
Precise theoretical predictions for Drell-Yan
processes at hadron colliders: lecture 2

Fulvio Piccinini

INFN, Sezione di Pavia

CALC 2012, 22 July - 3 August, 2012

F. Piccinini (INFN) CALC2012 1 August 2012 1 / 26



Example: W/Z transverse momentum
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• NLO calculation totally unpredictive in the region of small pV⊥
• actually the tree-level prediction is zero =⇒

• in the large p⊥ region predictions are LO
• extremely sensitive to extra radiation, in particular to multigluon

radiation
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resummed predictions for Q⊥ (I)

review by S. Marzani, arXiv:1207.4279[hep-ph]

• Q⊥ ∼MZ =⇒ perturbative prediction reliable

• ΛQCD � Q⊥ �MZ =⇒ p.t. still reliable provided ln
(

Q⊥
MZ

)
are

summed up to all orders
• Q⊥ ∼ ΛQCD non perturbative effects become dominant
• integrating the real correction to the LO cross section
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dQ2
⊥
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2π
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)
• the logarithmic structure holds to all orders of p.t.
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resummed predictions for Q⊥ (II)

• the coefficients Ai can be calculated in the soft/collinear limit
• resummed solution

dσ

dQ2
⊥

= σ0
d

dQ2
⊥

exp

(
−αs

2π
CF ln2 M

2

Q2
⊥

)
• in order to improve the double log accuracy also subleading

effects like momentum conservation in the transverse plane have
to be introduced. To this aim it is convenient to use

• Mellin transforms (in order to transform PDF convolution in ordinary
products)

• impact-parameter representation of the δ function

δ(2)

(
n∑

i=1

k̄⊥i + Q̄⊥

)
=

1

4π2

∫
d2b̄eib̄·Q̄⊥

n∏
i=1,n

eib̄·k̄⊥i

F. Piccinini (INFN) CALC2012 1 August 2012 4 / 26



resummed predictions for Q⊥ (III)

• solution with Mellin transformation φ(n) =
∫∞

0 dxxn−1φ(x)

dσ̃

dQ2
⊥

(N) = σ̃0(N)
1

4π2

∫
d2b̄ e−RN (b,M,N)

• RN (b,M,N) involves an integral of the kind
∫M2

b−2

dk2
⊥

k2
⊥
f(k2
⊥) which

diverges at both integration limits
• divergence at the lower limit related to non perturbative regime;

different recipes to define the integral, requiring a smooth
transition between perturbative and non-perturbative regimes

• e.g. a recipe introduces a gaussian form factor with parameters to
be fitted from data at low Q⊥ Balasz, Landry, Brock, Nadolsky, Yuan

• most recent calculations are at NNLL accuracy, with smooth
transition to NLO predictions in the perturbative regime

Becher, Neubert, Wilhelm; Li, Mantry, Petriello

Bozzi, Catani, Ferrera, De Florian, Grazzini

Banfi, Dasgupta, Marzani, Tomlinson
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comparison with Tevatron data
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D0 coll., arXiv:0712.0803[hep-ex] G. Bozzi et al., arXiv:1007.2351[hep-ph]

• a pure NNLL perturbative resummation matched to the NLO
calculation seems to fit data without the need of non-perturbative
contributions
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Exercise with LHC data
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A. Banfi et al., arXiv:1205.4760[hep-ph]
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another way to resummation: parton shower

material from P. Nason, in arXiv:0902.0293; P.Nason and B. Webber, arXiv:1202.1251

• basic example: γ∗ → qq̄g in the soft limit

|Mqq̄g|2 = |Mqq̄|24παsCF
2q1 · q2

(q1 · k)(q2 · k)

|Mqq̄g|2dΦqq̄g ' |Mqq̄|2dΦqq̄dS

dS =
2αsCF

π

dEg

Eg

dϑ

sinϑ

dφ

2π

• in general

|Mn+1|2dΦn+1 ⇒ |Mn|2dΦn
αs(t)

2π

dt

t
Pq,qg(z) dz

dφ

2π
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parton shower: factorization

• the variable t, z and φ parametrize the splitting kinematics

• requirements on z and t
• t is the smallest scale compared to the scales involving all pair of

external partons
• in the collinear limit (t→ 0), k → z(k + l)
• dt/t is scale invariant. Possible choices:

• t = (k + l)2 ∼ E2ϑ2z(1− z) (virtuality)
• t = k2

⊥ = l2⊥ ∼ E2ϑ2z2(1− z)2 (transverse momentum)
• t = E2ϑ2 (angular variable)

• factorization can be iterated
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parton shower (II)

• given the previous conditions on t, the evolution variable is
ordered in descending order through the chain of splittings

• in QCD the same formula apply for the splittings
• q → qg, g → gg, g → qq̄

the only change is contained in the splitting functions

Pq,qg(z) = CF
1 + z2

1− z

Pg,gg(z) = CA

(
z

1− z
+

1− z
z

+ z(1− z)
)

Pg,qq̄ = tf
(
z2 + (1− z)2

)
F. Piccinini (INFN) CALC2012 1 August 2012 10 / 26



Sudakov form factor (I)
• from

|Mn+1|
2
dΦn+1 ⇒ |Mn|2dΦn

αs(t)

2π

dt

t
Pq,qg(z) dz

dφ

2π
= |Mn|2dΦnP(Φrad)dΦrad

we can interpret the radiation factor as the probability of radiating
a resolvable parton above a cutoff scale t0, under which two
partons are not resolvable, between t and t+ dt, z and z + dz, φ
and φ+ dφ

• the cutoff t0 is dictated by the running of αs

αs(t) =
1

b0 log t
Λ2

QCD

t > Λ2
QCD

• dividing the interval [t′, t] in N subintervals δt and enforcing
unitarity (prob. cons.) in each subinterval, the probability of
evolution between t and t′ with no resolvable emissions is

∆i(t, t
′) =

N∏
i=1

(
1− αs(t)

π

δt

ti

∫ 1

0
Pq,qg(z)dz

)
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Sudakov form factor (II)

• in the limit N →∞ the probability of no resolvable emissions
between scales t and t′ < t is

∆S(t, t′) = exp

[
−
∫ t

t′

αs(t)

π

dt

t

∫ 1

0
Pq,qg(z)

]
Sudakov form factor

• example: probability that, starting at scale t, the first branching is
in the phase space element dt′, dz, dφ is

∆S(t, t′)
αs(t

′)

π

dt′

t′
Pq,qg(z)dz

dφ

2π

• subsequent branches in a chain are independent (Markov chain)
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typical shape of the Sudakov form factor

t′

∆(t′, t′′)

t′′

1

0

• with very different scales the form factor becomes very small
• =⇒ large probability of branching
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a simple analogy

• formally the previous description of subsequent branchings is
equivalent to the one of subsequent decays from a radioactive
source, with pdt the elementary radiation probability in the time
interval dt

• the probability of no radiation from 0 to t′ is

∆(t′) = (1− pdt)
t′
dt = exp(−pt′)

• the probability distribution of the first decay at t′ is

exp(−pt′)pdt′ = −d∆(t′)

• =⇒ the probability distribution of the first decay is uniform in ∆(t′)

• =⇒ to generate via Monte Carlo the first decay at t′ (with
0 < t′ < t), we need a uniform random r and solve for t′

r =
∆(t′)

∆(t)
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algorithm for final state shower

• generate a hard process configuration with probability proportional
to its parton level cross section

• for each final state coloured parton generate a shower as follows
1 set t = Q, the typical scale of the process
2 generate a uniform random r
3 solve for t′ the equation r = ∆S(t, t′)
4 if t′ < t0 (the resolution scale), no branching and stop
5 otherwise

• generate a pair of partons jl, z with distribution ∼ Pi,jl(z) and a value
φ with uniform probability in [0, 2π]

• set Ej = zEi and Ej = (1− z)Ei for partons j and l
• ϑjl is fixed by the value of t′

• for partons j and l set t = t′ and go to step 2
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how the qq̄ final state appears after showering

• After application of the algorithm, for the case of γ∗ → qq̄, the final
states appears as a shower of partons

P. Nason, arXiv:0902.0293[hep-ph]

• for all generated partons the kinematics is known, i.e. we have
full exclusive information on the final state partons
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but in DY QCD radiation comes from initial state...

• partons from IS evolve from zero to spacelike virtualities
• usually the IS shower is performed with backward evolution:

starting from the scale Q of the hard scattering the partons are
evoluted down to the hadronic scale, where they are matched to
the PDF

• to find the backward splitting probability it is convenient to write

dΦnP(Φrad)dΦrad ∼
RMC

n+1

RMC
n

dΦrad

where RMC
n is the approximate n-body cross section

• while for FSR the PDF cancel in the ratio, this does not happen for
ISR

PISR(Φrad)dΦrad =
αs(t)

2π

dt

t
Pq,qg(z)

f
(
x
z , t
)

f (x, t)
dz

dφ

2π
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picture of IS showering

• for each radiated parton not entering the hard kernel start the
forward final state shower algorithm

• when all partons have been degraded to the cutoff scale, they are
taken as input for the hadronization model
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complete evolution of a collision at hadron colliders

f(x,Q2) f(x,Q2)
Parton
Distributions

Hard
SubProcess

Parton
Shower

Hadronization

Decay

+
Minimum Bias
Collisions
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parton shower event generators

• positive features
• complementarity with fixed order calculations
• soft/collinear regions are automatically treated with Leading Log

resummation
• they include a model for the description of the underlying event and

the hadronization
• completely exclusive event generation, very useful for interface to

detector simulation software

• problems
• the cross section prediction is pure LO (due to the unitarity of the

algorithm)
• step forward: matching between fixed order NLO calculation and

parton shower event generators
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requirements to the matching

• avoid double counting. Example: since the shower is unitary, we
could be tempted to shower the various terms (B + V +R) of the
NLO calculation. This has two sources of double counting:

• showering the Born events generate events with one additional
gluon. Such events are already accounted for in R

• the unitarity build in the Sudakov form factor includes the LL part of
the virtual corrections, which are already present in V

• ensure smooth distributions in the phase space
• two working algorithm have been developed:

1 MC@NLO (S. Frixione and B. Webber (2002))

2 POWHEG (P. Nason (2004))
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MC@NLO

• idea: subtract the O(αs) terms contained in the MC approximation

dσmod =

(
B(ΦB) + V̂ (ΦB)+

∫
RMC(ΦB,Φrad)dΦrad

)
dΦB

+
(
R(ΦB,Φrad)−RMC(ΦB,Φrad)

)
dΦBdΦrad

• generate “NLO” events with dσmod and then give them as initial
condition to the parton shower

• drawbacks:
• negative weight events appear (even if unweighted event

generation can be performed)
• the subtraction terms are specific of the parton shower Monte Carlo

in use
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POWHEG

• introduced to avoid negative weights
• idea: observe that the parton shower master formula can be

written as

dσMC = BdΦB

[
∆(Q0) + ∆(p⊥)

RMC

B
dΦrad

]
∆(p⊥) = exp

[
−
∫
RMC

B
θ(p⊥(ΦR)− p⊥)dΦrad

]
• substitute in the above RMC with R and the overall factor B with
B̄ = B + V +

∫
RdΦrad, i.e.

dσ = B̄dΦB

[
∆(Q0) + ∆(p⊥)

R

B
dΦrad

]
∆(p⊥) = exp

[
−
∫
R

B
θ(p⊥(ΦR)− p⊥)dΦrad

]
• generate the hardest radiation with dσ and then all other (ordered

in k⊥) with the standard Parton Shower
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comparison MC@NLO - POWHEG

• both ensure total cross section at NLO accuracy
• POWHEG avoids negative weights
• MC@NLO exponentiates only the singular part of the real

radiation amplitude
• POWHEG modifies the Sudakov form factor by exponentiating the

complete real radiation amplitude
• differences between the two codes are beyond NLO accuracy
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examples

S. Frixione and B. Webber, hep-ph/0204244 P. Nason and G. Ridolfi, hep-ph/0606275
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Higher-order QCD & generators: state of the art

• Multi-parton matrix elements Monte Carlos (ALPGEN, HELAC,
MADEVENT, SHERPA...) matched with vetoed Parton Showers

(not treated in these lectures)

• NLO calculations for W,Z → ll̄′ (DYRAD, MCFM )
W.T. Giele, E.W.N. Glover and D.A. Kosower, Nucl. Phys. B403 (1993) 633

J.M. Campbell and R.K. Ellis, Phys. Rev. D65 (2002) 113007

• soft-gluon resummation of leading/NLL (pV⊥/MV ) (ResBos)
C. Balazs and C.P. Yuan, Phys. Rev. D56 (1997) 5558

• fully differential NNLO corrections to W/Z production (FEWZ, DYNNLO)
K. Melnikov and F. Petriello, Phys. Rev. Lett. 96 (2006) 231803, Phys. Rev. D74 (2006) 114017

S. Catani, L. Cieri, G. Ferrera, D. de Florian, M. Grazzini, Phys. Rev. Lett. 103 (2009) 082001
S. Catani, G. Ferrera, M. Grazzini, JHEP 1005 (2010) 006

• NNLL resummation of W/Z transverse momentum
G. Bozzi, S. Catani, G. Ferrera, D. de Florian, M. Grazzini, Phys. Lett. B696 (2011) 207

• NLO merged with Parton Showers (MC@NLO, POWHEG, SHERPA)
S. Frixione and B.R. Webber, JHEP 0206 (2002) 029

P. Nason, JHEP 0411 (2004) 040; S. Alioli et al., JHEP 0807 (2008) 060, JHEP 1006 (2010) 043
S. Höche, F. Krauss, M. Schönherr, F. Siegert, arXiv:1207.5030
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