_{123})^2]^{\nu_4}},$$

where sum of momenta $p_{ij...k} = p_i + p_j + ... + p_k$, $\eta^{\mu} = k, \ k + p_1, \ k + p_{12}, \ k + p_{123}$.

$$0 = [s\nu_1 \mathbf{1}^+ + (\mathbf{d} - \nu_{12334}) - (\nu_1 \mathbf{1}^+ + \nu_2 \mathbf{2}^+ + \nu_4 \mathbf{4}^+)\mathbf{3}^-]\mathbf{B}$$

$$0 = [t\nu_2 \mathbf{2}^+ + (\mathbf{d} - \nu_{12344}) - (\nu_1 \mathbf{1}^+ + \nu_2 \mathbf{2}^+ + \nu_3 \mathbf{3}^+)\mathbf{4}^-]\mathbf{B}$$

$$0 = [s\nu_3 \mathbf{3}^+ + (\mathbf{d} - \nu_{11234}) - (\nu_2 \mathbf{2}^+ + \nu_3 \mathbf{3}^+ + \nu_4 \mathbf{4}^+)\mathbf{1}^-]\mathbf{B}$$

$$0 = [t\nu_4 \mathbf{4}^+ + (\mathbf{d} - \nu_{12234}) - (\nu_2 \mathbf{1}^+ + \nu_3 \mathbf{3}^+ + \nu_4 \mathbf{4}^+)\mathbf{2}^-]\mathbf{B}$$

where $\nu_{iijk...} = \nu_i + \nu_i + \nu_j + \nu_k + ..., \mathbf{3}^{\pm}\mathbf{B} = \mathbf{B}(\nu_1, \nu_2, \nu_3 \pm \mathbf{1}, \nu_4)$ K. G. Chetyrkin, F. V. Tkachov, 1981, C. Anastasiou at al., 2004

Splitting Functions DGLAP

$$R_{k\leftarrow i}(z,M^2) = -\frac{1}{\varepsilon}P_{k\leftarrow i}(z)\frac{\Gamma(1-\varepsilon)}{\Gamma(1-2\varepsilon)}\left(\frac{4\pi\mu^2}{M^2}\right)^{\varepsilon} + C_{k\leftarrow i}(z).$$

$$\begin{array}{lll} P_{qq}(y) &=& C_F\left(\frac{1+y^2}{(1-y)_+}+\frac{3}{2}\delta(y-1)\right)\,,\\ P_{gq}(y) &=& C_F\frac{1+(1-y)^2}{y}\,,\\ P_{gg}(y) &=& 2C_A\left(\frac{1}{(1-y)_+}+\frac{1}{y}+y(1-y)-2\right)\\ && +\delta(y-1)\left(\frac{11}{6}C_A-\frac{2}{3}T_F\right)\,,\\ P_{qg}(y) &=& \frac{y^2+(1-y)^2}{2}\,, \end{array}$$

▲□▶ ▲圖▶ ▲필▶ ▲필▶ - 필]님

D-dimensional Integrals

$$\int d^4 k \to \mu^{4-d} \int d^d k, \qquad \boldsymbol{d} = \boldsymbol{4} - 2\varepsilon$$
$$d^d k = dk_0 |k|^{d-2} d|k| d\phi \prod_{k=1}^{d-3} \sin^k \theta_k d\theta_k$$

$$\begin{array}{ll} \frac{\Gamma(2-\frac{d}{2})}{(4\pi)^{d/2}(m^2)^{2-d/2}} & = & \frac{1}{(4\pi)^2} \Big(\frac{2}{\varepsilon} - \gamma + \ln(4\pi) - \ln(m^2) \Big) \\ & \quad \rightarrow \frac{1}{(4\pi)^2} \Big(- \ln(m^2/M^2) \Big), \end{array}$$

G. Passarino and M. J. G. Veltman, 1979

T. Matsuura, S. C. van der Marck and W. L. van Neerven, 1989

Bremmstrahlung Integrals

$$\int \frac{d^{d-1}p_3 d^{d-1}p_4}{(2\pi)^{2d-2} 4E_3 E_4} (2\pi)^d \delta(p_1 + p_2 - q - p_3 - p_4) |M^2|$$

van Neerven way \rightarrow

$$I_{n}^{(k,l)} = \int_{0}^{\pi} d\beta_{1} \sin^{d-3} \beta_{1} \int_{0}^{\pi} d\beta_{2} \sin^{d-4} \beta_{2}$$

$$(a + b \cos \beta_{1})^{-k} (A + B \cos \beta_{1} + C \sin \beta_{1} \cos \beta_{2})^{-l}$$

$$= 2^{1-i-j} \pi \frac{\Gamma(d/2 - 1 - i)\Gamma(d/2 - 1 - j)\Gamma(d - 3)}{\Gamma(d - 2 - i - j)\Gamma^{2}(d/2 - 1)}$$

$${}_{2}F_{1} \left(\frac{i, j}{d/2 - 1}; \cos^{2} \frac{\chi}{2}\right)$$

E. Scherbakova (Hamburg University)

< 17 ▶